
May 23, 2016

15-112
Fundamentals of Programming

Week 2 - Lecture 1:
Strings part 2 + Monte Carlo method

Plan for today

Wrap up strings

Monte Carlo simulation

String literals

x = “#FeelTheBern” string literal

x = ‘#FeelTheBern’ single-quotes

x = ‘‘‘#FeelTheBern’’’ triple single-quotes

x = “““#FeelTheBern””” triple double-quotes

What are the differences between these?

String literals

Single-quotes and double-quotes work similarly.

print(“hello world”)

print(‘hello world’)

hello world

hello world

print(‘He said: “hello world”.’) He said: “hello world”.

print(“He said: ‘hello world’.”) He said: ‘hello world’.

print(“He said: “hello world”.”) Syntax error

print(“Hello
World”) Syntax error

String literals

Use triple quotes for multi-line strings.

print(“““hello
world”””)

hello
world

x = ‘‘‘#FeelTheBern
Hillary’’’

print(x) #FeelTheBern
Hillary

What value does x really store? ‘#FeelTheBern\nHillary’

newline
character

String literals

\n newline \t tab

x = “#FeelTheBern\nHillary”

print(x) #FeelTheBern
Hillary

x = “#FeelTheBern\tHillary”

print(x) #FeelTheBern Hillary

String literals

Escape characters: use \

print(“The newline character is \n.”) The newline character is
.

print(“The newline character is \\n.”) The newline character is \n.

print(“He said: \“hello world\”.”) He said: “hello world”.

String literals

Second functionality of \ : ignore newline

#FeelTheBern
Hillary

print(‘‘‘#FeelTheBern
Hillary’’’)

#FeelTheBern Hillaryprint(‘‘‘#FeelTheBern \
Hillary’’’)

#FeelTheBern Hillaryprint(‘#FeelTheBern \
Hillary’)

The in operator

print(“h” in “hello”)

The in operator returns True or False.

print(“ll” in “hello”)

True

True

print(“H” in “hello”)

print(“” in “hello”) True

False

print(“k” not in “hello”) True

t = “h”
s = “hello”
print(t in s) same as isSubstring(t, s)

Built-in constants
import string

print(string.ascii_letters)

print(string.ascii_lowercase)

print(string.ascii_uppercase)

print(string.digits)

print(string.punctuation)

print(string.printable)

print(string.whitespace)

print(“\n” in string.whitespace)

Example

import string

def isLowercase(c):
 return (c in string.ascii_lowercase)

Built-in string methods

Method: a function applied “directly” on an object/data

s = “hey you!”

Example: there is a string method called upper(),
it works like toUpper() from the HW.

print(upper(s)) ERROR: not used like a function.

print(s.upper()) HEY YOU!

s.upper() is kind of like
upper(s) (if upper was a function)

Built-in string methods

Method: a function applied “directly” on an object/data

s = “hey hey you!”

Example: there is a string method called count():

print(s.count(“hey”)) 2

s.count(“hey”) is kind of like
count(s, “hey”) (if count was a function)

Built-in string methods

upper

lower

replace

strip

isupper

islower

isdigit

isalnum

isalpha

isspace

count

startswith

endswith

find

Built-in string methods

names = “Alice,Bob,Charlie,David”

split and splitlines

for name in names.split(“,”):
 print(name)

Alice
Bob
Charlie
David

returns [“Alice”, “Bob”, “Charlie”, “David”]

Built-in string methods

split and splitlines

s.splitlines() ≈ s.split(“\n”)

quotes = “““\
Dijkstra: Simplicity is prerequisite for reliability.
Knuth: If you optimize everything, you will always be unhappy.
Dijkstra: Perfecting oneself is as much unlearning as it is learning.
Knuth: Beware of bugs in the above code; I have only proved it correct, not tried it.
Dijkstra: Computer science is no more about computers than astronomy is about telescopes.
”””

for line in quotes.splitlines():
 if (line.startswith(“Knuth”)):
 print(line)

String formatting

team = “Steelers”
numSB = 6
s = “The ” + team + “ have won ” + numSB + “ Super Bowls.”

String formatting

team = “Steelers”
numSB = 6
s = “The ” + team + “ have won ” + str(numSB) + “ Super Bowls.”

team = “Steelers”
numSB = 6
s = “The %s have won %d Super Bowls” % (team, numSB)

print(s)

string decimal

The Steelers have won 6 Super Bowls

String formatting

print(“Miley Cyrus gained %f pounds!” % 2**(-5))

float
Miley Cyrus gained 0.03125 pounds!

print(“Miley Cyrus gained %.2f pounds!” % 2**(-5))

Miley Cyrus gained 0.03 pounds!

print(“Miley Cyrus gained %10.2f pounds!” % 2**(-5))

Miley Cyrus gained 0.03 pounds!

print(“Miley Cyrus gained %-10.2f pounds!” % 2**(-5))

Miley Cyrus gained 0.03 pounds!

String formatting

% [-] [minWidth] [.precision] type

print(“Miley Cyrus gained %-10.2f pounds!” % 2**(-5))

Miley Cyrus gained 0.03 pounds!

optional

Example: Cryptography

“I will cut your throat”

“loru23n8uladjkfb!#@”

“loru23n8uladjkfb!#@”

“loru23n8uladjkfb!#@”

encryption

“I will cut your throat”

decryption

Example: Caesar shift

Encrypt messages by shifting each letter
a certain number of places.

