
15-112
Fundamentals of Programming

Week 4 - Lecture 3:
Intro to Object Oriented Programming (OOP)

June 10, 2016

Important terminology

data type (type)data

object

instance

class

s = set() Create an object/instance of type/class set.

s is then a reference to that object/instance.

What is object oriented programming (OOP)?

1. The ability to create your own data types.

2. Designing your programs around the data types you
create.

s = “hello”
print(s.capitalize())

s = set()
s.add(5)

These are built-in
data types.

What is object oriented programming (OOP)?

Is every programming language object-oriented?

What have we been doing so far?

Procedural programming.

Designing your programs around functions (actions)

No. e.g. C

(So OOP is not a necessary approach to programming)

Is OOP a useful approach to programming?

Make up your own mind about it.

1. Creating our own data type

2. OOP paradigm

Motivating example

Suppose you want to keep track of the books in your
library.

For each book, you want to store:
 title, author, year published

How can we do it?

Motivating example

Option 1:

book1Title = “The Catcher in the Rye”
book1Author = “J. D. Sallinger”
book1Year = 1951

book2Title = “The Brothers Karamazov”
book2Author = “F. Dostoevsky”
book2Year = 1880;

Would be better to use one variable for each book.

One variable to hold logically connected data together.
(like lists)

Motivating example

Option 2:

book1 = [“The Catcher in the Rye”, “J.D. Sallinger”, 1951]

book2 = list()
book2.append(“The Brothers Karamazov”)
book2.append(“F. Dostoevsky”)
book2.append(1880)

Can forget which index corresponds to what.

Hurts readability.

Motivating example

Option 3:

book1 = {“title”: “The Catcher in the Rye”,
 “author”: “J.D. Sallinger”,
 “year”: 1951}
book2 = dict()
book2[“title”] = “The Brothers Karamazov”,
book2[“author”] = “F. Dostoevsky”
book2[“year”] = 1880

Doesn’t really tell us what type of object
book1 and book2 are.

They are just dictionaries.

Motivating example

Option 3:

book1 = {“title”: “The Catcher in the Rye”,
 “author”: “J.D. Sallinger”,
 “year”: 1951}

book2 = {“title”: “The Brothers Karamazov”,
 “author”: “F. Dostoevsky”,
 “year”: 1880}

article1 = {“title”: “On the Electrodynamics of Moving Bodies”,
 “author”: “A. Einstein”,
 “year”: 1905}

Better to define a new data type.

Defining a data type (class) called Book

class Book(object):

 def __init__(self):
 self.title = None
 self.author = None
 self.year = None

This defines a new data type named Book.

name of the
new data type

fields or
properties or

data members or
attributes

__init__ is called a constructor.

Defining a data type (class) called Book

title

author

Book class

author
year

class Book(object):

 def __init__(self):
 self.title = None
 self.author = None
 self.year = None

Defining a data type (class) called Book

b = Book()
b.title = “Hamlet”
b.author = “Shakespeare”
b.year = 1602

class Book(object):
 def __init__(self):
 self.title = None
 self.author = None
 self.year = None

call __init__ with
self = b

b refers to that object.

Creates an object
of type Book

b = dict()
b[“title”] = “Hamlet”
b[“author”] = “Shakespeare”
b[“year”] = 1602

Compare to:

Creating 2 books

b = Book()
b.title = “Hamlet”
b.author = “Shakespeare”
b.year = 1602

class Book(object):
 def __init__(self):
 self.title = None
 self.author = None
 self.year = None

b2 = Book()
b2.title = “It”
b2.author = “S. King”
b2.year = 1987

b refers to an object
of type Book.

b2 refers to another object
of type Book.

