|5-112
Fundamentals of Programming

Week 5 - Lecture 2:
Recursion

| DON'T OFTEN |
REPEMH,MYSELF

June 14,2016

What is recursion?

Recursion:

To understand recursion, you have to first understand
recursion.

What is recursion?

Recursion:

To understand recursion, you have to first understand
recursion.

What is recursion?

Recursion:

To understand recursion, you have to first understand
recursion.

Not making progress. Let’s ask Google.

What is recursion?

G\“@ﬁg]e recursion

Web Images Videos Shopping Books More ~ Search tools

About 3,110,000 results (0.27 seconds)

Did you mean: recursion

Let’s see what my dictionary says.

What is recursion?

recursion (n):

See recursion

What is recursion in programming!?

We say that a function is recursive if at some point,
it calls itself.

def test():
test()

Can we do something more meaningful?

Warning:
Recursion can be weird and counter-intuitive at first!

Motivation: break a problem into smaller parts

Example: Figuring out if a given password is secure.

- Is string length at least 10?

- Does the string contain an upper-case letter?

- Does the string contain a lower-case letter?

- Does the string contain a number?

Motivation: break a problem into smaller parts

merge results

l

True or False

Motivation: break a problem into smaller parts

isSecurePassword:

The problem is split into smaller but different problems.

Recursion:

The smaller problems are not different.
They are smaller versions of the original problem.

Recursion Example: Sorting

Sorting the midterms by name.

Sort:
Divide the pile in half.

Sort the first half.
Sort the second half.

Merge the sorted piles.

Recursion Example: Sorting

@t first half @second half

merge results

l

Recursion Example: Sorting

Sort the first half.
Sort the second half.

Merge the sorted piles.

What if my pile consists of just a single exam!?

Recursion Example: Sorting

Sort:

If the pile consists of one element, do nothing.

Else:

Divide the pile in half.
Sort the first half.
Sort the second half.

Merge the sorted piles.

Recursion Example: Sorting

def merge(a, b):
We have already seen this.

def sort(a):
if (len(a) <= 1):
return a
leftHalf = a[O : len(a)//2]
rightHalf = a[len(a)//2 : len(a)]
return merge(sort(leftHalf), sort(rightHalf))

This works!

And it is called merge sort.

Recursion Example: Sorting

[1,5,8,3,7,2,4,6]

O\

[1,5,83] [7,2,4,6]
lSOI”t lSOI’t
[1,3,5,8] [2,4,6,7]

N e

[1,2,3,4,5,6,7,8]

Recursion Example: Sorting

[1,5,8,3,7,2,4,6]

— O
— N
N
N
NS
—

[1,2,3,4,5,6,7,8]

To understand how recursion works,
let’s look at simpler examples.

Simple Example: Factorial

n factorial is the product of integers from | to n.

2'=2x |
3'=3x2x |
4 =4 x3x2x |

5'=5x4x3x2xl

n!'=nx (n-1) x (n-2) x ... |

Simple Example: Factorial

Finding the recursive structure in factorial:

Can we express n! using a smaller factorial ?

nn=nxm-1)x(n-2)x..x|

Simple Example: Factorial

Finding the recursive structure in factorial:

Can we express n! using a smaller factorial ?

nn=nx(mn-1)x(n-2)x..xI

(n-1)!

nt=nx(n-1[)!

Simple Example: Factorial

def factorial(n):
return n * factorial(n - 1)

“Unwinding” the code when n = 4:

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1 * factorial(0)

0 * factorial(-1)

No stopping condition

Simple Example: Factorial

def factorial(n):
if(n==1): return 1
else: return n * factorial(n - 1)

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

Simple Example: Factorial

def factorial(n):
if(n==1): return 1
else: return n * factorial(n - 1)

factorial(4)

4 * factorial(3)

3 * factorial(2)

2%1

Simple Example: Factorial

def factorial(n):
if(n==1): return 1
else: return n * factorial(n - 1)

factorial(4)

4 * factorial(3)

3%2

Simple Example: Factorial

def factorial(n):
if(n==1): return 1
else: return n * factorial(n - 1)

factorial(4) —> evaluates to 24

4% 6

Simple Example: Factorial

def factorial(n):
if(n==1): return 1
else: return n * factorial(n - 1)

factorial(4) —> evaluates to 24

4% 6

Recursive calls make their way down to the base case.

