
June 1, 2016

15-112
Fundamentals of Programming

Week 3 - Lecture 2:
Intro to efficiency + Searching and sorting + Big O

Principles of good programming

Correctness

Maintainability

Efficiency

In terms of running time and memory space used.

Your program does what it is supposed to.
Handles all cases (e.g. invalid user input).

Readability, clarity of the code.
Reusability for yourself and others
(proper use of functions/methods and objects)

programs that are easy to handle and debug.

Why care about efficiency?

multiplying two integers

protein structure prediction

factoring integers
sorting a list

computing Nash Equilibria of games

simulating quantum systems
building AI
proving theorems

The Plan

> Searching a given list

> How to properly measure running time

> Sorting a given list

- Linear search

- Binary search

- Selection sort

- Bubble sort

> Big-Oh notation

Motivating example: searching a list

Given a list of integers, and an integer, determine if the
integer is in the list.

3 1 9 4 0 8 7 6 2 5

6

How many steps in the algorithm?

Motivating example: searching a list

31 9 4 0 8 76 2 5

6

How many steps in the algorithm?

Given a list of integers, and an integer, determine if the
integer is in the list.

Motivating example: searching a list

1 6

6

How many steps in the algorithm?

Given a list of integers, and an integer, determine if the
integer is in the list.

Motivating example: searching a list

1 6

6

How many steps in the algorithm?

running time of an algorithm depends on:
- size of input (e.g., size of the list)
- the values in the input

Given a list of integers, and an integer, determine if the
integer is in the list.

Measuring running time

running time of an algorithm depends on:
- size of input (e.g., size of the list)
- the values in the input

Measuring running time

running time of an algorithm depends on:
- size of input (e.g., size of the list)
- the values in the input

size of the list:

Want to know running time with respect to any list size.

N = list size

Measure running time as a function of N.

Measuring running time

running time of an algorithm depends on:
- size of the list (size of input)
- the values in the input

the values in the input:

Measure running time with respect to worst input.

worst input = input that leads to most number of steps

Measuring running time

- for strings: = number of charactersN
- for lists: = number of elementsN

- for ints: = number of digitsN

> Running time is a function of .N

> Look at worst-case scenario/input of length . N

> Count algorithmic steps.

> Ignore constant factors. (e.g.) N2 ⇡ 3N2

How to properly measure running time

(use Big-Oh notation)

> Input length/size denoted by (and sometimes by)N n

The Plan

> Searching a given list

> How to properly measure running time

> Sorting a given list

- Linear search

- Binary search

- Selection sort

- Bubble sort

> Big-Oh notation

Searching for an element in a list

N steps

Can’t do better (in the worst case)

How many steps does this take?

This algorithm is called Linear Search.

Given a list of integers, and an integer, determine if the
integer is in the list.

Searching for an element in a sorted list

81 2 4 5 5 60 9 9

50

running time: N steps

Can we do better?

99

How would you search for a name in a phonebook?

6050

Given a sorted list of integers, and an integer,
determine if the integer is in the list.

Searching for an element in a sorted list

81 2 4 5 5 60 9 9

50

Binary Search

Start in the middle

996050

Searching for an element in a sorted list

81 2 4 5 5 60 9 9

50

Binary Search

Start in the middle

99

If (element > middle),
 can ignore left half of the list.
If (element < middle),
 can ignore right half of the list.
Repeat process on the remaining half.

6050

Searching for an element in a sorted list

81 2 4 5 5 60 9 9

50

Binary Search

996050

Start in the middle
If (element > middle),
 can ignore left half of the list.
If (element < middle),
 can ignore right half of the list.
Repeat process on the remaining half.

Searching for an element in a sorted list

81 2 4 5 5 60 9 9

50

Binary Search

6050 99

Start in the middle
If (element > middle),
 can ignore left half of the list.
If (element < middle),
 can ignore right half of the list.
Repeat process on the remaining half.

Searching for an element in a sorted list

81 2 4 5 5 60 9 9

50

Binary Search

6050 99

Start in the middle
If (element > middle),
 can ignore left half of the list.
If (element < middle),
 can ignore right half of the list.
Repeat process on the remaining half.

Searching for an element in a sorted list

81 2 4 5 5 60 9 9

50

Binary Search

6050 99

Start in the middle
If (element > middle),
 can ignore left half of the list.
If (element < middle),
 can ignore right half of the list.
Repeat process on the remaining half.

Searching for an element in a sorted list

81 2 4 5 5 60 9 9

50

Binary Search

How many steps does this take (in the worst case)?

6050 99

When is this 1?

⇠ log2 N

At each step we halve the list.

N ! N

2
! N

4
! N

8
! · · · ! 1

After k steps: elements left.N

2k

N vs log N

How much better is log N compared to N ?

N log N

2 1
8 3

128 7
1024 10

1,048,576 20
1,073,741,824 30

1,152,921,504,606,846,976 60

~ 1 quintillion

n vs log n

Linear search vs Binary search

Linear Search

Takes steps.

Works for both sorted and unsorted lists.

⇠ N

Binary Search

Takes steps.

Works for only sorted lists.

⇠ log2 N

Linear search code

def linearSearch(L, target):
 for index in range(len(L)):
 if(L[index] == target):
 return True
 return False

How many steps in the worst case?

Binary search code

def binarySearch(L, target):
 start = 0
 end = len(L) - 1
 while(start <= end):
 middle = (start + end)//2
 if(L[middle] == target):
 return True
 elif(L[middle] > target):
 end = middle-1
 else:
 start = middle+1
 return False

How many steps in the worst case?

