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Lecture 5:
Cantor’s Legacy



Poll

Select the ones that apply to you:

- I know what an uncountable set means.

- I know Cantor’s diagonalization argument.

- I used to know what uncountable meant, I forgot.

- I used to know the diagonalization argument, I forgot.

- I’ve never learned about uncountable sets.

- I’ve never learned about the diagonalization argument.



Regular languages

Decidable languages

EvenLength
...

Primality

0n1n

Factoring

...

?
All languages

This Week



Our heroes for this week

Uncountability Uncomputability

father of set theory father of computer science

1845-1918 1912-1954



Infinity in mathematics

Pre-Cantor:

Post-Cantor:

“Infinity is nothing more than a figure of speech which    
helps us talk about limits. 
  The notion of a completed infinity doesn't belong in 
mathematics”

- Carl Friedrich Gauss

Infinite sets are mathematical objects 
just like finite sets.



Some of Cantor’s contributions

>  The study of infinite sets

>  Explicit definition and use of 1-to-1 correspondence

- This is the right way to compare the cardinality of sets

>  There are different levels of infinity.

- There are infinitely many infinities.

>                  even though they are both infinite.|N| < |R|

>  The diagonal argument.

>                  even though             .|N| = |Z| N ( Z



Reaction to Cantor’s ideas at the time

Most of the ideas of Cantorian set theory
should be banished from mathematics

once and for all!

- Henri Poincaré



Reaction to Cantor’s ideas at the time

I don’t know what predominates 
in Cantor’s theory -

philosophy or theology.

- Leopold Kronecker



Reaction to Cantor’s ideas at the time

Scientific charlatan.

- Leopold Kronecker



Reaction to Cantor’s ideas at the time

Corrupter of youth.

- Leopold Kronecker



Reaction to Cantor’s ideas at the time

Wrong.

- Ludwig Wittgenstein



Reaction to Cantor’s ideas at the time

Utter non-sense.

- Ludwig Wittgenstein



Reaction to Cantor’s ideas at the time

Laughable.

- Ludwig Wittgenstein



Reaction to Cantor’s ideas at the time

No one should expel us from the Paradise
that Cantor has created.

- David Hilbert



Reaction to Cantor’s ideas at the time

If one person can see it as a paradise,
why should not another see it as a joke?

- Ludwig Wittgenstein



First we start with finite sets



How do we count a finite set?

What does               mean?

A = {apple, orange, banana, melon}

|A| = 4

There is a 1-to-1 correspondence (bijection) between

A {1, 2, 3, 4}and

apple

orange

banana

melon

1

2

3

4



How do we compare the sizes of finite sets?

What does                  mean?

A = {apple, orange, banana, melon}
B = {200, 300, 400, 500}

|A| = |B|

apple

orange

banana

melon

1

2

3

4

200

300

400

500



What does                  mean?

How do we compare the sizes of finite sets?

A = {apple, orange, banana, melon}

apple

orange

banana

melon

B = {200, 300, 400, 500}

|A| = |B|

200

300

400

500

|A| = |B| iff there is a 1-to-1 correspondence (bijection) 
between      and      .A B



What does                  mean?

How do we compare the sizes of finite sets?

B = {200, 300, 400, 500}

|A|  |B|

A = {apple, orange, banana}

apple

orange

banana

1

2

3

4

200

300

400

500



What does                  mean?

How do we compare the sizes of finite sets?

B = {200, 300, 400, 500}

|A|  |B|

A = {apple, orange, banana}

apple

orange

banana

200

300

400

500

iff there is an injection 
from             to       .A B

|A|  |B|



What does                  mean?

How do we compare the sizes of finite sets?

