
Anil Ada
aada@cs.cmu.edu May 16, 2016

15-112
Fundamentals of Programming

Lecture 1:
Introduction + Basic Building Blocks of Programming

mailto:aada@cs.mcgill.ca?subject=

What is programming (coding) ?

What is computer programming ?

What is a computer?

Any device that manipulates/processes data (information)

Usually

DeviceInput Output

We call this process computation.

Calculation: manipulation of numbers.
 (i.e., computation restricted to numbers)

Examples

“Computers” in early 20th century

Examples: Nature (?)

Evolution

The computational lens

Computational biology

Computational physics

Computational chemistry

Computational neuroscience

Computational finance

…

Computer Science:
The science that studies computation.

A more refined definition of “computer”

- Restricted to electronic devices

A more refined definition of “computer”

- Restricted to electronic devices

- “Universal”
programmable to do any task.

An electronic device that can be programmed to
carry out a set of basic instructions in order to
acquire data, process data and produce output.

Computer:

A set of instructions that tells the computer how to
manipulate data (information).

What is a computer program ?

Who is a computer programmer ?

The person who writes the set of instructions.

Example of a program

Joe (the robot)

coin

Example of a program

Example of a program

Move 1 step forward

Example of a program

Move 1 step forward

Move 1 step forward

Example of a program

Move 1 step forward

Move 1 step forward

Move 1 step forward

Example of a program

Move 1 step forward

Move 1 step forward

Move 1 step forward

Move 1 step forward

Example of a program

Move 1 step forward

Move 1 step forward

Move 1 step forward

Move 1 step forward

Turn right

Example of a program

Move 1 step forward

Move 1 step forward

Move 1 step forward

Move 1 step forward

Turn right

Move 1 step forward

Example of a program

Move 1 step forward

Move 1 step forward

Move 1 step forward

Move 1 step forward

Turn right

Move 1 step forward

Move 1 step forward

Example of a program

Move 1 step forward

Move 1 step forward

Move 1 step forward

Move 1 step forward

Turn right

Move 1 step forward

Move 1 step forward

Pick up coin

Example of a program

Repeat 4 times:

Move 1 step forward

Turn right

Repeat 2 times:

Move 1 step forward

Pick up coin

Another example: cooking

Melt butter with olive oil.

Add garlic.

Cook until lightly browned.

Stir in green beans.

Season with salt and pepper.

Cook until beans are tender.

Sprinkle with parmesan cheese.
More appropriate to call

this an algorithm.

In this course:

This course is about learning to write programs for:

You will be their master.

Wait a minute!
Are you telling me Angry Birds is just a set of instructions?

Examples of Programs

There are thousands (sometimes millions) of
 lines of code (instructions) that tell the computer exactly

what to do and when to do it.

Operating Systems
Windows
MacOS
Unix

Web Sites
Facebook
Twitter

Wikipedia

Applications
Internet Explorer

iTunes
Warcraft

What you will learn in this course:

We will lay the foundations of programming.

2. Principals of good programming.

1. How to think like a computer scientist.

3. Programming language: Python

What you will learn in this course:

1. How to think like a computer scientist.

Finding an efficient (preferably most efficient) solution.

Solving problems.
- use instructions a machine can understand.
- divide the problem into smaller manageable parts.

EXAMPLE

Your Program
digital phone book

Name Phone number
input output

- How do you solve it using instructions the computer can understand?
(Can’t just say “find phone number”)

- How do you solve the problem efficiently?

What you will learn in this course:

We will lay the foundations of programming.

2. Principals of good programming.

1. How to think like a computer scientist.

3. Programming language: Python

What you will learn in this course:

2. Principals of good programming.

- Is your program (code) easy to read? easy to understand?

- Is it easy to fix errors (bugs)?

- Can it be reused easily? extended easily?

- Are there redundancies in the code?

But these are not the only important things:

- Does your program work correctly?

- Is it efficient?

Most important properties of a program:

What you will learn in this course:

We will lay the foundations of programming.

2. Principals of good programming.

1. How to think like a computer scientist.

3. Programming language: Python

What you will learn in this course:

3. Programming language: Python

There are many human languages.
Can give instructions in English or Spanish or French, etc.

