15-112
Fundamentals of Programming

Week 3 - Lecture 3:
Efficiency continued + Sets and dictionaries.
Measuring running time

How to properly measure running time

> Input length/size denoted by N (and sometimes by n)
 - for lists: $N = \text{number of elements}$
 - for strings: $N = \text{number of characters}$
 - for ints: $N = \text{number of digits}$

> Running time is a function of N.

> Look at worst-case scenario/input of length N.

> Count algorithmic steps.

> Ignore constant factors. (e.g. $N^2 \approx 3N^2$) (use big Oh notation)
Give 2 definitions of $\log_2 N$

Number of times you need to divide N by 2 to reach 1.

The number k that satisfies $2^k = N$.

What is the big Oh notation used for?

Upper bound a function by ignoring:

- constant factors
- small N.

ignore small order additive terms.
Big-Oh is the right level of abstraction!

$$8N^2 - 3n + 84$$

is analogous to “too many significant figures”.

$$O(N^2)$$

“Sweet spot”

- coarse enough to suppress details like programming language, compiler, architecture,…

- sharp enough to make comparisons between different algorithmic approaches.
Review

$10^{10}n^3$ is $O(n^3)$? Yes

n is $O(n^2)$? Yes

n^3 is $O(2^n)$? Yes

n^{10000} is $O(1.1^n)$? Yes

$100n \log_2 n$ is $O(n)$? No

$1000 \log_2 n$ is $O(\sqrt{n})$? Yes

$1000 \log_2 n$ is $O(n^{0.000000001})$? Yes

Does the base of the log matter?

$\log_b n = \frac{\log_c n}{\log_c b}$

When we ask “what is the running time…” you must give the tight bound!
<table>
<thead>
<tr>
<th>Type</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant:</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Logarithmic:</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Square-root:</td>
<td>$O(\sqrt{n}) = O(n^{0.5})$</td>
</tr>
<tr>
<td>Linear:</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Loglinear:</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Quadratic:</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Polynomial:</td>
<td>$O(n^k)$</td>
</tr>
<tr>
<td>Exponential:</td>
<td>$O(k^n)$</td>
</tr>
</tbody>
</table>
\[\log n \ll \sqrt{n} \ll n < n \log n \ll n^2 \ll n^3 \ll \ll 2^n \ll \ll 3^n \]
Review

Running time of **Linear Search**: \(O(N) \)

Running time of **Binary Search**: \(O(\log N) \)

Running time of **Bubble Sort**: \(O(N^2) \)

Running time of **Selection Sort**: \(O(N^2) \)

Why is Bubble Sort slower than Selection Sort in practice?
Selection sort snapshot:

Find the *min position* from *start* to *len(a) - 1*

Swap elements in *min position* and *start*

Increment *start*

Repeat

Selection sort code:

```python
start = 0
for i in range(len(a) - 1):
    min_position = start
    for j in range(start + 1, len(a) - 1):
        if a[j] < a[min_position]:
            min_position = j
    a[start], a[min_position] = a[min_position], a[start]
    start += 1
```
Review: selection sort code

Selection sort snapshot:

```
0 2 8 7 99 4 5
```

min position

for *start* = 0 to *len(a) - 1*:

Find the *min position* from *start* to *len(a) - 1*

Swap elements in *min position* and *start*
def selectionSort(a):
 for start in range(len(a)):
 currentMinIndex = start
 for i in range(start, len(a)):
 if (a[i] < a[currentMinIndex]):
 currentMinIndex = i
 (a[currentMinIndex], a[start]) = (a[start], a[currentMinIndex])

for start = 0 to len(a)-1:
 Find the min position from start to len(a) - 1
 Swap elements in min position and start
Repeat until no more swaps:

for i = 0 to end:
 if a[i] > a[i+1], swap a[i] and a[i+1]
 decrement end
repeat until no more swaps:
 for i = 0 to end:
 if a[i] > a[i+1], swap a[i] and a[i+1]
 decrement end

def bubbleSort(a):
 swapped = True
 end = len(a)-1
 while swapped:
 swapped = False
 for i in range(end):
 if(a[i] > a[i+1]):
 (a[i], a[i+1]) = (a[i+1], a[i])
 swapped = True
 end -= 1
You have an algorithm with running time $O(N)$.

If we **double** the input size, by what factor does the running time increase?

If we **quadruple** the input size, by what factor does the running time increase?

You have an algorithm with running time $O(N^2)$.

If we **double** the input size, by what factor does the running time increase?

If we **quadruple** the input size, by what factor does the running time increase?
To search for an element in a list, it is better to:
- sort the list, then do binary search, or
- do a linear search?

Give an example of an algorithm that requires **exponential** time.

Exhaustive search for the Subset Sum Problem.