The solution is then built up from base case.

Simple Example: Factorial

def factorial(n):
if(n==1): return 1
else: return n * factorial(n - 1)

factorial(4) depth 0
4 * factorial(3) depth |

3 * factorial(2) depth 2

2 * factorial(1) depth 3

1

.

Call Stack

Simple Example: Factorial

def factorial(n):
if(n==1): return 1
else: return n * factorial(n - 1)

factorial(4) dept

4 * factorial(3) /:ED Independent!
3 * factorial(2)

2 * factorial(1) depth 3

.

1

Call Stack

Simple Example: Factorial

def factorial(n):
if(n==1): return 1
else: return n * factorial(n - 1)

Another way of convincing ourselves it works:
Does factorial(1) work (base case) ? \/

Does factorial(2) work ? \/
returns 2*factorial(1)

Does factorial(3) work ? \/
returns 3*factorial(2)

Does factorial(4) work ? \/
returns 4*factorial(3)

How recursion works

fac(1) —> fac(2) —> fac(3) —> fac(4) —> ...

2 important properties of recursive functions

. “Base case”

There should be a base case
(a case which does not make a recursive call)

2. “Progress”

The recursive call(s) should make progress towards
the base case.

Simple Example: Factorial

def factorial(n):
if (n==1): return 1

else: return n * factorial(n-1)

Simple Example: Factorial

def factorial(n):
if (n==1): return 1

else: return n * factorial(n-1)

Base case

Simple Example: Factorial

def factorial(n):
if (n==1): return 1

else: return n * factorial(n-1)

Making progress towards base case

Another example: Fibonacci

Fibonacci Sequence: | | 2 3 58 13 21 ..

def fib(n):

if (n ==0): return 1

else: return fib(n-1) + fib(n-2)

What happens when we call fib(1) ?

Another example: Fibonacci

Fibonacci Sequence: | | 2 3 58 13 21 ..

def fib(n):

if(n==0orn==1): return 1

else: return fib(n-1) + fib(n-2)

Another example: Fibonacci

Fibonacci Sequence: | | 2 3 58 13 21 ..

def fib(n):

if(n==0o0orn==1): return 1

else: return fib(n-1) + fib(n-2)

Base case

Another example: Fibonacci

Fibonacci Sequence: | | 2 3 58 13 21 ..

def fib(n):

if(n==0orn==1): return 1

else: return fib(n-1) + fib(n-2)

Each recursive call makes progress towards
the base case
(and doesn’t skip it!!!)

fib(4)

Unwinding the code

fib(4)

l

fib(3) ¥ fib(2)

Unwinding the code

fib(4)

l

fib(3) ¥ fib(2)

l

fib(2) + fib(l)

Unwinding the code

fib(4)

l

fib(3) ¥ fib(2)

l

fib(2) + fib(l)

fib(1) + fib(0)

Unwinding the code

fib(4)

l

fib(3) ¥ fib(2)

l

fib(2) + fib(l)

+ |

Unwinding the code

fib(4)

l

fib(3) ¥ fib(2)

2+ fib(l)

Unwinding the code

fib(4)

fib(3) ¥ fib(2)

Unwinding the code

fib(4)

l

3 ¥ fib(2)

Unwinding the code

fib(4)

l

3 ¥ fib(2)

l

fib(1) + fib(0)

Unwinding the code

fib(4)

l

3 ¥ fib(2)

l

| + fib(0)

Unwinding the code

fib(4)

Recursion

fib(0), fib(1) —> fib(2) —> fib(3) —> fib(4) —> ...

The sweet thing about recursion

Do these 2 steps:

|. Base case:
Solve the “smallest” version of the problem
(with no recursion).

2. Recursive call(s):
Correctly write the solution to the problem in terms of
“smaller” version(s) of the same problem.

Your recursive function will always work!

Unwinding vs Trusting

Unwinding recursive functions:

- OK at first (for simple examples)
- Not OK once you understand the logic

Over time, you will start trusting recursion.
This trust is very important!

Recursion will earn your trust.

