15-251: Great Theoretical Ideas In Computer Science

Recitation 11

Announcements

- We have a midterm next Wednesday (November 18).

Number theory warm-up

(a) Why is \mathbb{Z}_{n}^{*} closed under multiplication? (Prove that $x, y \in \mathbb{Z}_{n}^{*} \Longrightarrow x y \in \mathbb{Z}_{n}^{*}$.)
(b) Prove that for any two distinct primes p, q, we have $\phi(p q)=(p-1)(q-1)$. (What about $\phi\left(p^{2}\right)$?)

Actual interesting stuff (part 1)

Understand Diffie-Hellman key exchange and be able to answer the questions below.

$$
\begin{array}{rrr}
\text { Alice } & \text { Bob } \\
\text { Picks a prime } p & (1) & \\
\text { Picks a generator } B \in \mathbb{Z}_{P}^{*} & (2) & \\
\text { Randomly draws } E_{1} \in \mathbb{Z}_{\phi(P)} & (3) & \tag{3}\\
\text { Computes } B^{E_{1}} \in \mathbb{Z}_{P}^{*} & (4) & \\
\text { Sends } P, B \in \mathbb{Z}_{P}^{*}, B^{E_{1}} \in \mathbb{Z}_{P}^{*} & (5) & \text { Receives } P, B \in \mathbb{Z}_{P}^{*}, B^{E_{1}} \in \mathbb{Z}_{P}^{*} \\
& (6) & \text { Randomly draws } E_{2} \in \mathbb{Z}_{\phi(P)} \\
& (7) & \text { Computes } B^{E_{2}} \in \mathbb{Z}_{P}^{*} \\
\text { Compute }\left(B^{E_{2}}\right)^{E_{1}}=B^{E_{1} E_{2}} \in \mathbb{Z}_{P}^{*} & (8) & \text { Sends } P, B \in \mathbb{Z}_{P}^{*}, B^{E_{2}} \in \mathbb{Z}_{P}^{*} \\
\text { Compute }\left(B^{E_{1}}\right)^{E_{2}}=B^{E_{1} E_{2}}
\end{array}
$$

- In lines 3 and 5 , where we pick random exponents, why are we picking from $\mathbb{Z}_{\phi(P)}$ rather than \mathbb{Z}_{P}^{*} or \mathbb{Z} ?
- Lines 4,6 , and 9 involve modular exponentiation. How can we accomplish this efficiently?
- What information do we assume an eavedropper wouldn't be able to derive? Why would it be bad if an eavesdropper could derive this information?
- In line 2 , why do we need a generator? Why not any element?
- I thought cryptography was about sending messages. Why are Alice and Bob trying to secretly agree on an element of \mathbb{Z}_{P}^{*} ?

Actual interesting stuff (part 2)

Understand RSA and be able to answer the questions below.
Alice

Prepares to encrypt message M
Computes $C=M^{E} \in \mathbb{Z}_{N}^{*}$
Sends C

> Bob Secretly chooses large primes P, Q Computes $N=P Q$ and chooses $E \in \mathbb{Z}_{\phi(N)}^{*}$ Secretly computes $D=E^{-1} \in \mathbb{Z}_{\phi(N)}^{*}$ Publishes (N, E) Receives C Computes $C^{D}=\left(M^{E}\right)^{D}=M^{E D}=M^{E E^{-1}}=M$

- Why are E, D chosen from $\mathbb{Z}_{\phi(N)}^{*}$ rather than $\mathbb{Z}_{\phi(N)}$?
- How does Bob efficiently invert E in line 3?
- Why doesn't Bob just pick a random big number N ?
- What would happen if Bob published P, Q too?
- In what ways could an eavesdropper attempt to crack the encryption? Why is it hard to do so?

