|5-25|
 Great Theoretical Ideas in Computer Science

Lecture 3:

Deterministic Finite Automata (DFA)

September 8th, 2015

This Week

What is computation?
What is an algorithm?
How can we mathematically define them?

Let's assume two things about our world

No universal machines exist.

Sorting

We only have machines to solve decision problems.

What is computation?
What is an algorithm?
How can we mathematically define them?
Today:
How do we represent information/data?
What is a computational problem?
Introducing deterministic finite automata (DFA)

Examples of computational problems

Instance
[vanilla, mind, Ariel, yogurt, doesn't]

Solution

[Ariel, doesn't, mind, vanilla, yogurt]

Representing information

Familiar idea:

Information in a computer is represented with 0 s and Is.

Can encode/represent any kind of data (numbers, text, pairs of numbers, graphs, images, etc...) with a finite length binary string.

Representing information

> alphabet symbols of the alphabet
$\Sigma^{*}=$ the set of all finite length strings over Σ

$$
\begin{aligned}
\Sigma^{*}= & \{\epsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, \ldots\} \\
& \downarrow \\
& \text { string of length } 0 \text { (empty string) }
\end{aligned}
$$

A subset $L \subseteq \Sigma^{*}$ is called a language.

Representing information

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& \Sigma=\{a, b, c\} \\
& \Sigma=\{0,1,2,3,4,5,6,7,8,9\} \\
& \Sigma=\{0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f, g, h, i, j, k, \\
&l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}
\end{aligned}
$$

Can use whichever is convenient.

What is a computational problem?

Let $\Sigma=\{0,1\}$.

The palindrome computational problem is:

Instance	Solution	
ϵ	1	Yes
0	1	Yes
1	1	Yes
00	1	Yes
01	0	No
10	0	No
11	1	Yes
000	1	Yes
001	0	No

What is a computational problem?

Let $\Sigma=\{0,1,2,3,4,5,6,7,8,9, \#\}$.
The multiplication computational problem is:

What is a computational problem?

Definition: A computational problem is a function

$$
f: \Sigma^{*} \rightarrow \Sigma^{*}
$$

Definition: A decision problem is a function

$$
f: \Sigma^{*} \rightarrow\{0,1\}
$$

No,Yes
False,True
Reject,Accept

What is a computational problem?

Important

There is a one-to-one correspondence between decision problems and languages.
Instance Solution $L \subseteq \Sigma^{*}$

What is computation?
What is an algorithm?
How can we mathematically define them?
Today:
How do we represent information/data?
What is a computational problem?
Introducing deterministic finite automata (DFA)

What is computation?
What is an algorithm?
How can we mathematically define them?
Today:
How do we represent information/data?
What is a computational problem?
Introducing deterministic finite automata (DFA)

Introducing deterministic finite automata (DFA)

- restricted model of computation
- very limited memory
- reads input from left to right, and accepts or rejects. (one pass through the input)

State diagram of a DFA

$$
\Sigma=\{0,1\}
$$

State diagram of a DFA

$\Sigma=\{0,1\}$

State diagram of a DFA

$$
\Sigma=\{0,1\}
$$

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 1010

Simulation of a DFA

$\Sigma=\{0,1\}$
Input: 1010

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 1010

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 1010

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 1010

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 1010

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 1010

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 1010

Simulation of a DFA

$\Sigma=\{0,1\}$
Input: 1010

Decision: Reject

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 0|l||

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 0|l||

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 01111

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 01111

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 01111

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 01111

Simulation of a DFA

$\Sigma=\{0,1\}$

Input: 01III

Simulation of a DFA

$\Sigma=\{0,1\}$

Decision: Accept

Input: 0|l||

Anatomy of a DFA

transition rule: labeled arrows

DFA as a programming language

def foo(input):
$\mathrm{i}=0$;

STATE 0:
if (i == input.length): return False;
letter $=\operatorname{input}[\mathrm{i}]$;
i++;
switch(letter):
case ' 0 ': go to STATE 0; case '1': go to STATE 1;

STATE 1:

if ($\mathrm{i}==$ input.length): return True; letter $=$ input[i];
i++;
switch(letter):
case ' 0 ': go to STATE 2;
case ' 1 ': go to STATE 2;

DFA as a programming language

def foo(input):
$\mathrm{i}=0$;

STATE 0 .

if (i == input.length): return False;
letter $=\operatorname{input}[1]$;
i++;
switch(letter):
case ' 0 ': go to STATE 0; case '1': go to STATE 1;

STATE 1:

if ($\mathrm{i}==$ input.length): return True; letter $=$ input[i];
i++;
switch(letter): case ' 0 ': go to STATE 2; case ' 1 ': go to STATE 2;

Have we reached end of input? Is it an accepting state?