Creating 2 books

b = Book()
b.title = “Hamlet”
b.author = “Shakespeare”
b.year = 1602

b2 = Book()
b2.title = “It”
b2.author = “S. King”
b2.year = 1987

b

“Hamlet”

author
“Shakespeare”

title
“Hamlet” year

1602

Book

b2

“Hamlet”

author
“S. King”

title
“It” year

1987

Book

Initializing fields at object creation

class Book(object):
 def __init__(self, t, a, y):
 self.title = t
 self.author = a
 self.year = y

b = Book(“Hamlet”, “Shakespeare”, 1602)

b.title = “Hamlet”
b.author = “Shakespeare”
b.year = 1602

Initializing fields at object creation

class Book(object):
 def __init__(self, title, author, year):
 self.title = title
 self.author = author
 self.year = year

b = Book(“Hamlet”, “Shakespeare”, 1602)

b.title = “Hamlet”
b.author = “Shakespeare”
b.year = 1602

Initializing fields at object creation

class Book(object):
 def __init__(self, title, author):
 self.title = title
 self.author = author
 self.year = None

b = Book(“Hamlet”, “Shakespeare”)

b.title = “Hamlet”
b.author = “Shakespeare”

Initializing fields at object creation

class Book(object):
 def __init__(foo, title, author):
 foo.title = title
 foo.author = author
 foo.year = None

b = Book(“Hamlet”, “Shakespeare”)

b.title = “Hamlet”
b.author = “Shakespeare”

Using Book data type for library
library = list()
userInput = None
while (userInput != “3”):

print (“1. Add a new book”)
print (“2. Show all books”)
print (“3. Exit”)
userInput = input(“Enter choice: ”)
if (userInput == “1”):

title = input(“Enter title: ”)
author = input(“Enter author: ”)
year = input(“Enter year: ”)
b = Book(title, author, year)
library.append(b)

elif (userInput == “2”):
for book in library:

print (“Title: ” + book.title)
print (“Author: ” + book.author)
print (“Year: ” + book.year)

elif (userInput == “3”):
print (“Exiting system.”)

else:
print (“Not valid input. Try again.”)

Another Example

Imagine you have a website that allows users to
sign-up.

You want to keep track of the users.

class User(object):
 def __init__(self, username, email, password):
 self.username = username
 self.email = email
 self.password = password

Another Example
userList = list()
userInput = None
while (userInput != “3”):

print (“1. Login”)
print (“2. Signup”)
print (“3. Exit”)
userInput = input(“Enter choice: ”)
if (userInput == “1”):

username = input(“Enter username: ”)
password = input(“Enter password: ”)
if (findUser(userList, username, password) != None):
 loggedInMenu()

elif (userInput == “2”):
 username = input(“Enter username: ”)

password = input(“Enter password: ”)
 email = input(“Enter email: ”)
 user = User(username, password, email)
 userList.append(user)

elif (userInput == “3”):
print (“Exiting system.”)

else:
print (“Not valid input. Try again.”)

Other Examples

class Account(object):
 def __init__(self):
 self.balance = None
 self.numWithdrawals = None
 self.isRich = False

Account is the type.

Creating different objects
of the same type (Account).

a1 = Account()
a1.balance = 1000000
a1.isRich = True

a2 = Account()
a2.balance = 10
a2.numWithdrawals = 1

Other Examples

class Cat(object):
 def __init__(self, name, age, isFriendly):
 self.name = None
 self.age = None
 self.isFriendly = None Cat is the type.

Creating different objects
of the same type (Cat).

c1 = Cat(“Tobias”, 6, False)

c2 = Cat(“Frisky”, 1, True)

Other Examples

class Rectangle(object):
 def __init__(self, x, y, width, height):
 self.x = x
 self.y = y
 self.width = width
 self.height = height

Rectangle is the type.

Creating different objects
of the same type (Rectangle).

r1 = Rectangle(0, 0, 4, 5)

r2 = Rectangle(1, -1, 2, 1)

Other Examples

class Aircraft(object):
 def __init__(self):
 self.numPassengers = None
 self.cruiseSpeed = None
 self.fuelCapacity = None
 self.fuelBurnRate = None

Aircraft is the type.

Creating different objects
of the same type (Aircraft).

a1 = Aircraft()
a1.numPassengers = 305
…

a2 = Aircraft()
…

Other Examples

class Time(object):
 def __init__(self, hour, minute, second):
 self.hour = hour
 self.minute = minute
 self.second = second

Time is the type.

Creating different objects
of the same type (Time).

t1 = Time(15, 50, 21)
…

t2 = Time(11, 15, 0)
…

An object has 2 parts

1. instance variables: a collection of related data

2. methods: functions that act on that data

s = set()
s.add(5)

How can you define methods?

