
15-112
Fundamentals of Programming

Week 5 - Lecture 2:
Recursion

June 14, 2016

What is recursion?

To understand recursion, you have to first understand
recursion.

Recursion:

What is recursion?

To understand recursion, you have to first understand
recursion.

Recursion:

What is recursion?

To understand recursion, you have to first understand
recursion.

Recursion:

Not making progress. Let’s ask Google.

What is recursion?

Let’s see what my dictionary says.

What is recursion?

recursion (n):

See recursion

What is recursion in programming?

We say that a function is recursive if at some point,
it calls itself.

def test():
 test()

Can we do something more meaningful?

Warning:
Recursion can be weird and counter-intuitive at first!

Motivation: break a problem into smaller parts

Example: Figuring out if a given password is secure.

- Is string length at least 10?

- Does the string contain an upper-case letter?

- Does the string contain a lower-case letter?

- Does the string contain a number?

Motivation: break a problem into smaller parts

isSecurePassword

length upper lower number

merge results

True or False

input

Motivation: break a problem into smaller parts

Recursion:
The smaller problems are not different.
They are smaller versions of the original problem.

The problem is split into smaller but different problems.

isSecurePassword:

Recursion Example: Sorting

Sorting the midterms by name.

Divide the pile in half.

Sort the first half.

Sort the second half.

Merge the sorted piles.

Sort:

Recursion Example: Sorting

sort

sort first half

merge results

input list

sort second half

Recursion Example: Sorting

Divide the pile in half.

Sort the first half.

Sort the second half.

Merge the sorted piles.

Sort:

What if my pile consists of just a single exam?

Recursion Example: Sorting

Sort:

If the pile consists of one element, do nothing.

Else:

Divide the pile in half.

Sort the first half.

Sort the second half.

Merge the sorted piles.

Recursion Example: Sorting

def sort(a):
 if (len(a) <= 1):
 return a
 leftHalf = a[0 : len(a)//2]
 rightHalf = a[len(a)//2 : len(a)]
 return merge(sort(leftHalf), sort(rightHalf))

def merge(a, b):
 # We have already seen this.

This works!

And it is called merge sort.

Recursion Example: Sorting

[1, 5, 8, 3, 7, 2, 4, 6]

[1, 5, 8, 3] [7, 2, 4, 6]

[1, 3, 5, 8]

sort

[2, 4, 6, 7]

sort

[1, 2, 3, 4, 5, 6, 7, 8]

merge

Recursion Example: Sorting

[1, 5, 8, 3, 7, 2, 4, 6]

[1, 5, 8, 3] [7, 2, 4, 6]

[1, 5] [8, 3]

[1] [5] [8] [3] [7] [2] [4] [6]

[7, 2] [4, 6]

[1, 5] [3, 8] [2, 7] [4, 6]

[1, 3, 5, 8] [2, 4, 6, 7]

[1, 2, 3, 4, 5, 6, 7, 8]

To understand how recursion works,
let’s look at simpler examples.

Simple Example: Factorial

1! = 1
2! = 2 x 1
3! = 3 x 2 x 1
4! = 4 x 3 x 2 x 1
5! = 5 x 4 x 3 x 2 x 1
...
n! = n x (n-1) x (n-2) x ... x 1

n factorial is the product of integers from 1 to n.

Simple Example: Factorial

Finding the recursive structure in factorial:

Can we express n! using a smaller factorial ?

n! = n x (n - 1) x (n - 2) x ... x 1

Simple Example: Factorial

Finding the recursive structure in factorial:

Can we express n! using a smaller factorial ?

n! = n x (n - 1) x (n - 2) x ... x 1

(n-1)!

n! = n x (n - 1)!

Simple Example: Factorial

def factorial(n):
 return n * factorial(n - 1)

“Unwinding” the code when n = 4:

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1 * factorial(0)

0 * factorial(-1) ...
No stopping condition

Simple Example: Factorial

def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

Simple Example: Factorial

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * 1

def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

Simple Example: Factorial

factorial(4)

4 * factorial(3)

3 * 2

def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

Simple Example: Factorial

factorial(4)

4 * 6

evaluates to 24

def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

Simple Example: Factorial

factorial(4)

4 * 6

evaluates to 24

def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

Recursive calls make their way down to the base case.

The solution is then built up from base case.