B = {200, 300, 400, 500}

|A|  |B|

A = {apple, orange, banana}

apple

orange

banana

200

300

400

500

iff there is a surjection 
from             to       .AB

|A|  |B|



3 important types of functions
A B

A B

A B

injective,  1-to-1

surjective,  onto

bijective,  1-to-1 correspondence

a 6= a0 =) f(a) 6= f(a0)

f : A ! B is injective if A ,! B

A ⇣ B

A $ B

f : A ! B is surjective if

8b 2 B, 9a 2 A s.t. f(a) = b

f : A ! B is bijective if

f is injective and surjective



Comparing the cardinality of finite sets
A

A

A

B

B

B

A $ B

A ,! B

A ⇣ B

|A|  |B|

|A| = |B|

|A| � |B|



Sanity checks

If |A|  |B| and |B|  |C| then |A|  |C|

A $ B i↵ A ,! B and A ⇣ B

A ,! B i↵ B ⇣ A

A $ B i↵ A ,! B and B ,! A

If A ,! B and B ,! C then A ,! C

|A|  |B| i↵ |B| � |A|

|A| = |B| i↵ |A|  |B| and |A| � |B|



One more definition

|A| < |B|

There is an injection from A to B,
    but there is no bijection between A and B.

There is no injection from B to A.

There is no surjection from A to B.

|A| � |B|not



These are the right definitions
for infinite sets as well!

This way of comparing the size of sets
generalizes to infinite sets!

So what is the big deal?



Comparing the cardinality of infinite sets

A $ B

A ,! B

A ⇣ B

|A|  |B|

|A| = |B|

|A| � |B|



Sanity checks for infinite sets

|A| = |B| i↵ |A|  |B| and |B|  |A|

If |A|  |B| and |B|  |C| then |A|  |C|

A $ B i↵ A ,! B and A ⇣ B

A ,! B i↵ B ⇣ A

A $ B i↵ A ,! B and B ,! A

If A ,! B and B ,! C then A ,! C

Cantor
Schröder
Bernstein

|A|  |B| i↵ |B| � |A|



Let me show you some
interesting consequences.

So what is the big deal?



Examples of equal size sets

|N| = |Z|

N = {0, 1, 2, 3, 4, . . .}

Z = {. . . ,�4,�3,�2,�1, 0, 1, 2, 3, 4, . . .}

List the integers so that eventually every number is 

0, 1,�1, 2,�2, 3,�3, 4,�4, . . .

0 1 2 3 4 5 6 7 8 . . .

f(n) = (�1)n+1
ln
2

m



Examples of equal size sets

|N| = |Z|

Does this make any sense? N ( Z

A ( B =) |A| < |B|?

Does renaming the elements of a set change its size?

ZLet’s rename the elements of      :

{. . . , banana, apple, melon, orange, mango, . . .}

Let’s call this set    .   F How can you justify saying               ?|N| < |F |

Bijection is nothing more than renaming.

Shouldn’t                |N| < |Z|?

No.



Examples of equal size sets

f(n) = n2

N = {0, 1, 2, 3, 4, . . .}

|N| = |S|

S = {0, 1, 4, 9, 16, . . .}



Examples of equal size sets

N = {0, 1, 2, 3, 4, . . .}

P = {2, 3, 5, 7, 11, . . .}

|N| = |P |

f(n) = n’th prime number.



Definition:  countable and uncountable sets

A |A|  |N|

Definition:

A set      is called countable if                . 

A set      is called countably infinite 
if it is infinite and countable. 

A

A set      is called uncountable if it is not countable.A
(so                )|A| > |N|



How to think about countable sets

A set      is called countable if                . A |A|  |N|

So why is it called “countable”?

|A|  |N| means there is an injection                  .f : A ! N

you could “count” the 
elements of A
(but could go on forever)

1
2
3
4

...

NA

5

1

2

3



How to think about countable sets

Perhaps a better name would have been listable:

(this is equivalent to being countable)

can list the elements of     so that
every element appears in the list eventually.

A

a1 a2 a3 a4 a5 · · ·

A set      is called countable if                . A |A|  |N|



How to think about countable sets

This seems to imply that if     is infinite, then                . A

Is it possible that     is infinite, but                  ? A |A| < |N|

|A| = |N|

A set      is called countable if                . A |A|  |N|

Theorem:
A set     is countably infinite if and only if                .A |A| = |N|

So if     is countable, there are two options:A

2. |A| = |N|
1.      is finiteA

Exercise: prove the theorem



Countable?

|N| = |Z⇥ Z|?

(0, 0)
……

...

