
May 31, 2016

15-112
Fundamentals of Programming

Week 3 - Lecture 1:
“2-dimensional” lists

“2d lists”
A list can contain any type of object.

a = [1, “hello”, False]

Can also contain lists.

a = [[1, 3, 5], [6], [1, 5]] # A list of lists

a[0]

a[1]

a[2]

a[0][0]

a[2][1]

is a reference to the first list [1, 3, 5]

is a reference to the second list [6]

is a reference to the third list [1, 5]

is a reference to the first element of the first list [1, 3, 5]

is a reference to the second element of the third list [1, 5]

print(len(a)) 3

Example: Print all the elements

a = [[1, 3, 5], [6], [1, 5]]

for i in range(len(a)):

Looping through the elements one by one.

for j in range(len(a[i])):
 print(a[i][j])

a = [[1, 3, 5],
 [6],
 [1, 5]
]

1
3
5
6
1
5

rectangular “2d list”

Most “2d lists” we deal with will have same length sublists.

a = [[1, 3], [2, 4], [1, 5]]

a = [[1, 3],
 [2, 4],
 [1, 5]
]

Really like a table (or matrix)

a[0][0] a[0][1]
a[1][0] a[1][1]
a[2][0] a[2][1]

row column

2d list examples

A chess board: 8 lists of length 8 each (or 8 by 8 table)

Each entry either contains a chess piece or is empty.

An image: a 2d list of points/pixels

Each entry contains the color of the point.

A database: e.g. a list of users and various information
about the users

user1
user2
user3

… …

…

…

name age email

Cool. Seems easy enough. Can we go home?

Unfortunately, no. 😞

Tricky thing about 2d lists

1d list: references to immutable objects.

Aliases of elements not a problem.

2d list: references to mutable objects.

We must be careful about aliases of elements !!

“Weird” Example 1

[1, 2, 3]

a = [1, 2, 3]

b = copy.copy(a)

b[0] = 0

print(a)

print(b) [0, 2, 3]

a = [[1, 2, 3], [4, 5, 6]]

b = copy.copy(a)

b[0][0] = 0

print(a)

print(b)

[[0, 2, 3], [4, 5, 6]]

 [[0, 2, 3], [4, 5, 6]]

“Weird” Example 2

a = [[0]*2]*3
print(a)

a[0][0] = 9

print(a)

[[0, 0], [0, 0], [0, 0]]

[[9, 0], [9, 0], [9, 0]]

Understanding Example 1

a = [1, 2, 3]

b = copy.copy(a)

b[0] = 0

print(a[0])
1 2 3

a

b

Making a copy of the references.

print(b[0])

Understanding Example 1

a = [1, 2, 3]

b = copy.copy(a)

b[0] = 0

print(a[0])
1 2 3

a

b

0

Making a copy of the references.

print(b[0])

Understanding Example 1

a = [[1, 2, 3], [4], [5, 6]]

b = copy.copy(a)

b[0][0] = 0

print(a[0][0])

1 2 3

a

4 5 6

b

print(b[0][0])

Understanding Example 1

a = [[1, 2, 3], [4], [5, 6]]

b = copy.copy(a)

b[0][0] = 0

print(a[0][0])

1 2 3

a

4 5 60

Shallow copy

b

print(b[0][0])

Understanding Example 1

a = [[1, 2, 3], [4], [5, 6]]

b = copy.deepcopy(a)

b[0][0] = 0

print(a[0][0])

1 2 3

a

4 5 6

b

print(b[0][0])

Understanding Example 1

a = [[1, 2, 3], [4], [5, 6]]

b = copy.deepcopy(a)

b[0][0] = 0

print(a[0][0])

1 2 3

a

4 5 6

b

0print(b[0][0])

Understanding Example 2

a = [0]*2

0

a

Understanding Example 2

a = [0]*4

0

a

a[0] = 1

1

Understanding Example 2

a = [[0]*2]*3
Create a 3 by 2 list a

0

Understanding Example 2

a = [[0]*2]*3
a# Create a 3 by 2 list

0

a[0], a[1], and a[2] are aliases !

1

a[0][0] = 1

print(a)

[[1, 0], [1, 0], [1, 0]]

[[0, 0], [0, 0], [0, 0]]

* makes a shallow copy !

Creating a rows by cols 2d list

a = []
for row in range(rows):
 a += [[0]*cols]

rows = 2
cols = 3 a += [[0, 0, 0]]

a += [[0, 0, 0]]

a

0

Creating a rows by cols 2d list

def make2dList(rows, cols):
 a = []
 for row in range(rows):
 a += [[0]*cols]
 return a

Define a function for this task.

One more important thing

a
a = [[0]*2]*3
Create a 3 by 2 list

0

deepcopy preserves
alias structure !!

see myDeepCopy in the notes.

a = copy.deepcopy(a)

Trying to break aliasing
with deepcopy:

Rules

Use * only on the first level (with immutable elements)

- creates aliases

Never use copy with 2d lists.

- creates aliases
- ok to use with 1d lists since elements are immutable.

Remember: deepcopy does not break alias structure
 within the list.

3d Lists

for i in range(len(a)):
 for j in range(len(a[i])):
 print("a[%d][%d] = %d" % (i, j, a[i][j]))

Printing elements of 2d lists:

a = [[1, 3, 5],
 [6],
 [1, 5]
]

2d list:

a[0][0] = 1
a[0][1] = 3
a[0][2] = 5
a[1][0] = 6
a[2][0] = 1
a[2][1] = 5

3d Lists

a1 = [[1, 2],
 [3, 4]]

a2 = [[5, 6, 7],
 [8, 9]]

a3 = [[10]]

a = [a1, a2, a3]

3d list:

a = [a, a]

4d list:

3d Lists

a = [[[1, 2],
 [3, 4]],
 [[5, 6, 7],
 [8, 9]],
 [[10]]
]

for i in range(len(a)):
 for j in range(len(a[i])):

 for k in range(len(a[i][j])):
 print("a[%d][%d][%d] = %d" % (i, j, k, a[i][j][k]))

Printing elements of 3d lists:

Example Problem: Word Search

Example Problem: Word Search

def testWordSearch():
 board = [['d', 'o', 'g'],
 ['t', 'a', 'c'],
 ['o', 'a', 't'],
 ['u', 'r', 'k'],
]
 print(wordSearch(board, "dog")) # ('dog', (0, 0), 'right')
 print(wordSearch(board, "cat")) # ('cat', (1, 2), 'left')
 print(wordSearch(board, "tad")) # ('tad', (2, 2), 'up-left')
 print(wordSearch(board, "cow")) # None

Example Problem: Word Search

def wordSearch(board, word):
 # …

- go through each cell of the board one by one:

- check if word appears starting at that cell

Algorithm: wordSearch(board, word)

Example Problem: Word Search

def wordSearch(board, word):
 # …

Algorithm:

- go through each cell of the board one by one:

- check if word appears starting at that cell

needs to be broken down further

wordSearch(board, word)

Example Problem: Word Search

def wordSearchFromCell(board, word, startRow, startCol):
 # …

- go through each direction one by one:

- check if word appears in that direction
 starting at the given cell

Algorithm: wordSearchFromCell(board, word, startRow, startCol)

Example Problem: Word Search

def wordSearchFromCell(board, word, startRow, startCol):
 # …

- go through each direction one by one:

- check if word appears in that direction
 starting at the given cell

Algorithm: wordSearchFromCell(board, word, startRow, startCol)

needs to be broken down further

it is important how you represent direction.

let’s see an elegant way of doing it…