Simple Example: Factorial

def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

Call Stack

depth 0

depth 1

depth 2

depth 3

Simple Example: Factorial

def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

Call Stack

depth 0

depth 1

depth 2

depth 3

Independent!

Simple Example: Factorial

def factorial(n):
 if (n == 1): return 1
 else: return n * factorial(n - 1)

Another way of convincing ourselves it works:

Does factorial(1) work (base case) ?

Does factorial(2) work ?
returns 2*factorial(1)

Does factorial(3) work ?
returns 3*factorial(2)

Does factorial(4) work ?
returns 4*factorial(3)

How recursion works

fac(1) —> fac(2) —> fac(3) —> fac(4) —> ...

fac(1)
fac(2)

fac(3)fac(4)
. . .

2 important properties of recursive functions

There should be a base case
(a case which does not make a recursive call)

The recursive call(s) should make progress towards
the base case.

1. “Base case”

2. “Progress”

Simple Example: Factorial

def factorial(n):

if (n == 1): return 1

else: return n * factorial(n-1)

Simple Example: Factorial

Base case

def factorial(n):

if (n == 1): return 1

else: return n * factorial(n-1)

Simple Example: Factorial

Making progress towards base case

def factorial(n):

if (n == 1): return 1

else: return n * factorial(n-1)

Another example: Fibonacci

Fibonacci Sequence: 1 1 2 3 5 8 13 21 ...

def fib(n):

if (n == 0): return 1

else: return fib(n-1) + fib(n-2)

What happens when we call fib(1) ?

Another example: Fibonacci

Fibonacci Sequence: 1 1 2 3 5 8 13 21 ...

def fib(n):

if (n == 0 or n == 1): return 1

else: return fib(n-1) + fib(n-2)

Another example: Fibonacci

Fibonacci Sequence: 1 1 2 3 5 8 13 21 ...

Base case

def fib(n):

if (n == 0 or n == 1): return 1

else: return fib(n-1) + fib(n-2)

Another example: Fibonacci

Fibonacci Sequence: 1 1 2 3 5 8 13 21 ...

Each recursive call makes progress towards
the base case
(and doesn’t skip it!!!)

def fib(n):

if (n == 0 or n == 1): return 1

else: return fib(n-1) + fib(n-2)

Unwinding the code

fib(4)

Unwinding the code

fib(4)

fib(3) + fib(2)

Unwinding the code

fib(4)

fib(3) + fib(2)

fib(2) + fib(1)

Unwinding the code

fib(4)

fib(3) + fib(2)

fib(2) + fib(1)

fib(1) + fib(0)

Unwinding the code

fib(4)

fib(3) + fib(2)

fib(2) + fib(1)

1 + 1

Unwinding the code

fib(4)

fib(3) + fib(2)

2 + fib(1)

Unwinding the code

fib(4)

fib(3) + fib(2)

2 + 1

Unwinding the code

fib(4)

3 + fib(2)

Unwinding the code

fib(4)

3 + fib(2)

fib(1) + fib(0)

Unwinding the code

fib(4)

3 + fib(2)

1 + fib(0)

Unwinding the code

fib(4)

3 + fib(2)

1 + 1

Unwinding the code

fib(4)

3 + 2

Unwinding the code

5

Recursion

fib(0), fib(1) —> fib(2) —> fib(3) —> fib(4) —> ...

fib(0)
fib(1)

fib(2)fib(3)
. . .

The sweet thing about recursion

Do these 2 steps:

1. Base case:
Solve the “smallest” version of the problem
(with no recursion).

2. Recursive call(s):
Correctly write the solution to the problem in terms of
“smaller” version(s) of the same problem.

Your recursive function will always work!

Unwinding vs Trusting

Over time, you will start trusting recursion.

This trust is very important!

Unwinding recursive functions:

- OK at first (for simple examples)
- Not OK once you understand the logic

Recursion will earn your trust.

Unwinding vs Trusting

def fib(n):
 if (n == 0 or n == 1): return 1
 else: return fib(n-1) + fib(n-2)

You have to trust these will return
the correct answer.

This is why recursion is so powerful.

You can assume every subproblem is solved for free!

Getting comfortable with recursion

1. See lot’s of examples

2. Practice yourself

Getting comfortable with recursion

1. See lot’s of examples

Recursive function design

Ask yourself:
If I had the solutions to the smaller instances for free,
how could I solve the original problem?