Unwinding vs Trusting

def fib(n):
if(n==0orn==1): return 1
else: return fib(n-1) + fib(n-2)

\

You have to trust these will return
the correct answer.

This is why recursion is so powerful.

You can assume every subproblem is solved for free!

Getting comfortable with recursion

|. See lot’s of examples

2. Practice yourself

Getting comfortable with recursion

|. See lot’s of examples

Recursive function design

Ask yourself:

If | had the solutions to the smaller instances for free,
how could | solve the original problem!?

Write the recursive relation:
e.g. fib(n) = fib(n-1) + fib(n-2)

Handle the base case:

A small version of the problem that does not require
recursive calls.

Double check:

All your recursive calls make progress towards the
base case(s) and they don’t miss it.

Examples

Example: sum

Write a function that takes an integer n as input,
and returns the sum of all numbers from | to n.

sum(n)=n+mM-1))+M-2)+(n-3)+...+3+2+1

Example: sum

Write a function that takes an integer n as input,
and returns the sum of all numbers from | to n.

sum(n)=n+ n-1)+M-2)+m-3)+..+3+2+1

sum(n) =n + sum(n-1)

Example: sum

Write a function that takes an integer n as input,
and returns the sum of all numbers from | to n.

def sum(n):
if (n==0): return O

else: return n + sum(n-1)

Example: sum in range

Write a function that takes integers n and m as input
(n <=m),
and returns the sum of all numbers from n to m.

sum(n,m)=n+ (n+1)+ (n+2) + ... + (m-1) + m

Example: sum in range

Write a function that takes integers n and m as input
(n <=m),
and returns the sum of all numbers from n to m.

sum(n,m)=n+ (n+1)+ n+2)+ ...+ (m-1) + m

sum(n, m) = sum(n, m-1) +m

Example: sum in range

Write a function that takes integers n and m as input
(n <=m),
and returns the sum of all numbers from n to m.

sum(n,m)=n+ (n+1)+ n+2)+ ...+ (m-1) + m

sum(n+1, m)

Example: sum in range

Write a function that takes integers n and m as input
(n <=m),
and returns the sum of all numbers from n to m.

sum(n,m)=n+ (n+1)+ n+2)+ ...+ (m-1) + m

sum(n, m)=n + sum(n+1, m)

Example: sum in range

Write a function that takes integers n and m as input
(n <=m),
and returns the sum of all numbers from n to m.

def sum(n, m):
if (n == m): return n

else: return n + sum(n+1, m)

Note: objects with recursive structure

Lists

Strings (a list of characters)

“Dammit I'm mad”

Problems related to these objects often have
very natural recursive solutions.

Example: sumList(L)

Write a function that takes a list of integers as input
and returns the sum of all the elements in the list.

sum(| 3| 526|915]|)=

3+sum(| 5126|191]|5])

Example: sumList(L)

Write a function that takes a list of integers as input
and returns the sum of all the elements in the list.

def sum(L):
if (Ien(L) == 0): return O
else: return L[0] + sum(L[1:])

Example: isElement(L, e)

Write a function that checks if a given element is in a
given list.

o —™>

Example: isElement(L, e)

Write a function that checks if a given element is in a
given list.

- HBEBEINE
t
6

Example: isElement(L, e)

Write a function that checks if a given element is in a
given list.

def isElement(L, e):
if (len(L) == 0): return False

else:
if (L[O] ==e): return True

else: return i1sElement(L[1:], e)

This is linear search.

Example: isPalindrome(s)

Write a function that checks if a given string is a
palindrome.

Example: isPalindrome(s)

Write a function that checks if a given string is a
palindrome.

should be palindrome

Example: isPalindrome(s)

Write a function that checks if a given string is a
palindrome.

def 1sPalindrome(s):

if (len(s) <= 1): return True

else:
return (s[0] == s[len(s)-1] and isPalindrome(s[1:len(s)-1]))

Example: reverse array

Write a (non-destructive) function that reverses the

elements of a list.
e.g.[l,2,3,4] becomes [4, 3,2, |]

swap

Example: reverse array

Write a (non-destructive) function that reverses the

elements of a list.
e.g.[l,2,3,4] becomes [4, 3,2, |]

5152|169 1]3

reverse the middle

Example: reverse array

Write a (non-destructive) function that reverses the

elements of a list.
e.g.[l,2,3,4] becomes [4, 3,2, |]

def reverse(a):

if (Ien(a) == 0 or len(a) == 1): return a

else:
return [a[-1]] + reverse(a[l:len(a)-1]) + [a[O]]

Example: findMax(L)

Write a function that finds the maximum value in a list.

