
May 18, 2016

15-112
Fundamentals of Programming

Week 1 - Lecture 3:
Loops

Basic Building Blocks
Statements

Data Types

Variables

Operators

Functions

Conditional Statements

Tells the computer to do something.

Data is divided into different types.

Allows you to store data and access stored data.

Allows you to manipulate data.

Executes statements if a condition is satisfied.

Mini self-contained programs.
Loops

Execute a block of code multiple times.

Loops give you wings !

My first ever program

**
*

My first ever program

print(“************”)
print(“***********”)
print(“**********”)
print(“*********”)
print(“********”)
print(“*******”)
print(“******”)
print(“*****”)
print(“****”)
print(“***”)
print(“**”)
print(“*”)

There is a
better way!

2 types of loops in Python

while loop

for loop

while loop

instruction1
while(expression):
 instruction2
 instruction3
instruction4

The code in the block should change something
related to the expression.

iteration: a single execution of the instructions in the
 loop body.

while loop example

def getPositiveInteger():
 userInput = 0
 while (userInput <= 0):
 userInput = int(input("Enter a positive integer: "))

 return userInput

while loop example

x = 0

while (x < 5):
 print(“Value of x is”, x)
 x += 10
 print(“This line will be printed!”)

print(“bye”)

while loop

counter = 1

while(counter <= 10):
instruction1
instruction2
counter += 1

Repeating a block a certain number of times:

But never use while loops to do this.
Use for loops.

while loop example

def countToN(n):
 counter = 1
 while(counter <= n):
 print(counter)
 counter += 1

while loop example

def sumToN(n):
 counter = 1
 total = 0
 while(counter <= n):
 total += counter
 counter += 1
 return total

while loop example

def sumFromMToN(m, n):
 counter = m
 total = 0
 while(counter <= n):
 total += counter
 counter += 1
 return total

Again: never use while loops to do this.
Use for loops.

Common Loop Bug 1

def sumToN(n):
 total = 0  
 counter = 0  
 while (counter <= n): 
 counter += 1  
 total += counter  
 return total

Manually check the first and last iterations!

Loop conditions that results in the loop body being
executed either:
 - 1 time too few
 - 1 time too many

Off by 1 error

Common Loop Bug 2

In the body you have to change something related to
the condition being checked.

counter = 1
while (counter < 10):
 # Do some awesome complicated computation
 # ...
 # Then forget to increment counter

Infinite Loops

Example: leftmost digit

Write a function that
 - takes an integer n as input,
 - returns its leftmost digit.

e.g. 409283402013 should return 4

Idea:
Repeatedly get rid of rightmost digit until one digit is left.

def leftmostDigit(n): 
 while (n >= 10): 
 n = n // 10
 return n

Example: leftmost digit

Write a function that
 - takes an integer n as input,
 - returns its leftmost digit.

e.g. 409283402013 should return 4

Idea:
Repeatedly get rid of rightmost digit until one digit is left.

def leftmostDigit(n):
 n = abs(n)  
 while (n >= 10): 
 n = n // 10
 return n

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number. (counting starts from 0)

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 1
yes

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 1
no

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 1
no

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 2
yes

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 2
no

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 3
yes

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 4
yes

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 4
no

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 4
no

Example: n’th Awesome number

A number m ≥ 0 is called “Awesome” if it is divisible by 3
or is divisible by 5.

Write a function that
 - takes a positive number n as input,
 - returns the n’th Awesome number.

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

(counting starts from 0)

is Awesome? found = 5
yes return 9

Example: n’th Awesome number

Pictorial solution:

0 1 2 3 4 5 6 7 8 9 …
n = 4

is Awesome? found = 5
yes

Algorithm:

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

return 9

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):
 found = 0

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):
 found = 0
 guess = 0

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):
 found = 0
 guess = -1

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):
 found = 0
 guess = -1
 while (found <= n):

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):
 found = 0
 guess = -1
 while (found <= n):
 guess += 1

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):
 found = 0
 guess = -1
 while (found <= n):
 guess += 1
 if (isAwesome(guess)):

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):
 found = 0
 guess = -1
 while (found <= n):
 guess += 1
 if (isAwesome(guess)):
 found += 1

Example: n’th Awesome number

- Let found = 0
- Go through every number 0, 1, 2, 3, ... :

- if the number is Awesome, increment found

- When found > n, return corresponding number

def nthAwesome(n):
 found = 0
 guess = -1
 while (found <= n):
 guess += 1
 if (isAwesome(guess)):
 found += 1
 return guess

Example: n’th Awesome number

def nthAwesome(n):
 found = 0
 guess = -1
 while (found <= n):
 guess += 1
 if (isAwesome(guess)):
 found += 1
 return guess

def isAwesome(m):
 return ((m % 3) == 0) or ((m % 5) == 0)

def nthAwesome(n):
 found = 0
 guess = 0
 while (found <= n):
 if (isAwesome(guess)):
 found += 1
 guess += 1
 return guess - 1