Handle the base case:
A small version of the problem that does not require
recursive calls.

Double check:
All your recursive calls make progress towards the
base case(s) and they don’t miss it.

Write the recursive relation:
e.g. fib(n) = fib(n-1) + fib(n-2)

Examples

Example: sum

Write a function that takes an integer n as input,
and returns the sum of all numbers from 1 to n.

sum(n) = n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1

Example: sum

Write a function that takes an integer n as input,
and returns the sum of all numbers from 1 to n.

sum(n) = n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1

sum(n-1)sum(n) = n +

Example: sum

Write a function that takes an integer n as input,
and returns the sum of all numbers from 1 to n.

def sum(n):

if (n == 0): return 0

else: return n + sum(n-1)

Example: sum in range

Write a function that takes integers n and m as input
(n <= m),
and returns the sum of all numbers from n to m.

sum(n, m) = n + (n+1) + (n+2) + ... + (m-1) + m

Example: sum in range

Write a function that takes integers n and m as input
(n <= m),
and returns the sum of all numbers from n to m.

sum(n, m) = n + (n+1) + (n+2) + ... + (m-1) + m

sum(n, m-1)sum(n, m) = + m

Example: sum in range

Write a function that takes integers n and m as input
(n <= m),
and returns the sum of all numbers from n to m.

sum(n, m) = n + (n+1) + (n+2) + ... + (m-1) + m

sum(n+1, m)

Example: sum in range

Write a function that takes integers n and m as input
(n <= m),
and returns the sum of all numbers from n to m.

sum(n, m) = n + (n+1) + (n+2) + ... + (m-1) + m

sum(n+1, m)sum(n, m) = n +

Example: sum in range

Write a function that takes integers n and m as input
(n <= m),
and returns the sum of all numbers from n to m.

def sum(n, m):

if (n == m): return n

else: return n + sum(n+1, m)

Note: objects with recursive structure

Problems related to these objects often have
very natural recursive solutions.

Lists

81 2 4 5 5 60 9 9

Strings (a list of characters)

“Dammit I’m mad”

Example: sumList(L)

Write a function that takes a list of integers as input
and returns the sum of all the elements in the list.

3 5 2 6 9 1 5

sum() =3 5 2 6 9 1 5

3 + sum() 5 2 6 9 1 5

Example: sumList(L)

def sum(L):

if (len(L) == 0): return 0

else: return L[0] + sum(L[1:])

Write a function that takes a list of integers as input
and returns the sum of all the elements in the list.

Example: isElement(L, e)

Write a function that checks if a given element is in a
given list.

3 5 2 6 9 1 5

6

Example: isElement(L, e)

Write a function that checks if a given element is in a
given list.

3 5 2 6 9 1 5

6

Example: isElement(L, e)

Write a function that checks if a given element is in a
given list.

def isElement(L, e):

else: return isElement(L[1:], e)

else:
if (L[0] == e): return True

if (len(L) == 0): return False

This is linear search.

Example: isPalindrome(s)

Write a function that checks if a given string is a
palindrome.

h a n n a h

Example: isPalindrome(s)

Write a function that checks if a given string is a
palindrome.

h a n n a h

should be palindrome

Example: isPalindrome(s)

Write a function that checks if a given string is a
palindrome.

def isPalindrome(s):

else:
 return (s[0] == s[len(s)-1] and isPalindrome(s[1:len(s)-1]))

if (len(s) <= 1): return True

Example: reverse array

3 5 2 6 9 1 5

swap

Write a (non-destructive) function that reverses the
elements of a list.
e.g. [1, 2, 3, 4] becomes [4, 3, 2, 1]

Example: reverse array

5 5 2 6 9 1 3

reverse the middle

Write a (non-destructive) function that reverses the
elements of a list.
e.g. [1, 2, 3, 4] becomes [4, 3, 2, 1]

Example: reverse array

def reverse(a):

if (len(a) == 0 or len(a) == 1): return a
else:
 return [a[-1]] + reverse(a[1:len(a)-1]) + [a[0]]

Write a (non-destructive) function that reverses the
elements of a list.
e.g. [1, 2, 3, 4] becomes [4, 3, 2, 1]

Example: findMax(L)

3 5 2 6 9 1 5

Write a function that finds the maximum value in a list.

