15-251: Great Theoretical Ideas In Computer Science

Recitation 3

Announcements

- Office hours and Piazza are valuable resources. If you aren't sure what a question is asking, ask on Piazza or come to OH. Don't wait until the writing session.
- At the end of the writing session, you can hand in your homework in the unsorted box in the front of the room.

Regular or Not? You Decide

Define REGULAR $=\{\langle M\rangle \mid$ the set of strings accepted by M is a regular language $\}$.
Show that REGULAR is undecidable.

Counting sheep

For each set below, determine if it is countable or not. Prove your answers.
(a) $S=\left\{a_{1} a_{2} a_{3} \ldots \in\{0,1\}^{\infty} \mid \forall n \geq 1\right.$ the string $a_{1} \ldots a_{n}$ contains more 1's than 0's. $\}$.
(b) Σ^{*}, where Σ is an alphabet that is allowed to be countably infinite (e.g., $\Sigma=\mathbb{N}$).

Turing's Revenge

Determine whether the following languages are decidable or not. You may "use the Church-Turing Thesis" when proving your answers.
(a) $T=\{\langle M\rangle \mid$ Turing machine M accepts finitely many strings $\}$.
(b) $U=\{(\langle M\rangle, w) \mid M$ visits more than 251 distinct cells on its tape when processing $w\}$.