Example: findMax(L)

Write a function that finds the maximum value in a list.

3512169115
findMax

then compare it with 3

Example: findMax(L)

Write a function that finds the maximum value in a list.

def findMax(L):
if (len(L) == 1): return L[0]
else: if L=1], return None
m = findMax(L[1:])
if (L[O] < m): return m

else: return L[0]

Example: binary search

Write a function for binary search: find an element in a
sorted list.

Example: binary search

Write a function for binary search: find an element in a
sorted list.

!

Example: binary search

Write a function for binary search: find an element in a
sorted list.

def binarySearch(a, element):
if (len(a) == 0): return False
mid = (start+end)//2
if (afmid] == element): return True
elif (element < a|mid]):

return binarySearch(a[:mid], element)

Slicing too
expensive here.
return binarySearch(a[mid+1:], element)

else:

Example: binary search

def binarySearch(a, element, start, end):
if (start >= end): return False
mid = (start+end)//2
if (a|mid] == element): return True
elif (element < a[mid]):
return binarySearch(a, element, start, mid)
else:

return binarySearch(a, element, mid+1, end)

Example: findMax(L)

Write a function that finds the maximum value in a list.

def findMax (L, start=0):

if (start >=len(L)): return None
elif (start == len(L)-1): return L[-1]

else:
m = findMax(L, start+1)

if (L[start] < m): return m

else: return L [start]

Common recursive strategies

With lists and strings, 2 common strategies:

Strategy |:

- Separate first or last index

- Use recursion on the remaining part

Strategy 2:

- Divide list or string in half
- Use recursion on each half, combine results.

(or ignore one of the halves like in binary search)

One more example to really appreciate recursion

Example: Towers of Hanoi

Classic ancient problem:
N rings in increasing sizes. 3 poles.
Rings start stacked on Pole |.
Goal: Move rings so they are stacked on Pole 3.
- Can only move one ring at a time.

- Can’t put larger ring on top of a smaller ring.

Example: Towers of Hanoi

Example: Towers of Hanoi

Write a function

move (N, source, destination) (integer inputs)

that solves the Towers of Hanoi problem
(i.e. moves the N rings from source to destination)
by printing all the moves.

move (3, |,3): Move ring from Pole | to Pole 3
Move ring from Pole | to Pole 2
Move ring from Pole 3 to Pole 2
Move ring from Pole | to Pole 3
Move ring from Pole 2 to Pole |
Move ring from Pole 2 to Pole 3
Move ring from Pole | to Pole 3

Example: Towers of Hanoi

I 2 3

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

Example: Towers of Hanoi

| 2 3

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole | to Pole 2.

Example: Towers of Hanoi

| 2 3

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole | to Pole 2.

Example: Towers of Hanoi

| 2 3

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole | to Pole 2.

- Move ring from Pole | to Pole 3.

Example: Towers of Hanoi

| 2 3

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole | to Pole 2.

- Move ring from Pole | to Pole 3.

Example: Towers of Hanoi

| 2 3

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole | to Pole 2.
- Move ring from Pole | to Pole 3.

- Move N-1 rings from Pole 2 to Pole 3.

Example: Towers of Hanoi

| 2 3

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole | to Pole 2.
- Move ring from Pole | to Pole 3.

- Move N-1 rings from Pole 2 to Pole 3.

Example: Towers of Hanoi

move (N, source, destination):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from Pole ” + source +
“ to Pole ” + destination)

move(N- |, temp, destination)

Challenge: Write the same program using loops

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

move (N, source, dest):
if(N > 0):
Let temp be the index of other pole.
move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

Getting comfortable with recursion

|. See lot’s of examples

2. Practice yourself

Getting comfortable with recursion

2. Practice yourself