Similarly, there are many programming languages.

- Lots of similarities between different languages,
 but also important differences.

- Mix of math and English.

Programming is awesome!

Sky is the limit.

Combines technical skill and creativity.

When your program does
what it is supposed to do: When it doesn’t:

The destination

Term Projects

Keys to success in this course

How do you learn programming? By doing!

Understand the challenge. Embrace the challenge.

Time management!

Help us help you!

Ask questions in class, in office hours, on Piazza.

You will learn the most from your CAs. Use them.

Understand the method: learning by immersion.

Keys to success in this course

Most importantly:

Have fun!

Course Webpage

http://www.cs.cmu.edu/~112/m16/

http://www.cs.cmu.edu/~112/m16/

Let’s start.

How do you create and run Python programs?

1. Install Python: www.python.org/download
 version 3.5.x

b. Install Sublime or Komodo Edit
 or some other program.

2. To type your code and run it, you need an IDE:

a. Install and use IEP (now called Pyzo).

or

http://www.python.org/download

What we know so far:

A programmable device that manipulates data/information

Usually

DeviceInput Output

What is a computer?

A set of instructions that tells the computer how to
manipulate data/information.

What is a computer program ?

This Lecture (and next, and next, and next…)

How do these instructions look like?
(What kind of instructions are allowed?)

How can I use these instructions to write programs?
(How do I approach programming, where do I start?)

Calculation as computation

We can express calculation as a math function:

input(s) outputf

fx

x

2
f(x) = x

2

f(2) + f(5) evaluates to 29

Calculation as computation

input(s) outputf

f(x, y) =
x

2 + y

2

2

f
x

2 + y

2

2
x, y

f(2, 4) + 5 evaluates to 15

We can express calculation as a math function:

Calculation as computation

input(s) outputf

We can express calculation as a math function:

f f(n)n

f(n) = n’th prime number

Often, there will be no formula for the output.

Calculation as computation

input(s) outputf

We can express calculation as a math function:

The most important part of calculation/computation is:

specifying how to go from the input to the output.

- This specification/description is called:

> algorithm, if a human can follow it;

> computer program (or code), if a computer can follow it.

Computation using Python

input(s) outputf

But now, inputs and output can be any type of data.

We can express computation as a Python function:

Examples:

def f(x):
 y = x*x
 return y

def f(x, y):
 z = (x**2 + y**2)/2
 return z

def nthPrime(n):
 …

more
complicated.

Basic Building Blocks
Statements

Tells the computer to do something. An instruction.
Data Types

Data is divided into different types.
Variables

Allows you to store data and access stored data.
Operators

Allows you to manipulate data.

Conditional Statements
Executes statements if a condition is satisfied.

Functions
Programs are structured using functions.

Loops
Execute a block of code multiple times.

Basic Building Blocks

print(“Hello World”)

print(911)

print(3.14, “is not an integer”)

print(1, 2, 3)

Hello World

911

1 2 3

3.14 is not an integer.

Statements

In Python3, this is technically a function.

Basic Building Blocks

Assignment Statements and Variables

variable-name = value

x = 3.14
y = x
x = 0
print(y)

x = 5
y = “Hello World”

print(x)

print(y)

1. Evaluate RHS.
2. Assign the value to the variable.

In an assignment statement:

Basic Building Blocks

Data/value types

x = 3.14
y = x
x = 0
print(y)

x = 5
y = “Hello World”

print(x)

print(y)

string

integer

float

Data Types

Python name Description Values

...
NoneType absence of value None

int (integer) integer values �263 263 � 1to

long large integer values all integers

float fractional values e.g. 3.14

str (string) text e.g. “Hello World!”

bool (boolean) Boolean values True, False

Basic Building Blocks

Operators

x = 3 + 5
print(“Hello” + “ World”)
print(1.5 + 1.5)
x = 2 * x + 2**3

x = “Hi!” * 2

Expression: - a valid combination of data and operators
- evaluates to a value

Expressions are evaluated first!

x stores 8
Hello World
3.0
x stores 24

x stores “Hi!Hi!”

