

June 16, 2016

Exceptions

Exception: run-time error

"out of the ordinary" event "exceptional" event

Handling Exceptions

try/except block

```
try:
    s = input("Enter a number:")
    s = int(s)
    print (1/s)
except:
    print ("Something is wrong...")
```

Reading from a file Writing to a file

File I/O

- What happens when you run a program?

Should be able to interact with the files in hard disk
 > Read from a file. Write to a file.

File I/O

```
def readFile(path):
    with open(path, "rt") as f:
    return f.read()
```

def writeFile(path, contents):
 with open(path, "wt") as f:
 f.write(contents)

contentsToWrite = "This is a test!\nIt is only a test!"
writeFile("foo.txt", contentsToWrite)

```
contentsRead = readFile("foo.txt")
assert(contentsRead == contentsToWrite)
```

Reading from the web

Web Input

import urllib.request

url = "http://www.cs.cmu.edu/"
inurl = urllib.request.urlopen(url)
contents = inurl.read()
inurl.close()

print(contents)

List Comprehension

List comprehension

A concise way to create lists.

[<expr> <for clause> (additional/optional for and if clauses)]

a = [x for x in range(10)]

 $\mathbf{a} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$

Could of course just do this instead: a = list(range(10))

List comprehension

A concise way to create lists.

[<expr> <for clause> (additional/optional for and if clauses)]

squares = [] for x in range(10): squares.append(x^{**2}) squares = [0, 1, 4, 9, 25, 36, 49, 64, 81]squares = $[x^{**2} \text{ for } x \text{ in } range(10)]$ squares = [0, 1, 4, 9, 25, 36, 49, 64, 81] primeSquares = $[x^{**2} \text{ for } x \text{ in } range(10) \text{ if } isPrime(x)]$ primeSquares = [4, 9, 25, 49]

Functions redux

Functions are first class objects

Functions are first-class citizens:

Can use them like you use any other object. (in Python, pretty much everything is an object)

- Can pass functions as arguments to other functions
- Functions can be return values for other functions
- Functions can be assigned to other variables, or can be stored in data structures (e.g. lists)

Functions are first class objects

Assume selectionSort, bubbleSort, mereSort are defined

def testSort(sortFn, n): a = [random.randint(0, 2**31) for i in range(n)] start = time.time() sortFn(a) end = time.time() return (end - start)

sortFunctions = [selectionSort, bubbleSort, mergeSort] $n = 2^{**}12$

for sortFn in sortFunctions:
 testSort(sortFn, n)

Keyword arguments

def f(x, y, z): print(x, y, z)

f(1, 2, 3)

f(1, <u>z=3</u>, <u>y=2</u>)

keyword arguments

canvas.create_rectangle(0, 0, 50, 50,

fill="green", outline="red", width=3)

keyword arguments

Variable-length argument list

def longestWord(*args): * "packs" arguments into one tuple
 if (len(args) == 0): return None
 result = args[0]
 for word in args:
 if (len(word) > len(result)):
 result = word
 result

return result

print(longestWord("this", "is", "really", "nice"))

The * makes args = ("this", "is", "really", "nice")

Nested functions

Can be used to avoid "polluting" the global space.

def f(a):
 def evens(a):
 return [value for value in a if (value % 2) == 0]
 return list(reversed(evens(a)))

print(f([1,2,3,4,5,6,7])) **print**(evens([1,2,3,4,5,6,7])) **# Crashes**

Nested functions

Can be used to change function signature.

def nQueens(n):
 def solve(n, m, constraints):

return solve(n, n, [])

Term Project

What is the TP?

Design and implementation of a program of your choosing.

- graphical, text-based, file-based, ...
- interactive, non-interactive
- fireworks, no fireworks

Our general expectations

Some general rules

- SOLO: must do your own independent project.
- COLLABORATIVE: can discuss ideas, designs, algorithms, help each other debug.

- Can use any external materials e.g. code, designs, images, text, sounds, ...

These <u>must</u> be very clearly cited!

This includes citing yourself!

You'll be graded on your original contributions.

Some general rules

- Must use Python

You will be assigned a "Mentor CA":
 Provides most of the support and guidance.
 Will grade your TP.

The overall process

Sun Mon Tue Wed Thu Fri Sat

19	20	21	22	23	24	25
	Meet		Meet		Meet	Meet
26	27	28				
DEADLINE						

Meeting I

- Project proposal
 - > Define the problem
 - > Description on how you intend to solve it
 - > List all modules/technologies you plan to use

- Competitive analysis

- > Find existing products similar to what you propose
- > List features you plan to include
- > List features you plan to change

Meeting I

- Storyboard

> Hand-drawn pictures showing how app will run from the perspective of the user.

- Technology demonstrations

> Demonstration of competency

- Code artifacts

> If you have any

- Timesheet

> timesheet.txt

> Keep track of the time you spend on the project.

Meeting 2

- Progress

- > A good amount of code
- > Basic features implemented and functional

- Timesheet

Meeting 3

- Working demo

- > A working B-level final project
- > May miss some features, contain some bugs, etc...

- Timesheet

Submission

- Project source files and support files
 - > Python files + others (.jpg, midi, ...)
 - > 3rd party libraries (if possible)

- Readme file (readme.txt)
 - >What is your project?
 - > How to install and run it
 - > How to download/install 3rd party libraries

Submission

- Design documents
 - > Explain the problem, and how you solve it.
 - > Why you chose the particular functions, data structures, algorithms that you used.
 - > Discuss the user interface choices.
- Project video
 - > I-3 minutes long
 - > Show the most important features, highlights
- Timesheet

Submission

Submission will be made to Autolab.

Single zip file.

Cannot exceed 10MB.

Submit complete version to your mentor.

You can run complete version in grading session.

Grading

A+ Α A-B+ B B-C+ С C-D+ D D-R

HAVE FUN!