DFA as a programming language

def foo(input):
$\mathrm{i}=0$; STATE 0:
if (i == input.length): return False;
letter $=$ input[i];
i++;

switch(letter):
case ' 0 ': go to STATE $\mathbf{0}$; case '1': go to STATE 1;

STATE 1:

if ($\mathrm{i}==$ input.length): return True; letter $=\operatorname{input}[\mathrm{i}]$;
i++;
switch(letter):
case ' 0 ': go to STATE 2;
case ' 1 ': go to STATE 2;

DFA as a programming language

def foo(input):
$\mathrm{i}=0$;

STATE 0:

if (i == input.length): return False;
letter $=$ input[i];
i++;
switch(letter): case ' 0 ': go to STATE 0; case ' 1 ': go to STATE 1;

Depending on the letter change the state.

STATE 1:

if ($\mathrm{i}==$ input.length): return True; letter $=$ input[i];
i++;
switch(letter): case ' 0 ': go to STATE 2; case ' 1 ': go to STATE 2;

DFA as a programming language

def foo(input):
$\mathrm{i}=0$;

STATE 0:
if (i == input.length): return False;
letter $=\operatorname{input}[\mathrm{i}]$;
i++;
switch(letter):
case ' 0 ': go to STATE 0; case '1': go to STATE 1;

STATE 1:

if (i == input.length): return True; letter $=$ input[i];
i++;
switch(letter):
case ' 0 ': go to STATE 2;
case ' 1 ': go to STATE 2 ;

Definition: Language decided by a DFA

Let M be a DFA.
We let $L(M)$ denote the set of strings that M accepts.

So, $L(M)=\left\{x \in \Sigma^{*}: M(x)\right.$ accepts. $\} \subseteq \Sigma^{*}$

If $L=L(M)$, we say that M decides L.
computes
recognizes
accepts

DFA Examples

$L(M)=$ all binary strings with an even number of I's

$$
=\left\{x \in\{0,1\}^{*}: x \text { has an even number of } 1 \text { 's }\right\}
$$

DFA Examples

$L(M)=$ all binary strings with even length

$$
=\left\{x \in\{0,1\}^{*}:|x| \text { is even }\right\}
$$

DFA Examples

$L(M)=\left\{x \in\{0,1\}^{*}: x\right.$ ends with a 0$\} \cup\{\epsilon\}$

DFA Examples

$$
\Sigma=\{a, b, c\}
$$

$L(M)=\{a, b, c b, c c\}$

DFA Examples

Draw a DFA that decides

$L=\left\{x \in\{0,1\}^{*}: x\right.$ starts and ends with same bit. $\}$

Hint: How do you decide all strings that end with a 0 ? How do you decide all strings that end with a I ?

Poll

The set of all words that contain at least three O's
The set of all words that contain at least two 0's
The set of all words that contain 000 as a substring
The set of all words that contain 000 as a substring
The set of all words that contain 00 as a substring
The set of all words ending in 000
The set of all words ending in 00
None of the above
Beats me

DFA construction practice

$$
\begin{aligned}
L & =\{110,101\} \\
L & =\{0,1\}^{*} \backslash\{110,101\} \\
L & =\left\{x \in\{0,1\}^{*}: x \text { starts and ends with same bit. }\right\} \\
L & =\left\{x \in\{0,1\}^{*}:|x| \text { is divisible by } 2 \text { or } 3 .\right\} \\
L & =\{\epsilon, 110,110110,110110110, \ldots\} \\
L & =\left\{x \in\{0,1\}^{*}: x \text { contains the substring } 110 .\right\} \\
L & =\left\{x \in\{0,1\}^{*}: 10 \text { and } 01 \text { occur equally often in } x .\right\}
\end{aligned}
$$

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5 -tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where

- Q is a finite set (which we call the set of states);
- Σ is a finite set (which we call the alphabet);
- δ is a function of the form $\delta: Q \times \Sigma \rightarrow Q$ (which we call the transition function);
- $q_{0} \in Q$ is an element of Q
(which we call the start state);
- $F \subseteq Q$ is a subset of Q
(which we call the set of accepting states).

