15-112
Fundamentals of Programming

Week 5 - Lecture 2:
Recursion

June 14, 2016
What is recursion?

Recursion:

To understand recursion, you have to first understand recursion.
What is recursion?

Recursion:

To understand recursion, you have to first understand recursion.
What is recursion?

Recursion:

To understand recursion, you have to first understand recursion.

Not making progress. Let’s ask Google.
What is recursion?

Let's see what my dictionary says.
What is recursion?

recursion (n):

See recursion
What is recursion in programming?

We say that a function is **recursive** if at some point, it calls itself.

```python
def test():
    test()
```

Can we do something more meaningful?

Warning:
Recursion can be weird and counter-intuitive at first!
Motivation: break a problem into smaller parts

Example: Figuring out if a given password is secure.

- Is string length at least 10?
- Does the string contain an upper-case letter?
- Does the string contain a lower-case letter?
- Does the string contain a number?
Motivation: break a problem into smaller parts

input → isSecurePassword

- length
- upper
- lower
- number

merge results → True or False
Motivation: break a problem into smaller parts

isSecurePassword:

The problem is split into smaller but different problems.

Recursion:

The smaller problems are not different. They are smaller versions of the original problem.
Recursion Example: Sorting

Sorting the midterms by name.

Sort:
- Divide the pile in half.
- Sort the first half.
- Sort the second half.
- Merge the sorted piles.
Recursion Example: Sorting

- **input list**
- sort
- sort first half
- sort second half
- merge results
Recursion Example: Sorting

Sort:

Divide the pile in half.

Sort the first half.

Sort the second half.

Merge the sorted piles.

What if my pile consists of just a single exam?
Recursion Example: Sorting

Sort:

If the pile consists of one element, do nothing.

Else:

Divide the pile in half.

Sort the first half.

Sort the second half.

Merge the sorted piles.
Recursion Example: Sorting

```python
def merge(a, b):
    # We have already seen this.

def sort(a):
    if (len(a) <= 1):
        return a
    leftHalf = a[0 : len(a)//2]
    rightHalf = a[len(a)//2 : len(a)]
    return merge(sort(leftHalf), sort(rightHalf))

This works!
And it is called merge sort.
```
Recursion Example: Sorting

[1, 5, 8, 3, 7, 2, 4, 6]

[1, 5, 8, 3] [7, 2, 4, 6]

sort sort

[1, 3, 5, 8] [2, 4, 6, 7]

merge

[1, 2, 3, 4, 5, 6, 7, 8]
Recursion Example: Sorting

[1, 5, 8, 3, 7, 2, 4, 6]

[1, 5, 8, 3]
[7, 2, 4, 6]

[1, 5]
[8, 3]
[7, 2]
[4, 6]

[1]
[5]
[8]
[3]
[7]
[2]
[4]
[6]

[1, 3, 5, 8]
[2, 4, 6, 7]
[1, 2, 3, 4, 5, 6, 7, 8]
To understand how recursion works, let’s look at simpler examples.
n factorial is the product of integers from 1 to n.

1! = 1
2! = 2 × 1
3! = 3 × 2 × 1
4! = 4 × 3 × 2 × 1
5! = 5 × 4 × 3 × 2 × 1
...

n! = n × (n-1) × (n-2) × ... × 1
Simple Example: Factorial

Finding the recursive structure in factorial:

Can we express n! using a smaller factorial?

\[n! = n \times (n - 1) \times (n - 2) \times \ldots \times 1 \]
Simple Example: Factorial

Finding the recursive structure in factorial:

Can we express \(n! \) using a smaller factorial?

\[
n! = n \times (n-1) \times (n-2) \times ... \times 1
\]

\((n-1)! \)

\[
n! = n \times (n-1)!
\]
def factorial(n):
 return n * factorial(n - 1)

"Unwinding" the code when n = 4:

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1 * factorial(0)

0 * factorial(-1)

No stopping condition
def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

factorial(4)

 4 * factorial(3)
 3 * factorial(2)
 2 * factorial(1)
 1
def factorial(n):
 if (n == 1):
 return 1
 else:
 return n * factorial(n - 1)