2 types of loops in Python

while loop

for loop

for loop

for var-name in sequence:
 loop-body

for x in [1, 2, 3, 4, 5]:
 print(x)

1st iteration:
2nd iteration:
3rd iteration:
4th iteration:
5th iteration:

x = 1
x = 2
x = 3
x = 4
x = 5

list (a data type in Python)

for loop

for var-name in sequence:
 loop-body

for x in “Hello”:
 print(x)

1st iteration:
2nd iteration:
3rd iteration:
4th iteration:
5th iteration:

x = “H”
x = “e”
x = “l”
x = “l”
x = “o”

A string is a sequence too

for loop

for var-name in sequence:
 loop-body

for x in range(5):
 print(x)

for x in [0, 1, 2, 3, 4]:
 print(x)

range(n) ≈ [0, 1, 2, …, n-1]

for loop

def sumToN(n):
 total = 0
 for x in range(n+1):
 total += x
 return total

def sumToN(n):
 total = 0
 x = 0
 while (x <= n):
 total += x
 x += 1
 return total

for var-name in sequence:
 loop-body

For loop is the right choice here!

for loop

def sumFromMToN(m, n):
 total = 0
 for x in range(m, n+1):
 total += x
 return total

for var-name in sequence:
 loop-body

range(m, n) ≈ [m, m+1, m+2, …, n-1]

for loop

def sumEveryKthFromMToN(m, n, k):
 total = 0
 for x in range(m, n+1, k):
 total += x
 return total

for var-name in sequence:
 loop-body

range(m, n, k) ≈ [m, m+k, m+2k, …]

for loop

def sumOfOddsFromMToN(m, n):
 total = 0
 for x in range(m, n+1):
 if (x % 2 == 1):
 total += x
 return total

for loop

def sumOfOddsFromMToN(m, n):
 total = 0
 for x in range(m, n+1):
 if (x % 2 == 1):
 total += x
 return total

def sumOfOddsFromMToN(m, n):

 total = 0
 for x in range(m, n+1, 2):
 total += x
 return total

if (m % 2 == 0): m += 1

for loop

def sumOfOddsFromMToN(m, n):
 if (n % 2 == 0): n -= 1
 total = 0
 for x in range(n, m-1, -2):
 total += x
 return total

Unclear code!!!

for loop vs while loop

for x in range(10):
 print(x)

x = 0
while(x < 10):
 print(x)

 x += 1

Use while loop when the number of iterations is
indefinite.

e.g. continue to do something until a certain event

Exercise: Testing primality

Write a function that:
 - Gets a positive integer input
 - Returns True if the integer is prime
 - Returns False otherwise

prime:
 - greater than 1,
 - is only divisible by 1 and itself

Exercise: Testing primality

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

Algorithm:

Exercise: Testing primality

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

Algorithm:

Exercise: Testing primality

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

def isPrime(n):
 for possibleFactor in range(2, n):
 # Check if possibleFactor divides n

Exercise: Testing primality

def isPrime(n):
 for possibleFactor in range(2, n):
 if (n % possibleFactor == 0): return False

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

Exercise: Testing primality

def isPrime(n):
 for possibleFactor in range(2, n):
 if (n % possibleFactor == 0): return False
 return True

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

Exercise: Testing primality

def isPrime(n):
 if (n < 2): return False
 for possibleFactor in range(2, n):
 if (n % possibleFactor == 0): return False
 return True

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

Start thinking about running time

~ n

(length of the input = number of digits = 90 ~ log n)

What if the input is
2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397371

How many iterations?

In the worst case?
(worst possible n)

def isPrime(n):
 if (n < 2): return False
 for x in range(2, n):
 if(n % x == 0): return False
 return True

Start thinking about running time

How many iterations?

In the worst case?
(worst possible n)

~ n**0.5

def fasterIsPrime(n):
 if (n < 2): return False
 maxFactor = round(n**0.5)
 for x in range(2, maxFactor + 1):
 if(n % x == 0): return False
 return True

Example: Find the n’th prime

Write a program that:
 - Gets a positive integer n as input
 - Returns the n’th prime number

Remember: We start counting from 0.

- Let found = 0
- Go through every number 2, 3, 4, 5, ... :

- if the number is prime, increment found

- When found > n, return the corresponding prime

Example: Find the n’th prime

def nthPrime(n):
 found = 0
 guess = 0
 while (found <= n):
 guess += 1
 if (isPrime(guess)):
 found += 1
 return guess

- Let found = 0
- Go through every number 2, 3, 4, 5, ... :

- if the number is prime, increment found

- When found > n, return the corresponding prime

Need to use
while loop

Example: The factoring problem

Write a function that:
 - gets a positive integer as input
 - returns the smallest factor ≠ 1

factor: divides the integer with no remainder.

Exercise

Example: The factoring problem

Why you should care about this problem:

can break most cryptographic systems
used on the internet!

If there is an efficient program to solve
the factoring problem