Example: findMax(L)

3 5 2 6 9 1 5

findMax
then compare it with 3

Write a function that finds the maximum value in a list.

Example: findMax(L)

def findMax(L):

if (len(L) == 1): return L[0]

m = findMax(L[1:])

else:

if (L[0] < m): return m

else: return L[0]

Write a function that finds the maximum value in a list.

if L = [], return None

Example: binary search

Write a function for binary search: find an element in a
sorted list.

81 2 4 5 5 60 9 9

50

996050

Example: binary search

81 2 4 5 5 60 9 9

50

996050

Write a function for binary search: find an element in a
sorted list.

Example: binary search

Write a function for binary search: find an element in a
sorted list.

Slicing too
expensive here.

def binarySearch(a, element):

if (len(a) == 0): return False

mid = (start+end)//2

if (a[mid] == element): return True

elif (element < a[mid]):

return binarySearch(a[:mid], element)

else:

return binarySearch(a[mid+1:], element)

Example: binary search

def binarySearch(a, element, start, end):

if (start >= end): return False

mid = (start+end)//2

if (a[mid] == element): return True

elif (element < a[mid]):

return binarySearch(a, element, start, mid)

else:

return binarySearch(a, element, mid+1, end)

Example: findMax(L)

def findMax(L, start=0):

if (start >= len(L)): return None

m = findMax(L, start+1)
else:

if (L[start] < m): return m

else: return L[start]

Write a function that finds the maximum value in a list.

elif (start == len(L)-1): return L[-1]

Common recursive strategies

With lists and strings, 2 common strategies:

Strategy 1:

- Separate first or last index

- Use recursion on the remaining part

Strategy 2:

- Divide list or string in half

- Use recursion on each half, combine results.

(or ignore one of the halves like in binary search)

One more example to really appreciate recursion

Example: Towers of Hanoi

Classic ancient problem:

N rings in increasing sizes. 3 poles.

Rings start stacked on Pole 1.

Goal: Move rings so they are stacked on Pole 3.
- Can only move one ring at a time.

- Can’t put larger ring on top of a smaller ring.

Example: Towers of Hanoi

Example: Towers of Hanoi
Write a function

that solves the Towers of Hanoi problem
(i.e. moves the N rings from source to destination)
by printing all the moves.

 move (N, source, destination)

 move (3, 1, 3): Move ring from Pole 1 to Pole 3
Move ring from Pole 1 to Pole 2
Move ring from Pole 3 to Pole 2
Move ring from Pole 1 to Pole 3
Move ring from Pole 2 to Pole 1
Move ring from Pole 2 to Pole 3
Move ring from Pole 1 to Pole 3

(integer inputs)

Example: Towers of Hanoi

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

1 2 3

Example: Towers of Hanoi

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole 1 to Pole 2.

1 2 3

Example: Towers of Hanoi

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole 1 to Pole 2.

1 2 3

Example: Towers of Hanoi

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move ring from Pole 1 to Pole 3.

1 2 3

- Move N-1 rings from Pole 1 to Pole 2.

Example: Towers of Hanoi

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

1 2 3

- Move N-1 rings from Pole 1 to Pole 2.

- Move ring from Pole 1 to Pole 3.

Example: Towers of Hanoi

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

- Move N-1 rings from Pole 2 to Pole 3.

1 2 3

- Move N-1 rings from Pole 1 to Pole 2.

- Move ring from Pole 1 to Pole 3.

Example: Towers of Hanoi

The power of recursion: Can assume we can solve
smaller instances of the problem for free.

1 2 3

- Move N-1 rings from Pole 1 to Pole 2.

- Move N-1 rings from Pole 2 to Pole 3.

- Move ring from Pole 1 to Pole 3.

Example: Towers of Hanoi

 move (N, source, destination):

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from Pole ” + source +
 “ to Pole ” + destination)

move(N-1, temp, destination)

Challenge: Write the same program using loops

How/Why it works

 move (N, source, dest):
if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

if(N > 0):

Let temp be the index of other pole.

move(N-1, source, temp)

print (“Move ring from pole ” + source + “ to pole ” + dest)

move(N-1, temp, destination)

 move (N, source, dest):

How/Why it works

move(1)

. . .

move(2)
move(3)

Getting comfortable with recursion

1. See lot’s of examples

2. Practice yourself

Getting comfortable with recursion

2. Practice yourself