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * 1
def factorial(n):
 if (n == 1):
 return 1
 else:
 return n * factorial(n - 1)

factorial(4)

 4 * factorial(3)

 3 * 2
def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

factorial(4) → evaluates to 24

4 * 6
def factorial(n):
 if (n == 1):
 return 1
 else:
 return n * factorial(n - 1)

factorial(4) ➔ evaluates to 24

4 * 6

Recursive calls make their way down to the base case. The solution is then built up from base case.
def factorial(n):
 if (n == 1):
 return 1
 else:
 return n * factorial(n - 1)

factorial(4)

4 * factorial(3)
3 * factorial(2)
2 * factorial(1)
1

Call Stack
def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

factorial(4)
4 * factorial(3)
3 * factorial(2)
2 * factorial(1)
1

Call Stack

Independent!
def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

Another way of convincing ourselves it works:

Does factorial(1) work (base case) ?

Does factorial(2) work ?
returns 2*factorial(1)

Does factorial(3) work ?
returns 3*factorial(2)

Does factorial(4) work ?
returns 4*factorial(3)
How recursion works

\[\text{fac}(1) \rightarrow \text{fac}(2) \rightarrow \text{fac}(3) \rightarrow \text{fac}(4) \rightarrow \ldots \]
2 important properties of recursive functions

1. “Base case”
 There should be a base case
 (a case which does not make a recursive call)

2. “Progress”
 The recursive call(s) should make progress towards
 the base case.
def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n-1)
def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n-1)

Base case
def factorial(n):
 if (n == 1):
 return 1
 else: return n * factorial(n-1)

Making progress towards base case
Another example: Fibonacci

Fibonacci Sequence: 1 1 2 3 5 8 13 21 ...

def fib(n):
 if (n == 0):
 return 1
 else:
 return fib(n-1) + fib(n-2)

What happens when we call fib(1)?
Another example: Fibonacci

Fibonacci Sequence: 1 1 2 3 5 8 13 21 ...

def fib(n):
 if (n == 0 or n == 1):
 return 1
 else:
 return fib(n-1) + fib(n-2)
Another example: Fibonacci

Fibonacci Sequence: 1 1 2 3 5 8 13 21 ...

```python
def fib(n):
    if (n == 0 or n == 1):
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

Base case
Another example: Fibonacci

Fibonacci Sequence: 1 1 2 3 5 8 13 21 ...

def fib(n):
 if (n == 0 or n == 1):
 return 1
 else:
 return fib(n-1) + fib(n-2)

Each recursive call makes progress towards the base case (and doesn’t skip it!!!)
Unwinding the code

fib(4)
Unwinding the code

\[
\text{fib}(4) \downarrow \\
\text{fib}(3) + \text{fib}(2)
\]
Unwinding the code

\[
\begin{align*}
\text{fib}(4) & \downarrow \\
\text{fib}(3) & + \quad \text{fib}(2) \\
\text{fib}(2) & + \quad \text{fib}(1)
\end{align*}
\]
Unwinding the code

\[\text{fib}(4) \]
\[\downarrow \]
\[\text{fib}(3) \]
\[\downarrow \]
\[\text{fib}(2) \]
\[\downarrow \]
\[\text{fib}(1) \]
\[\downarrow \]
\[\text{fib}(0) \]
Unwinding the code

\[
\text{fib}(4) \\
\text{fib}(3) \quad + \quad \text{fib}(2) \\
\text{fib}(2) \quad + \quad \text{fib}(1) \\
1 \quad + \quad 1
\]
Unwinding the code

\[\text{fib}(4) = \text{fib}(3) + \text{fib}(2) \]

\[\text{fib}(3) = \text{fib}(2) + \text{fib}(1) \]

\[2 + \text{fib}(1) \]
Unwinding the code

\[\text{fib}(4) = \text{fib}(3) + \text{fib}(2) \]
\[= (2 + 1) + 1 \\
= 4 \]
Unwinding the code

\[\text{fib}(4) \]

\[\downarrow \]

\[3 + \text{fib}(2) \]
Unwinding the code

\[
\text{fib}(4) \\
\downarrow \\
3 + \text{fib}(2) \\
\downarrow \\
\text{fib}(1) + \text{fib}(0)
\]
Unwinding the code

\[
\text{fib}(4) = 3 + \text{fib}(2) = 3 + (1 + \text{fib}(0))
\]
Unwinding the code

\[\text{fib}(4) \]

\[3 + \text{fib}(2) \]

\[1 + 1 \]
Unwinding the code

\[\text{fib}(4) \]

\[3 + 2 \]
Unwinding the code
Recursion

\[\text{fib}(0), \text{fib}(1) \rightarrow \text{fib}(2) \rightarrow \text{fib}(3) \rightarrow \text{fib}(4) \rightarrow \ldots \]
The sweet thing about recursion

Do these 2 steps:

1. **Base case:** Solve the “smallest” version of the problem (with no recursion).

2. **Recursive call(s):** Correctly write the solution to the problem in terms of “smaller” version(s) of the same problem.

Your recursive function will always work!
Unwinding vs Trusting

Unwinding recursive functions:

- OK at first (for simple examples)
- Not OK once you understand the logic

Over time, you will start trusting recursion. This trust is very important!
Recursion will earn your trust.
Unwinding vs Trusting