This is like having
a function called add:

add(s, 5)

Step 2: Adding methods to our data type

1. Creating our own data type

2. OOP paradigm

Step 1: Defining the instance variables

Example: Rectangle

class Rectangle(object):
 def __init__(self, width, height):
 self.width = width
 self.height = height

r = Rectangle(3, 5)
print (“The area is”, getArea(r))

def getArea(rec):
 return rec.width*rec.height

Defining a function
that acts on a rectangle object

Example: Rectangle
class Rectangle(object):
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def getArea(self):
 return self.width*self.height

r = Rectangle(3, 5)
print (“The area is”, r.getArea())

Defining a method
that acts on a rectangle object

Example: Rectangle
class Rectangle(object):
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def getArea(self):
 return self.width*self.height

 def getPerimeter(self):
 return 2*(self.width + self.height)

 def doubleDimensions(self):
 self.width *= 2
 self.height *= 2

 def rotate90Degrees(self):
 (self.width, self.height) = (self.height, self.width)

read/return data

read/return data

modify data

modify data

Example: Rectangle

r1 = Rectangle(3, 5)
r2 = Rectangle(1, 4)
r3 = Rectangle(6, 7)
print (“The width of r1 is %d.” % r1.width)
r1.width = 10
print (“The area of r2 is %d.” % r2.getArea())
print (“The perimeter of r3 is %d.” % r.getPerimeter())
r3.doubleDimensions()
print (“The perimeter of r3 is %d.” % r.getPerimeter())

Example 2: Employee
class Employee(object):
 def __init__(self, name, salary):
 self.name = name
 self.salary = salary

 def printEmployee(self):
 print (“Name: ”, self.name)
 print (“Salary: ”, self.salary)

 def getNetSalary(self):
 return 0.75*self.salary

 def isRich(self):
 return (self.salary > 100000)

 def salaryInFuture(self, years):
 return self.salary * 1.03**years

 def fire(self):
 self.salary = 0

Example 2: Employee

e1 = Employee(“Frank Underwood”, 200000)
e1.printEmployee()
print (e1.isRich())
print (e1.salaryInFuture(10))
print (e1.fire())
print (e1.salary)

Example 3: Cat

class Cat(object):
 def __init__(self, weight, age, isFriendly):
 self.weight = weight
 self.age = age
 self.isFriendly = isFriendly

 def printInfo(self):
 print (“I weigh ”, self.weight, “kg.”)
 print (“I am ”, self.age, “ years old.”)
 if (self.isFriendly):
 print (“I am the nicest cat in the world.”)
 else:
 print (“One more step and I will attack!!!”)

 …

Example 3: Cat
…

def feed(self, food):
 self.weight += food
 print (“It was not Fancy Feast’s seafood”)
 self.wail()

def wail(self):
 print (“Miiiiaaaaawwwww”)
 self.moodSwing()

def moodSwing(self):
 self.isFriendly = (random.randint(0,1) == 0)

…

Example 3: Cat

frisky = Cat(4.2, 2, True)  
tiger = Cat(102, 5, False)
 
frisky.printInfo()
tiger.printInfo()

frisky.feed(0.2)
tiger.feed(3)

frisky.printInfo()
tiger.printInfo()

Step 2: Adding methods to our data type

1. Creating our own data type

2. OOP paradigm

Step 1: Defining the instance variables

The general idea behind OOP

1. Group together data together with the methods
into one unit.

2. Methods represent the interface:

- control how the object should be used.
- hide internal complexities.

3. Design programs around objects.

Idea 1: group together data and methods

Encapsulate the data together with the methods that
act on them.

data
(fields/properties)

methods
that act on the data

All in one unit

Idea 1 advantages

Our data types better correspond to objects in reality.

Objects in real life have
 - properties
 - actions that they can perform

Your new data type is easily shareable.
- everything is in one unit.
- all you need to provide is a documentation.

Adds another layer of organizational structure.

Example: Representing fractions

Rational numbers: a number that can be expressed as
a ratio of two integers.