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5 -tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\} \\
& \delta: Q \times \Sigma \rightarrow Q \\
& \begin{array}{|c|c|c|}
\hline \delta & 0 & 1 \\
\hline q_{0} & q_{0} & q_{1} \\
\hline q_{1} & q_{2} & q_{2} \\
\hline q_{2} & q_{3} & q_{2} \\
\hline q_{3} & q_{0} & q_{2} \\
\hline
\end{array}
\end{aligned}
$$

q_{0} is the start state

$$
F=\left\{q_{1}, q_{2}\right\}
$$

Formal definition: DFA accepting a string

Let $w=w_{1} w_{2} \cdots w_{n}$ be a string over an alphabet Σ.
Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
We say that M accepts the string w if there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{n} \in Q$ such that

- $r_{0}=q_{0}$;
- $\delta\left(r_{i-1}, w_{i}\right)=r_{i} \quad$ for each $i \in\{1,2, \ldots, n\}$;
- $r_{n} \in F$.

Otherwise we say M rejects the string w.

Definition: Regular languages

Definition: A language L is called regular if $L=L(M)$ for some DFA M.

Regular languages

Regular languages

Questions:

I. Are all languages regular?
(Are all decision problems computable by a DFA?)
2. Are there other ways to tell if a language is regular?

A non-regular language

Theorem:

The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.

Note on notation:
For $a \in \Sigma, \quad a^{n}$ denotes the string $\underbrace{a a \cdots a}$.

$$
a^{0}=\epsilon
$$

For $u, v \in \Sigma^{*}, u v$ denotes u concatenated with v.

So $L=\{\epsilon, 01,0011,000111,00001111, \ldots\}$.

A non-regular language

Theorem:

The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.

Intuition:

Seems like the DFA would need to remember how many 0's it sees.

But it has a constant number of states.
And no other way of remembering things.
Careful though:
$L=\left\{x \in\{0,1\}^{*}: 10\right.$ and 01 occur equally often in $\left.x.\right\}$ is regular!

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l||
\uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l|| \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l||
\uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l|l \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l|l \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l| \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l| \uparrow

q_{2}

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l| \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l|| \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000||l|l|l| \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000||l|l|l| \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000||l|l|l| \uparrow

q_{2}

imagine some

arbitrary transitions

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|l|l|l| \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000|ll|l|l| \uparrow

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$.

Input: 000000001IIIIIII \uparrow

After 00 and 000000 we ended up in the same state q_{3}.

But
001I \rightarrow accept $00000011 \rightarrow$ reject

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$.

Input: 00000000IIIIIIII
Pigeonhole Principle
Where will 0000000 go?

A non-regular language

Theorem:

The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.
Proof: Suppose L is regular.
So there is a DFA M that decides L.
Let k denote the number of states of M.
Let r_{n} denote the state M is in after reading 0^{n}.
By PHP, there exists $i, j \in\{0,1, \ldots, k\}, i \neq j$, such that $r_{i}=r_{j}$. So 0^{i} and 0^{j} end up in the same state.
For any string $w, 0^{i} w$ and $0^{j} w$ end up in the same state.
But for $w=1^{i}, 0^{i} w$ should end up in an accepting state, and $0^{j} w$ should end up in a rejecting state.
This is the desired contradiction.

Proving a language is not regular

Usually the proof goes like:
I. Assume (to reach a contradiction) that the language is regular. So a DFA decides it.
2. Argue by PHP that there are two strings x and y that lead to the same state in the DFA.
3. Find a string z such that $x z \in L$ but $y z \notin L$.

Regular languages

Regular languages

Regular languages

Questions:

I. Are all languages regular?
(Are all decision problems computable by a DFA?)
2. Are there other ways to tell if a language is regular?

Regular languages are closed under union

For $L_{1}, L_{2} \subseteq \Sigma^{*}$,

$$
L_{1} \cup L_{2}=\left\{x \in \Sigma^{*}: x \in L_{1} \text { or } x \in L_{2}\right\}
$$

Theorem:

Let Σ be some finite alphabet. If $L_{1} \subseteq \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$ are regular, then so is $L_{1} \cup L_{2}$.