```python
def fib(n):
    if (n == 0 or n == 1):
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

You have to trust these will return the correct answer.

This is why recursion is so powerful.

You can assume every subproblem is solved for free!
Getting comfortable with recursion

1. See **lot’s** of examples

2. Practice yourself
Getting comfortable with recursion

1. See lots of examples
Recursive function design

Ask yourself:
If I had the solutions to the smaller instances for free, how could I solve the original problem?

Write the recursive relation:
e.g. \(\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \)

Handle the base case:
A small version of the problem that does not require recursive calls.

Double check:
All your recursive calls make progress towards the base case(s) and they don’t miss it.
Examples
Write a function that takes an integer \(n \) as input, and returns the sum of all numbers from 1 to \(n \).

\[
\text{sum}(n) = n + (n-1) + (n-2) + (n-3) + \ldots + 3 + 2 + 1
\]
Write a function that takes an integer \(n \) as input, and returns the sum of all numbers from 1 to \(n \).

\[
\text{sum}(n) = n + (n-1) + (n-2) + (n-3) + \ldots + 3 + 2 + 1
\]

\[
\text{sum}(n) = n + \text{sum}(n-1)
\]
Write a function that takes an integer n as input, and returns the sum of all numbers from 1 to n.

```python
def sum(n):
    if (n == 0): return 0
    else: return n + sum(n-1)
```
Write a function that takes integers \(n \) and \(m \) as input (\(n \leq m \)), and returns the sum of all numbers from \(n \) to \(m \).

\[
\text{sum}(n, m) = n + (n+1) + (n+2) + \ldots + (m-1) + m
\]
Write a function that takes integers n and m as input (n <= m), and returns the sum of all numbers from n to m.

\[
\text{sum}(n, m) = n + (n+1) + (n+2) + \ldots + (m-1) + m
\]

\[
\text{sum}(n, m) = \text{sum}(n, m-1) + m
\]
Write a function that takes integers n and m as input $(n \leq m)$, and returns the sum of all numbers from n to m.

\[
\text{sum}(n, m) = n + (n+1) + (n+2) + \ldots + (m-1) + m
\]

\[
\text{sum}(n+1, m)
\]
Write a function that takes integers \(n \) and \(m \) as input \((n \leq m)\), and returns the sum of all numbers from \(n \) to \(m \).

\[
\text{sum}(n, m) = n + (n+1) + (n+2) + \ldots + (m-1) + m
\]

\[
\text{sum}(n, m) = n + \text{sum}(n+1, m)
\]
Write a function that takes integers n and m as input ($n \leq m$), and returns the sum of all numbers from n to m.

```python
def sum(n, m):
    if (n == m): return n
    else: return n + sum(n+1, m)
```
Note: objects with recursive structure

Lists

```
  0 1 2 4 5 5 6 8 9 9
```

Strings (a list of characters)

“Dammit I’m mad”

Problems related to these objects often have very natural recursive solutions.
Write a function that takes a list of integers as input and returns the sum of all the elements in the list.