The Plan

> Searching a given list

> How to properly measure running time

> Sorting a given list

- Linear search

- Binary search

- Selection sort

- Bubble sort

> Big-Oh notation

O(·)

The CS way to compare functions:



means , ignoring constant factors and
 small values of n

f(n)  g(n)

⌘f(n) = O(g(n)) f(n) is O(g(n))

O(·)

The CS way to compare functions:



means , ignoring constant factors and
 small values of n

10n+ 25 = O(n) 10n+ 25 is O(n)⌘

10n+ 25  n

Big Oh Notation

A notation to ignore constant factors and small n.

2n is O(n)

3n is O(n)

1000n is O(n)

0.0000001n is O(n)

2 log2 n is O(log n)

3 log2 n is O(log n)

1000 log2 n is O(log n)

0.0000001 log2 n is O(log n)

log9 n is O(log n)

Running time of linear search is O(N)

Running time of binary search is O(logN)

0.0000001n2
is not O(n)

n is O(n2)

n log7 n+ 100 is not O(n)

Big Oh Notation

Why ignore constant factors and small n?

- Technology independent. Language independent.

- We want to capture the essence of an
 algorithm/problem.

- Difference in Big Oh

 a really fundamental difference.

Big Oh Notation

Ignoring constant factors means
ignoring lower order additive terms.

n2 + 100n+ 500 is O(n2)

601n2 = n2 + 100n2 + 500n2 > n2 + 100n+ 500

n2 + 100n+ 500

n2
= 1 +

100n

n2
+

500

n2

Lower order terms don’t matter!

�! 1

Also:

Big Oh Notation

Big Oh Notation

Important Big Oh Classes

Again, not much interested in the difference
between and .n n/2

We are very interested in the differences between

log n <<<
p
n << n << n2 << n3 <<< 2

n

Important Big Oh Classes

Common function families:

Constant: O(1)

Logarithmic: O(log n)

Square-root: O(
p
n) = O(n0.5)

Linear: O(n)

Loglinear: O(n log n)

Quadratic: O(n2)

Exponential: O(kn)

Important Big Oh Classes

Exponential running time

If your algorithm has exponential running time
e.g. ⇠ 2n

No hope of being practical.

n vs 2n

2n n

2 1
8 3

128 7
1024 10

1,048,576 20
1,073,741,824 30

1,152,921,504,606,846,976 60

Exponential running time example

Given a list of integers, determine if there is a subset
of the integers that sum to 0.

-3 -2 7 99 5 14

Exponential running time example

Given a list of integers, determine if there is a subset
of the integers that sum to 0.

Exhaustive Search
Try every possible subset and see if it sums to 0.

Number of subsets is 2N

So running time is at least 2N

Given an array of size 150,

-3 -2 7 99 5 14

The Plan

> Searching a given list

> How to properly measure running time

> Sorting a given list

- Linear search

- Binary search

- Selection sort

- Bubble sort

> Big-Oh notation

1. Algorithm
2. Running time
3. Code

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Find the minimum element.

Put it on the left.

Repeat process on the remaining n-1 elements.

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 4

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 4

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 4

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 0

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Swap current min with first element of the array

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Swap current min with first element of the array

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 5

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 5

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 4

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 5

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 5

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Current min: 99

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Current min: 99

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Current min: 99

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Current min: 99

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Done!

Selection Sort

Selection Sort: Running Time

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Selection Sort

How many steps does this take (in the worst case)?

(As N increases, small terms lose significance.)

⇠ N + (N � 1) + (N � 2) + · · ·+ 1 =
N2

2
+

N

2

Running time is .O(N2)

Selection Sort: Code

2 8 7 99 4 50

start len(a) - 1

Find the min position from start to len(a) - 1

min position

Swap elements in min position and start

Increment start

Repeat

Selection sort snapshot:

Selection Sort: Code

2 8 7 99 4 50

start len(a) - 1

Find the min position from start to len(a) - 1

min position

Swap elements in min position and start

for start = 0 to len(a)-1:

Selection sort snapshot:

Selection Sort: Code

def selectionSort(a):

Find the min position from start to len(a) - 1
Swap elements in min position and start

2 8 7 99 4 50

start len(a) - 1

min position

for start = 0 to len(a)-1:

for start in range(len(a)):
currentMinIndex = start
for i in range(start, len(a)):

if(a[i] < a[currentMinIndex]):
currentMinIndex = i

(a[currentMinIndex], a[start]) = (a[start], a[currentMinIndex])

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 99 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 99 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 0 994

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 0 994

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 0 994

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 8 5 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 8 5 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 8 5 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 8 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 8 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 7 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 7 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 0 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 0 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 0 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 0 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

0 4 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

0 4 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

0 4 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Large elements “bubble up”

Bubble Sort: Running Time

Sort a given list of integers (from small to large).

2 4 5 7 8 990

How many steps does this take (in the worst case)?

Bubble Sort

O(N2)

Bubble Sort: Code

repeat until no more swaps:

for i = 0 to end:

if a[i] > a[i+1], swap a[i] and a[i+1]

decrement end

Bubble sort snapshot

4 7 5 0 8 992

enda[i] a[i+1]

Bubble Sort: Code

4 7 5 0 8 992

enda[i] a[i+1]

repeat until no more swaps:
for i = 0 to end:

if a[i] > a[i+1], swap a[i] and a[i+1]
decrement end

def bubbleSort(a):
swapped = True
end = len(a)-1
while(swapped):

swapped = False
for i in range(end):

if(a[i] > a[i+1]):
(a[i], a[i+1]) = (a[i+1], a[i])
swapped = True

end -= 1

Comparison: Selection Sort vs Bubble Sort

How about best case?

Bubble sort:

If your list is close to being sorted,
bubble sort can be better.

Selection sort:

Is there a better way?

Worst case both take steps. O(N2)

O(N2)

O(N)

Exercise

Write the code yourself:

linear search
binary search
selection sort
bubble sort

