
15-112
Fundamentals of Programming

Week 5 - Lecture 4:
Wrap up

June 16, 2016

Exceptions

Exception

Exception: run-time error

“out of the ordinary” event

“exceptional” event

Handling Exceptions

try/except block

try:
 s = input(“Enter a number:”)
 s = int(s)
 print (1/s)
except:
 print (“Something is wrong…”)

Reading from a file
Writing to a file

File I/O

- Should be able to interact with the files in hard disk

- What happens when you run a program?

hard disk RAM

> Read from a file. Write to a file.

File I/O

def readFile(path):
 with open(path, "rt") as f:
 return f.read()

def writeFile(path, contents):
 with open(path, "wt") as f:
 f.write(contents)

contentsToWrite = "This is a test!\nIt is only a test!"
writeFile("foo.txt", contentsToWrite)

contentsRead = readFile("foo.txt")
assert(contentsRead == contentsToWrite)

Reading from the web

 Web Input

import urllib.request

url = "http://www.cs.cmu.edu/"
inurl = urllib.request.urlopen(url)
contents = inurl.read()
inurl.close()

print(contents)

List Comprehension

List comprehension

A concise way to create lists.

[<expr> <for clause> (additional/optional for and if clauses)]

a = []
for x in range(10):
 a.append(x)

Same as:

Could of course just do this instead:
a = list(range(10))

a = [x for x in range(10)]

a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehension

squares = []
for x in range(10):
 squares.append(x**2)
squares = [0, 1, 4, 9, 25, 36, 49, 64, 81]

primeSquares = [4, 9, 25, 49]

primeSquares = [x**2 for x in range(10) if isPrime(x)]

squares = [x**2 for x in range(10)]

squares = [0, 1, 4, 9, 25, 36, 49, 64, 81]

A concise way to create lists.

[<expr> <for clause> (additional/optional for and if clauses)]

Functions redux

Functions are first class objects

Functions are first-class citizens:

Can use them like you use any other object.
(in Python, pretty much everything is an object)

- Can pass functions as arguments to other functions

- Functions can be return values for other functions

- Functions can be assigned to other variables,
 or can be stored in data structures (e.g. lists)

Functions are first class objects

def testSort(sortFn, n):
 a = [random.randint(0, 2**31) for i in range(n)]
 start = time.time()
 sortFn(a)
 end = time.time()
 return (end - start)

sortFunctions = [selectionSort, bubbleSort, mergeSort]

for sortFn in sortFunctions:
 testSort(sortFn, n)

n = 2**12

Assume selectionSort, bubbleSort, mereSort are defined

Keyword arguments

def f(x, y, z):
 print(x, y, z)

f(1, 2, 3)

f(1, z=3, y=2)

canvas.create_rectangle(0, 0, 50, 50,
 fill=“green”, outline=“red”, width=3)

keyword arguments

keyword arguments

Variable-length argument list

def longestWord(*args):
 if (len(args) == 0): return None
 result = args[0]
 for word in args:
 if (len(word) > len(result)):
 result = word
 return result

The * makes args = (“this”, “is”, “really”, “nice”)

* “packs” arguments into one tuple

print(longestWord(“this”, “is”, “really”, “nice”))

Nested functions

def f(a):
 def evens(a):
 return [value for value in a if (value % 2) == 0]
 return list(reversed(evens(a)))

Can be used to avoid “polluting” the global space.

Crashes
print(f([1,2,3,4,5,6,7]))
print(evens([1,2,3,4,5,6,7]))

Nested functions

def nQueens(n):
 def solve(n, m, constraints):
 …

 return solve(n, n, [])

Can be used to change function signature.

Term Project

What is the TP?

Design and implementation of a program of your choosing.

- graphical, text-based, file-based, …

- interactive, non-interactive

- fireworks, no fireworks

Our general expectations

Some general rules

- SOLO: must do your own independent project.

- COLLABORATIVE: can discuss ideas, designs,
algorithms, help each other debug.

- Can use any external materials
e.g. code, designs, images, text, sounds, …

These must be very clearly cited!

You’ll be graded on your original contributions.

This includes citing yourself!

Some general rules

- You will be assigned a “Mentor CA”:

Provides most of the support and guidance.

- Must use Python

Will grade your TP.

The overall process

Sun Mon Tue Wed Thu Fri Sat

25242322212019

282726

Meet Meet Meet Meet

DEADLINE

Meeting 1

- Project proposal

> Define the problem

> Description on how you intend to solve it

> List all modules/technologies you plan to use

- Competitive analysis

> Find existing products similar to what you propose

> List features you plan to include

> List features you plan to change

Meeting 1

- Storyboard

> Hand-drawn pictures showing how app will run from
the perspective of the user.

- Timesheet

> timesheet.txt

> Keep track of the time you spend on the project.

- Technology demonstrations

> Demonstration of competency

- Code artifacts

> If you have any

Meeting 2

- Progress

- Timesheet

> A good amount of code

> Basic features implemented and functional

Meeting 3

- Working demo

- Timesheet

> A working B-level final project

> May miss some features, contain some bugs, etc…

Submission

- Project source files and support files

- Readme file (readme.txt)

> Python files + others (.jpg, midi, …)

> What is your project?

> How to install and run it

> How to download/install 3rd party libraries

> 3rd party libraries (if possible)

Submission

- Design documents

- Project video

- Timesheet

> 1-3 minutes long

> Show the most important features, highlights

> Explain the problem, and how you solve it.

> Why you chose the particular functions, data
structures, algorithms that you used.

> Discuss the user interface choices.

Submission

Submission will be made to Autolab.

Single zip file.

Cannot exceed 10MB.

Submit complete version to your mentor.

You can run complete version in grading session.

Grading

- Complexity and sophistication

- Robust operational program

- User interface

- Effort

- Design

- Style

- Presentation

Important Factors
A+
A
A-
B+
B
B-
C+
C
C-
D+
D
D-
R

HAVE FUN!