Example: shift by 3
a d b e c f ... x a y b ...
A D B E ... X A Y B ...

(other symbols stay the same)

15112 Rocks my world 15112 Urfvn pb zruog

Write functions to encrypt and decrypt messages.
(message and shift given as input)

Example: Caesar shift
def encrypt(message, shiftNum):

def shift(c, shiftNum):

result = “”
for char in message:

result += shift(char, shiftNum)
return result

if (not c.isalpha()):
 return c

shiftNum %= 26

alph = string.ascii_lower if (c.islower()) else string.ascii_upper
shifted_alph = alph[shiftNum:] + alph[:shiftNum]
return shifted_alph[alph.find(c)]

Example: Caesar shift

def shift2(c, shiftNum):
shiftNum %= 26

Code repetition

if(‘A’ <= c <= ‘Z’):
 if(ord(c) + shiftNum > ord(‘Z’)):
 return chr(ord(c) + shiftNum - 26)
 else:
 return chr(ord(c) + shiftNum)

elif(‘a’ <= c <= ‘z’):
 if(ord(c) + shiftNum > ord(‘z’)):
 return chr(ord(c) + shiftNum - 26)
 else:
 return chr(ord(c) + shiftNum)
else:
 return c

Exercise: Rewrite
avoiding the repetition

Tangent: Private-Key Cryptography

Cryptography before WWII

Tangent: Private-Key Cryptography

“I will cut your throat”

“#dfg%y@d2hSh2$&”

“#dfg%y@d2hSh2$&”

“#dfg%y@d2hSh2$&”

“I will cut your throat”

Cryptography before WWII

Tangent: Private-Key Cryptography

there must be a secure way of
exchanging the key

Cryptography before WWII

Tangent: Public-Key Cryptography

Cryptography after WWII

Tangent: Public-Key Cryptography

“I will cut your throat”

“#dfg%y@d2hSh2$&”

“#dfg%y@d2hSh2$&”

“#dfg%y@d2hSh2$&”

“I will cut your throat”

Cryptography after WWII

Tangent: The factoring problem

can break public-key crypto systems
used over the internet

If there is an efficient program to solve
the factoring problem

Fun fact: Quantum computers can factor large numbers
 efficiently!

Tangent: What is a quantum computer?

Information processing using quantum physics.

Plan for today

Wrap up strings

Monte Carlo simulation

Origins of Probability

France, 1654

“Chevalier de Méré”

Antoine Gombaud

Let’s bet:

I will roll a dice four times.
I win if I get a 1.

Origins of Probability

France, 1654

“Chevalier de Méré”

Antoine Gombaud

Hmm.

No one wants to take this bet
anymore.

Origins of Probability

France, 1654

“Chevalier de Méré”

Antoine Gombaud

New bet:

I will roll two dice, 24 times.

I win if I get double-1’s.

Origins of Probability

France, 1654

“Chevalier de Méré”

Antoine Gombaud

Hmm.

I keep losing money!

Origins of Probability

France, 1654

“Chevalier de Méré”

Antoine Gombaud

Alice and Bob are flipping a coin.
Alice gets a point for heads.
Bob gets a point for tails.
First one to 4 points wins 100
francs.

Alice is ahead 3-2 when gendarmes
arrive to break up the game.

How should they divide the stakes?

Origins of Probability

Pascal Fermat

Probability Theory is born!

Monte Carlo Method

General approach:

Run trials

In each trial, simulate event (e.g. coin toss, dice roll, etc)

Count # successful trials

Estimate for probability =

Law of Large Numbers:

 As trials —> infinity, estimate —> true probability

successful trials
trials

Estimating a quantity of interest (e.g. a probability)
by simulating random experiments/trials.

Odds of Méré winning

def mereOdds():
 trials = 100*1000
 successes = 0
 for trial in range(trials):
 if(mereWins()):
 successes += 1
 return successes/trials

def mereWins():
 for i in range(4):
 dieValue = random.randint(1,6)
 if(dieValue == 1): return True
 return False

Example 2: Birthday problem

- Assume people have random birthdays (discard the year).

What is the probability if n = 366?

What is the probability if n = 1?

- Let n = # people in a room.

Pr[any 2 people share a birthday] > 0.5

- What is the minimum n such that:

(ignore Feb 29)

Example 2: Birthday problem
def birthdayOdds(n):
 trials = 10*1000
 successes = 0
 for trial in range(trials):
 if trialSucceeds(n):
 successes += 1
 return successes / trials

def trialSucceeds(n):
 seenBirthdays = “”
 for person in range(n):
 birthday = “$” + str(random.randint(1, 365)) + “$”
 if (birthday in seenBirthdays): return True
 else: seenBirthdays += birthday
 return False

Example 3: Estimating Pi

Example 3: Estimating Pi

Pr [random coconut lands in circle] =

 area of circle

area of square

⇡r2

4r2
=

⇡

4
=

Example 3: Estimating Pi

def findPi(throws):
 throwsInCircle = 0
 for throw in range(throws):
 x = random.uniform(-1, +1)
 y = random.uniform(-1, +1)
 if (inUnitCircle(x,y)):
 throwsInCircle += 1
 return 4*(throwsInCircle/throws)

def inUnitCircle(x,y):
 return (x**2 + y**2 <= 1)

throws = # trials
throwsInCircle = # successes

(-1,-1)

(+1,+1)

Example 4: Monty Hall problem