Proof: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the decider for L_{1} and $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be the decider for L_{2}.
We construct a DFA $M^{\prime \prime}=\left(Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right)$ that decides $L_{1} \cup L_{2}$, as follows:

Regular languages are closed under union

Example

$$
L_{1}=\begin{aligned}
& \text { strings with even } \\
& \text { number of I's }
\end{aligned}
$$

$L_{2}=$ strings with length divisible by 3.

Regular languages are closed under union

Regular languages are closed under union

Input: 101001

Regular languages are closed under union

Input: 101001

Accept

Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of both at once.

Regular languages are closed under union

Input: 101001
\uparrow

Regular languages are closed under union

Input: 101001
\uparrow

Regular languages are closed under union

Input: 101001
\uparrow

Regular languages are closed under union

Input: 101001 \uparrow

Regular languages are closed under union

Input: 101001 \uparrow

Regular languages are closed under union

Input: 101001

\uparrow

Regular languages are closed under union

Input: 101001

\uparrow

Regular languages are closed under union

Input: 101001
 \uparrow

Regular languages are closed under union

Input: 101001
 \uparrow

Regular languages are closed under union

Input: 101001

\uparrow

Regular languages are closed under union

Input: 101001
\uparrow

Regular languages are closed under union

Input: $10100 \mid$

Regular languages are closed under union

Input: 101001

Regular languages are closed under union

Input: $10100 \mid$

Decision: Accept

Regular languages are closed under union

Theorem:

Let Σ be some finite alphabet.
If $L_{1} \subseteq \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$ are regular, then so is $L_{1} \cup L_{2}$.
Proof: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the decider for L_{1} and $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be the decider for L_{2}. We construct a DFA $M^{\prime \prime}=\left(Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right)$ that decides $L_{1} \cup L_{2}$, as follows:

- $Q^{\prime \prime}=Q \times Q^{\prime}=\left\{\left(q, q^{\prime}\right): q \in Q, q^{\prime} \in Q^{\prime}\right\}$
- $\delta^{\prime \prime}\left(\left(q, q^{\prime}\right), a\right)=\left(\delta(q, a), \delta^{\prime}\left(q^{\prime}, a\right)\right)$
- $q_{0}^{\prime \prime}=\left(q_{0}, q_{0}^{\prime}\right)$
- $F^{\prime \prime}=\left\{\left(q, q^{\prime}\right): q \in F\right.$ or $\left.q^{\prime} \in F^{\prime}\right\}$

Regular languages are closed under union

Proof: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the decider for L_{1} and $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be the decider for L_{2}. We construct a DFA $M^{\prime \prime}=\left(Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right)$ that decides $L_{1} \cup L_{2}$, as follows:

$$
\begin{aligned}
& -Q^{\prime \prime}=Q \times Q^{\prime}=\left\{\left(q, q^{\prime}\right): q \in Q, q^{\prime} \in Q^{\prime}\right\} \\
& -\delta^{\prime \prime}\left(\left(q, q^{\prime}\right), a\right)=\left(\delta(q, a), \delta^{\prime}\left(q^{\prime}, a\right)\right) \\
& -q_{0}^{\prime \prime}=\left(q_{0}, q_{0}^{\prime}\right) \\
& -F^{\prime \prime}=\left\{\left(q, q^{\prime}\right): q \in F \text { or } q^{\prime} \in F^{\prime}\right\}
\end{aligned}
$$

It remains to show that $L\left(M^{\prime \prime}\right)=L_{1} \cup L_{2}$. $L\left(M^{\prime \prime}\right) \subseteq L_{1} \cup L_{2}:$
$L_{1} \cup L_{2} \subseteq L\left(M^{\prime \prime}\right):$

More "closure" properties

Closed under union:

L_{1}, L_{2} regular $\Longrightarrow L_{1} \cup L_{2}$ regular.

Closed under concatenation:
L_{1}, L_{2} regular $\Longrightarrow L_{1} \cdot L_{2}$ regular.

$$
L_{1} \cdot L_{2}=\left\{x y: x \in L_{1}, y \in L_{2}\right\}
$$

Closed under star:
L regular $\Longrightarrow L^{*}$ regular.

$$
L^{*}=\left\{x_{1} x_{2} \cdots x_{k}: k \geq 0, \forall i x_{i} \in L\right\}
$$

More "closure" properties

Fact:

Starting with \emptyset and $\{a\}$ for each $a \in \Sigma$ can construct any regular language using union, concatenation, star.

$$
a(a \cup b)^{*} a \cup b(a \cup b)^{*} b \cup a \cup b
$$

(regular expression)

Next Time