Can you find a polynomial time algorithm for Subset Sum?
The Plan

> Merge sort

> Measuring running time when the input is an int

> Efficient data structures: sets and dictionaries
Merge Sort: Merge

Merge

The key subroutine/helper function:

merge(a, b)

Input: two sorted lists a and b

Output: a and b merged into a single list, all sorted.

Turns out we can do this pretty efficiently.

And that turns out to be quite useful!
Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Merge Sort: Merge Algorithm

Merge

\[a = \begin{array}{cccc}
4 & 8 & 9 & 11 \\
\end{array} \quad b = \begin{array}{cccc}
1 & 3 & 12 & 15 & 16 \\
\end{array} \]

\[c = \begin{array}{cccc}
1 & \ & \ & \ \\
\end{array} \]

Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Merge Sort: Merge Algorithm

Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Merge Sort: Merge Algorithm

Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Merge Sort: Merge Algorithm

Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Merge Sort: Merge Algorithm

Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Merge Sort: Merge Algorithm

Main idea: $\min(c) = \min(\min(a), \min(b))$
Main idea: $\min(c) = \min(\min(a), \min(b))$
Main idea: \(\text{min}(c) = \text{min}(\text{min}(a), \text{min}(b)) \)
Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Merge Sort: Merge Algorithm

Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Main idea: $\min(c) = \min(\min(a), \min(b))$
Merge Sort: Merge Algorithm

Merge

\(a = \begin{array}{cccc}
1 & 3 & 4 & 8 \\
\end{array} \)

\(b = \begin{array}{cccc}
9 & 11 & 12 & 15 & 16 \\
\end{array} \)

\(c = \begin{array}{ccccccccc}
1 & 3 & 4 & 8 & 9 & 11 & 12 & 15 & 16 \\
\end{array} \)

Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Main idea: $\min(c) = \min(\min(a), \min(b))$
Merge Sort: Merge Algorithm

Main idea: $\min(c) = \min(\min(a), \min(b))$
Main idea: \(\min(c) = \min(\min(a), \min(b)) \)
Main idea: $\min(c) = \min(\min(a), \min(b))$
Main idea: $\min(c) = \min(\min(a), \min(b))$
Merge Sort: Merge Running Time

Merge

\[a = \begin{array}{cccccccc}
1 & 3 & 4 & 8 & 9 & 11 & 12 & 15 & 16
\end{array} \]

\[b = \begin{array}{cccccccc}
1 & 3 & 4 & 8 & 9 & 11 & 12 & 15 & 16
\end{array} \]

\[c = \begin{array}{cccccccc}
1 & 3 & 4 & 8 & 9 & 11 & 12 & 15 & 16
\end{array} \]

Running time? \[N = \text{len}(a) + \text{len}(b) \]

\# steps: \[O(N) \]
Merge Sort: Algorithm

Merge Sort

Diagram showing the process of merging sorted subarrays to sort a list of numbers.
Merge Sort: Running Time

$O(N)$

$O(N)$

$O(N)$

$O(\log N)$ levels

Total: $O(N \log N)$
The Plan

> Merge sort

> Measuring running time when the input is an int

> Efficient data structures: sets and dictionaries
def isPrime(n):
 if (n < 2):
 return False
 for factor in range(2, n):
 if (n % factor == 0):
 return False
 return True

Simplifying assumption in 15-112:
 Arithmetic operations take constant time.
def isPrime(n):
 if (n < 2):
 return False
 for factor in range(2, n):
 if (n % factor == 0):
 return False
 return True

What is the input length?

= number of digits in n

~ \log_{10} n
def isPrime(m):
 if (m < 2):
 return False
 for factor in range(2, m):
 if (m % factor == 0):
 return False
 return True

What is the input length?

= number of digits in m

\sim \log_{10} m \quad (actually \quad \log_2 m \quad \text{because it is in binary})

So \quad N \sim \log_2 m \quad \text{i.e.,} \quad m \sim 2^N

What is the running time? \quad O(m) = O(2^N)
def fasterIsPrime(m):
 if (m < 2):
 return False
 maxFactor = int(round(m**0.5))
 for factor in range(3, maxFactor+1):
 if (m % factor == 0):
 return False
 return True

What is the running time? \(O(2^{N/2}) \)
isPrime

Amazing result from 2002:
There is a polynomial-time algorithm for primality testing.

Agrawal, Kayal, Saxena

undergraduate students at the time

However, best known implementation is $\sim O(N^6)$ time.
Not feasible when $N = 2048$.
So that’s not what we use in practice.

Everyone uses the Miller-Rabin algorithm (1975).

The running time is $\sim O(N^2)$.

It is a randomized algorithm with a tiny error probability. (say $1/2^{300}$)
The Plan

> Merge sort

> Measuring running time when the input is an int

> Efficient data structures: sets and dictionaries
Can we cheat exponential time?
A **data structure** allows you to store and maintain a collection of data.