Example: sumList(L)

\[
\begin{array}{cccccccc}
3 & 5 & 2 & 6 & 9 & 1 & 5 \\
\end{array}
\]

\[
\text{sum}(\begin{array}{cccccccc}
3 & 5 & 2 & 6 & 9 & 1 & 5 \\
\end{array}) =
\]

\[
3 + \text{sum}(\begin{array}{cccccccc}
5 & 2 & 6 & 9 & 1 & 5 \\
\end{array})
\]
Write a function that takes a list of integers as input and returns the sum of all the elements in the list.

def sum(L):
 if (len(L) == 0): return 0
 else: return L[0] + sum(L[1:])
Example: isElement(L, e)

Write a function that checks if a given element is in a given list.

```
3 5 2 6 9 1 5
```

6
Write a function that checks if a given element is in a given list.

Example: isElement(L, e)
Write a function that checks if a given element is in a given list.

```python
def isElement(L, e):
    if (len(L) == 0): return False

    else:
        if (L[0] == e): return True

    else: return isElement(L[1:], e)
```

This is linear search.
Write a function that checks if a given string is a palindrome.

Example: isPalindrome(s)
Example: isPalindrome(s)

Write a function that checks if a given string is a palindrome.

should be palindrome

h a n n a h

↑ ↑
Example: isPalindrome(s)

Write a function that checks if a given string is a palindrome.

def isPalindrome(s):
 if (len(s) <= 1): return True
 else:
 return (s[0] == s[len(s)-1] and isPalindrome(s[1:len(s)-1]))
Write a (non-destructive) function that reverses the elements of a list.
e.g. \([1, 2, 3, 4]\) becomes \([4, 3, 2, 1]\)
Example: reverse array

Write a (non-destructive) function that reverses the elements of a list.
e.g. \([1, 2, 3, 4]\) becomes \([4, 3, 2, 1]\)
Example: reverse array

Write a (non-destructive) function that reverses the elements of a list.
e.g. [1, 2, 3, 4] becomes [4, 3, 2, 1]

```python
def reverse(a):
    if (len(a) == 0 or len(a) == 1): return a
    else:
        return [a[-1]] + reverse(a[1:len(a)-1]) + [a[0]]
```
Write a function that finds the maximum value in a list.
Example: \texttt{findMax}(L)

Write a function that finds the maximum value in a list.

\[
\begin{array}{ccccccccc}
3 & 5 & 2 & 6 & 9 & 1 & 5 \\
\end{array}
\]

\texttt{findMax}

then compare it with 3
Write a function that finds the maximum value in a list.

```python
def findMax(L):
    if (len(L) == 1): return L[0]
    else:
        m = findMax(L[1:])
        if (L[0] < m): return m
        else: return L[0]
```

If $L = []$, return $None$.

Example: $\text{findMax}(L)$
Write a function for binary search: find an element in a sorted list.

| 0 | 1 | 2 | 4 | 5 | 5 | 6 | 8 | 9 | 9 | 50 | 60 | 99 |

↑

50
Write a function for binary search: find an element in a sorted list.
Write a function for binary search: find an element in a sorted list.

```python
def binarySearch(a, element):
    if (len(a) == 0): return False

    mid = (start+end)//2

    if (a[mid] == element): return True

    elif (element < a[mid]):
        return binarySearch(a[:mid], element)

    else:
        return binarySearch(a[mid+1:], element)
```

Slicing too expensive here.
def binarySearch(a, element, start, end):
 if (start >= end): return False
 mid = (start+end)//2
 if (a[mid] == element): return True
 elif (element < a[mid]):
 return binarySearch(a, element, start, mid)
 else:
 return binarySearch(a, element, mid+1, end)
Write a function that finds the maximum value in a list.

```python
def findMax(L, start=0):
    if (start >= len(L)): return None
    elif (start == len(L)-1): return L[-1]
    else:
        m = findMax(L, start+1)
        if (L[start] < m): return m
        else: return L[start]
```
Common recursive strategies

With lists and strings, 2 common strategies:

Strategy 1:

- Separate first or last index
- Use recursion on the remaining part

Strategy 2:

- Divide list or string in half
- Use recursion on each half, combine results.
 (or ignore one of the halves like in binary search)
One more example to really appreciate recursion
Example: Towers of Hanoi

Classic ancient problem:

N rings in increasing sizes. 3 poles.