What an operator does depends on the types of data it’s acting on.

print(x > 25) False
print((x < 25) and (x >= 0)) True

Basic Building Blocks

def square(x):
 y = x*x
 return y

function definition

Functions

print(square(5))

Basic Building Blocks

def square(x):
 y = x*x
 return y

print(square(5))

function body (must be indented)

Functions

Basic Building Blocks

def square(x):
 y = x*x
 return y

print(square(5))

parameter

Functions

Basic Building Blocks

def square(x):
 y = x*x
 return y

print(square(5)) function call

Functions

Basic Building Blocks

def square(x):
 y = x*x
 return y

print(square(5)) argument

Functions

Basic Building Blocks

def square(x):
 y = x*x
 return y

def square(x):
 return x*x

def square(x):
 return x**2

def f(x, y):
 return (square(x) + square(y))/2

print(f(2, 3))

Functions

Functions can have multiple inputs

Basic Building Blocks

def greetUser(name):
 print(“Hello”, name)

greetUser(“David”)

Hello David
None

print(greetUser(“David”))

Hello David

Does this function return anything?
It actually returns None.

Functions

Same as:

def greetUser(name):
 print(“Hello”, name)
 return None

Basic Building Blocks

def greetEveryone():
 print(“Hello everyone!”)

greetEveryone() Hello everyone!

def isPositive(x):
 return (x > 0)

print(isPositive(-1)) False

greetEveryone(“David”) ERROR

Functions

Functions don’t have to take any input

Basic Building Blocks

def celsiusToFahrenheit(degrees):
 return degrees * (9 / 5) + 32

def fahrenheitToCelsius(degrees):
 return (degrees - 32) * (5 / 9)

def isPositive(x):
 print(“Hello.”)
 return (x > 0)
 print(“Bye.”)

print(isPositive(-1)) Hello.
False

Functions

Basic Building Blocks

print(abs(-5))
print(max(2, 3))
print(min(2, 3))
print(pow(2, 3))
print(round(-3.14))

print(type(5))
print(type(“hello”))
print(type(True))

print(int(2.8))

Functions

There are various built-in functions:

Basic Building Blocks
Statements

Tells the computer to do something. An instruction.
Data Types

Data is divided into different types.
Variables

Allows you to store data and access stored data.
Operators

Allows you to manipulate data.

Conditional Statements
Executes statements if a condition is satisfied.

Functions
Programs are structured using functions.

Loops
Execute a block of code multiple times.

Basic Building Blocks

def absoluteValue(n):
 if (n < 0):
 n = -n
 return n

Conditional Statements

print(absoluteValue(-5))
print(absoluteValue(3))

5
3

Basic Building Blocks

def absoluteValue(n):
 if (n < 0):
 return -n
 return n

Conditional Statements

print(absoluteValue(-5))
print(absoluteValue(3))

5
3

Basic Building Blocks

def degreeConverter(degrees, option):
 if (option == 1):
 result = degrees * (9 / 5) + 32
 else:
 result = (degrees - 32) * (5 / 9)
 return result

print(degreeConverter(100, 1))

Conditional Statements

Basic Building Blocks

Loops

for i in range(5):
 print("Hello!") Hello!

Hello!
Hello!
Hello!
Hello!

Basic Building Blocks

Loops

def printHello(n):
 for i in range(n):
 print("Hello!")

Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!

printHello(7)

Basic Building Blocks

Loops

def printHello(n):
 i = 0
 while (i < n):
 print(“Hello!”)
 i = i + 1

Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!

printHello(7)

Careful: Easy to make errors!

Try to modify the examples:

- Misspell some of the words.
- Write in upper case.
- Put two statements on one line.
- Divide one statement over two lines.
- ...

Try to run and see what kind of errors you get.

Types of Programming Errors (Bugs)

3 types
Syntax errors (compile-time errors):

Run-time errors:

Logical errors:

The compiler finds problems with syntax

A problem occurs during program execution, and causes
the program to terminate abnormally (crash).
e.g. division by 0.

The program runs, but produces incorrect results.

celsius = (5 / 9) * fahrenheit - 32
e.g. maybe in your program you used a wrong formula:

e.g. typed “Print” rather than “print”

One of the most important parts of programming is
debugging!