Also called fractions.

a

b integers

a =

b =

numerator

denominator (cannot be 0)

Example: Representing fractions
class Fraction(object):
 def __init__(self, n, d):
 self.numerator = n
 self.denominator = d

 def toString(self):
 return str(self.numerator) + “ / ” + str(self.denominator)

 def toFloat(self):
 return self.numerator / self.denominator

 def simplify(self):
 # code for simplifying

 def add(self, other):
 # code for adding

 def multiply(self, other):
 # code for multiplying
 …

Example: Representing fractions

Everything you might want to do with rational numbers
is packaged up nicely into one unit:

the new data type Fraction.

The general idea behind OOP

1. Group together data together with the methods
into one unit.

2. Methods represent the interface:

- control how the object should be used.
- hide internal complexities.

3. Design programs around objects.

Idea 2: Methods are the interface

If done right, the hope is that the code is:

- easy to handle/maintain
- easy to fix bugs

Can modify classes independently as long as the
interface stays the same.

Methods should be the only way to read and process
the data/fields.

don’t access data members directly.

Expanding the Cat class (1/3)

class Cat(object):

 def __init__(self, n, w, a, f):
 self.name = n
 self.weight = w
 self.age = a
 self.isFriendly = f

 ...

c = Cat(“tiger”, 98, 2, False)
c.weight = -1

Could do:

But this is not processing data
through the methods.

Expanding the Cat class (2/3)
 ...

 def setWeight(self, newWeight):
 if (newWeight > 0):
 self.weight = newWeight

 def getWeight(self):
 return self.weight

 def getAge(self):
 return self.age

 def setAge(self, newAge):
 if(newAge >= 0):
 self.age = newAge

 ...

c = Cat(“tiger”, 98, 2, False)
c.weight = -1

c = Cat(“tiger”, 98, 2, False)
c.setWeight(-1)

Instead of:

do:

Expanding the Cat class (3/3)

 ...
 def getName(self):
 return self.name

 def getIsFriendly(self):
 return self.isFriendly

 def feed(self, food):
 self.weight += food
 self.isFriendly = (random.randint(0,1) == 0)

There are no methods to directly change
the name or isFriendly fields.

A comment about Struct

Idea 2: Methods are the interface

isFriendly

name

ageweight

se
tW

eig
ht setA

ge
getName

...
Fields Methods

The Cat data type

Common Types of Methods

Observers

Modifiers

def getName(self):
 return self.name

def getAge(self):
 return self.age

Usually named getBla(), where Bla is the field name.

def setWeight(self, newWeight):
 if (newWeight > 0):
 self.weight = newWeight

Usually named setBla(input), where Bla is the field name.

Common Types of Methods
 ...
 def getWeight(self):
 return self.weight

 def getAge(self):
 return self.age

 def setWeight(self, newWeight):
 if (newWeight > 0):
 self.weight = newWeight

 def setAge(self, newAge):
 if (newAge >= 0):
 self.age = newAge

 ...

Observer
Methods

Modifier
Methods

The general idea behind OOP

1. Group together data together with the methods
into one unit.

2. Methods represent the interface:

- control how the object should be used.
- hide internal complexities.

3. Design programs around objects.

Idea 3: Objects are at the center

Privilege data over action

Procedural Programming Paradigm

Object Oriented Programming Paradigm

Decompose problem first into bunch of data types.

Decompose problem into a series of actions/functions.

In both, we have actions and data types.
Difference is which one you end up thinking about first.

Simplified Twitter using OOP

User Tweet Tag

name
username
email
list of tweets

changeName

printTweets
...

...

content
owner
date
list of tags

printTweet

getOwner

getDate

name
list of tweets

...

...

list of following

Managing my classes using OOP

Class

list of Students

num of Students

find by id

find by name

add Student

Grade

type
value
weight

get value

change value

get weighted
value
... ...

Student

first name
last name
id
list of grades

add grade

get average
...

change grade
get class average

fail all

Summary

Using a class, we can define a new data type.

The new data type encapsulates:

- data members (usually called fields or properties)
- methods (operations acting on the data members)

The methods control how you are allowed to
read and process the data members.

Can create objects (instances) of the new data type.

Each object gets its own copy of the data members.

Once the new data type is defined:

Data type’s methods = allowed operations on the object