It should support basic operations like:

- add an element to the data structure
- remove an element from the data structure
- find an element in the data structure

...
What is a data structure?

A list is a data structure.

It supports basic operations:

- append() \(O(1) \)
- remove() \(O(N) \)
- in operator, index() \(O(N) \)

...

One could potentially come up with a different structure which has different running times for basic operations.
Motivating example

Sorting a list of numbers.
 What if I know all the numbers are less than 1 million.

Solution:
 Create a list of size 1 million.
 Put number m at index m.

What is the running time for searching for an element?
 $O(1)$
Motivating example

The sweet idea:
Connecting value to index.
Motivating example

Questions

What if the numbers are not bounded by a million?

What if you want to store strings rather than numbers?
Extending the sweet idea

Storing a collection of strings?

Start with a certain size list (e.g. 100)

Pick a function h that maps strings to numbers.

Store s at index $h(s) \mod \text{(size of list)}$

h is called a hash function.
Extending the sweet idea

Potential Problems

Collision: two strings map to the same index

List fills up

Fixes

The *hash function* should be “random” so that the likelihood of collision is not high.

Store multiple values at one index (*bucket*) (e.g. use 2d list)

When buckets get large (say more than 10), *resize* and *rehash*: pick a larger list, rehash everything
Extending the sweet idea

What did we gain:

Basic operations add, remove, find/search **super fast**
(sometimes (infrequently) we need to resize/rehash)

What did we lose:

No mutable elements
No order
Repetitions are not good
Sets
Introducing sets

Sets:
- a **non-sequential** (unordered) collection of objects
- **immutable elements**
- **no repetitions** allowed
- look up by object’s value
 - finding a value is super efficient
- supports basic operations like:
 - `s.add(x)`, `s.remove(x)`, `s.union(t)`, `s.intersection(t)`
 - `x in s`
Creating a set

s = set()

s = set([2, 4, 8]) # {8, 2, 4}

s = set(['hello', 2, True, 3.14]) # {'hello', True, 2, 3.14}

s = set([2, 2, 4, 8]) # {8, 2, 4}

s = set([2, 4, [8]]) # Error

(sets are mutable, but its elements must be immutable.)

s = set("hello") # {'e', 'h', 'l', 'o'}

s = set((2, 4, 8)) # {8, 2, 4}

s = set(range(10)) # {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Set methods

Returns a new set (non-destructive):

- `s.copy()`
- `s.union(t)`, `s.intersection(t)`, `s.difference(t)`, `s.symmetric_difference(t)`

Modifies s (destructive):

- `s.pop()`, `s.clear()`
- `s.add(x)`, `s.remove(x)`, `s.discard(x)`
- `s.update(t)`, `s.intersection_update(t)`, `s.difference_update(t)`, `s.symmetric_difference_update(t)`

Other:

- `s.issubset(t)`, `s.issuperset(t)`
The advantage over lists

```python
s = set()
for x in range(10000):
    s.add(x)

print(5000 in s)  # Super fast
print(-1 not in s)  # Super fast
s.remove(100)  # Super fast
```

Essentially \(O(1) \)
Example: checking for duplicates

Given a list, want to check if there is any element appearing more than once.
Dictionaries (Maps)
Lists:
- a sequential collection of objects
- can do look up by index (the position in the collection)

Dictionaries:
- a non-sequential (unordered) collection of objects
- a more flexible look up by keys
a = [None]*5
a[0] = “slkj2”
a[1] = “4@4s”
a[2] = “as43”
a[3] = “9idj”
a[4] = “9idj”
Dictionaries / maps

d = dict()
d[“alice”] = “slkj2”
d[“bob”] = “4@4s”
d[“charlie”] = “as43”
d[“david”] = “9idj”
d[“eve”] = “9idj”

- hash using the key
- store (key, value) pair

Properties:
- unordered
- values are mutable
- keys form a set (immutable, no repetition)
Creating dictionaries

users = dict()

users[“alice”] = “sl@3”

users[“bob”] = “#$ks”

users[“charlie”] = “slk92”

users = {“alice”: “sl@3”, “bob”: “#$ks”, “charlie”: “slk92”}

users = [('alice', 'sl@3'), ('bob', '#$ks'), ('charlie', '#242')]

users = dict(users)
users = {“alice”: “sl@3”, “bob”: “#$ks”, “charlie”: “slk92”}

for key in users:
 print(key, d[key])

print(users[“frank”]) Error

print(users.get(“frank”)) # prints None

print(users.get(“frank”, 0)) # prints 0
Example: Find most frequent element

Input: a list of integers

Output: the most frequent element in the list

<table>
<thead>
<tr>
<th>elements of the list</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Exercise: Write the code.