Rings start stacked on Pole 1.

Goal: Move rings so they are stacked on Pole 3.

- Can only move one ring at a time.
- Can’t put larger ring on top of a smaller ring.
Example: Towers of Hanoi
Example: Towers of Hanoi

Write a function

```
move (N, source, destination)  (integer inputs)
```

that solves the Towers of Hanoi problem (i.e. moves the N rings from source to destination) by printing all the moves.

```
move (3, 1, 3):
Move ring from Pole 1 to Pole 3
Move ring from Pole 1 to Pole 2
Move ring from Pole 3 to Pole 2
Move ring from Pole 1 to Pole 3
Move ring from Pole 2 to Pole 1
Move ring from Pole 2 to Pole 3
Move ring from Pole 1 to Pole 3
```
The power of recursion: Can assume we can solve smaller instances of the problem for free.
The power of recursion: Can assume we can solve smaller instances of the problem for free.

- Move N-1 rings from Pole 1 to Pole 2.
Example: Towers of Hanoi

The power of recursion: Can assume we can solve smaller instances of the problem for free.

- Move N-1 rings from Pole 1 to Pole 2.
The power of recursion: Can assume we can solve smaller instances of the problem for free.

- Move N-1 rings from Pole 1 to Pole 2.
- Move ring from Pole 1 to Pole 3.
The power of recursion: Can assume we can solve smaller instances of the problem for free.

- Move N-1 rings from Pole 1 to Pole 2.
- Move ring from Pole 1 to Pole 3.
Example: Towers of Hanoi

The power of recursion: Can assume we can solve smaller instances of the problem for free.

- Move N-1 rings from Pole 1 to Pole 2.
- Move ring from Pole 1 to Pole 3.
- Move N-1 rings from Pole 2 to Pole 3.
Example: Towers of Hanoi

The power of recursion: Can assume we can solve smaller instances of the problem for free.

- Move N-1 rings from Pole 1 to Pole 2.
- Move ring from Pole 1 to Pole 3.
- Move N-1 rings from Pole 2 to Pole 3.
Example: Towers of Hanoi

move (N, source, destination):

 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from Pole " + source + " to Pole " + destination)
 move(N-1, temp, destination)

Challenge: Write the same program using loops
move (N, source, dest):

if(N > 0):

 Let temp be the index of other pole.

 move(N-1, source, temp)

print ("Move ring from pole " + source + " to pole " + dest)

move(N-1, temp, destination)
move (N, source, dest):
 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
How/Why it works

```python
move (N, source, dest):
    if(N > 0):
        Let temp be the index of other pole.
        move(N-1, source, temp)
        print ("Move ring from pole " + source + " to pole " + dest)
        move(N-1, temp, destination)
```

[Diagram of the Tower of Hanoi puzzle]
move (N, source, dest):

 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
move (N, source, dest):
 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
move (N, source, dest):

if(N > 0):
 Let temp be the index of other pole.
 move (N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move (N-1, temp, destination)
move \((N, \text{source, dest})\):

if\((N > 0)\):

Let temp be the index of other pole.

move\((N-1, \text{source, temp})\)

print ("Move ring from pole " + source + " to pole " + dest)

move\((N-1, \text{temp, destination})\)
move (N, source, dest):
 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
move (N, source, dest):

if(N > 0):

 Let temp be the index of other pole.

 move(N-1, source, temp)

 print ("Move ring from pole " + source + " to pole " + dest)

 move(N-1, temp, destination)
move (N, source, dest):
 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
move (N, source, dest):
 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
move (N, source, dest):
 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
move (N, source, dest):
 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
move (N, source, dest):
 if(N > 0):
 Let temp be the index of other pole.
 move(N-1, source, temp)
 print ("Move ring from pole " + source + " to pole " + dest)
 move(N-1, temp, destination)
How/Why it works

move(1)
moves(2)
moves(3)

...
Getting comfortable with recursion

1. See *lot’s* of examples

2. Practice yourself
Getting comfortable with recursion

2. Practice yourself