
15-251: Great Theoretical Ideas In Computer Science

Recitation 14

Important concepts from lecture

• A Nash equilibrium is a choice function from players to strategies such that no one player will
benefit from changing their strategy.

• The social cost of a given solution (strategy choice function) is the sum of the costs to all players
of the resulting game outcome.

• The price of anarchy is a metric to compare the social costs of “selfish” play (Nash equilibria)
and some form of “cooperation” (the social-cost-optimal solution).

• A consistent hypothesis with respect to a set S of labelled points is any hypothesis that labels
every point in S correctly.

• A PAC learning algorithm is one that, for any ε, δ > 0, any distribution D, and any m0(ε, δ)
training points distributed according to D, has probability at least 1−δ of arriving at a hypothesis
whose error with respect to D is at most ε.

The Only Winning Move

Consider the two-player game where each player, without knowledge of the other’s choice, chooses a
strategy from S = {0, 1}. Player 1 wins $100 iff they both choose the same strategy, and Player 2 wins
$100 otherwise.

a) Show that there is no Nash equilibrium.

b) How can we modify S to preserve the nature of the game yet make it so that there will be at least
one Nash equilibrium? (Hint: imagine actually playing this game, perhaps repeatedly. How can we
make the given model more realistic?)

c) Characterize the set of Nash equilibria after this modification.

Alg-chemy

In lecture we saw that, if we’re given an algorithm that always finds a consistent hypothesis, we can
construct a PAC learning algorithm by finding a hypothesis consistent with some m0(ε, δ) points sampled
from the input distribution.

Let’s try going the other way: given a set S of labelled points, some δ > 0, and a PAC learning algorithm
A that may not always output a consistent hypothesis, devise a procedure to find a hypothesis that is
consistent with S with probability at least 1− δ.

Intersection classes

Let C1 and C2 be two concept classes. Define the “intersection class”

C = {c | ∃c1 ∈ C1, c2 ∈ C2. ∀x ∈ X. c(x) = + ⇐⇒ c1(x) = c2(x) = +}

1

which is to say that every concept c ∈ C is the intersection of some c1 ∈ C1 and c2 ∈ C2. Recall that
for any set of examples S and any concept class C ′, πC′(S) is the number of ways of labeling examples
in S using concepts from C ′. Let πC′(m) be the max of πC′(S) over all m-sized example sets S, and
show that πC(m) ≤ πC1(m) · πC2(m).

2