...

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(�1, 1)

(�1, 0)

(�1,�1)

(0,�1)

(1,�1)

(2,�1)

(2, 0)

(2, 1)

(2, 2)

(1, 2)

(0, 2)
...



Countable?

|N| = |Q|?

0 1 2 3 4-1-2-3-4

Between any two rational numbers, there is another one.

Can we list them in the order they appear on the line?

=) |Q|  |Z⇥ Z| = |N|

Any rational number can be written as a fraction      .
a

b
Z⇥ Z ⇣ Q ( map           to      ) (a, b)

a

b



Countable?

|N| = |{0, 1}⇤|?

{0, 1}⇤ = the set of finite length binary strings.

"

0

1

00, 01, 10, 11

000, 001, 010, 011, 100, 101, 110, 111

· · ·



Countable?

= the set of finite length words over      .

|N| = |⌃⇤|?

⌃⇤ ⌃

Same idea.



Countable?

= the set of polynomials with rational coefficients.

|N| = |Q[x]|?

Q[x]

⌃ = {0, 1, . . . , 9, x,+,�, ⇤, /,̂ }Take

Every polynomial can be described by a finite string
over    . ⌃

xˆ3� 1/4xˆ2 + 6x� 22/7e.g.

So ⌃⇤ ⇣ Q[x] i.e. |Q[x]|  |⌃⇤|

e.g. x

3 � 1

4
x

2 + 6x� 22

7



The CS method for showing a set is countable

CS method to show a set      is countable                   :A (|A|  |N|)

i.e. 

Show                       for some alphabet     .|A|  |⌃⇤|

⌃⇤ ⇣ A

⌃

i.e.   Show that you can encode the elements of
using finite length words over an alphabet     .

A
⌃



Seems like every set is countable…

Nope!



Cantor’s Theorem

P(S) = {;, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

S = {1, 2, 3}

P(S) $ {0, 1}|S| S = {1, 2, 3}
1 10  ! {1, 3}
0 0 0  ! ;

binary strings of length |S| 

Theorem:

|A| < |P(A)|.

For any non-empty set A,

|P(S)| = 2|S|



Cantor’s Theorem

So:

|N| < |P(N)|.

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·
(an infinity of infinities)

Theorem:

|A| < |P(A)|.

For any non-empty set A,

P(N)I.e.            is uncountable.



Example 1
2
3
4 ...

{3, 7, 9}
{2, 5}
{1, 2, 3}N ⇣ P(N)

Cantor’s Theorem - Proof by diagonalization

Assume                        for some set      .|P(A)|  |A| A

So                   .      Let      be such a surjection. A ⇣ P(A) f

Define S = {a 2 A : a /2 f(a)} 2 P(A).

Since      is a surjection,                 s.t.                  .f 9s 2 A f(s) = S

But this leads to a contradiction:
if              then s 2 S s 62 f(s) = S

if              then s /2 S

S = {1, 4, . . .}

Why is this called a
diagonalization argument?

s S

Is             ?s 2 S

s 2 f(s) = S



Cantor’s Theorem - Proof by diagonalization

0 0 1 0 0
0 1 0 0 1
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1

…

...

1 2 3 4 5

f(1)
f(2)
f(3)
f(4)
f(5)

…

...
1 0 0 1 0 …

S is defined so that
S cannot equal any f(i)

Example 1
2
3
4 ...

{3, 7, 9}
{2, 5}
{1, 2, 3}N ⇣ P(N) S = {1, 4, . . .}

Sf(s)=



0000000000 …
1111111111 …
1010101010 …

...

Uncountable sets

Let               be the set of binary strings of infinite length.{0, 1}1

because                            .{0, 1}1 $ P(N)

{0,1,2,3,4,5,6,7,8,9, …   }

 ! {even natural numbers}

 ! ;
 ! N

(Recall            is countable.){0, 1}⇤

{0, 1}1 is uncountable,   i.e. |{0, 1}1| > |N|

(just like                           )                   {0, 1}|S| $ P(S)



Uncountable sets

Let               be the set of binary strings of infinite length.{0, 1}1

1 0 0 1 0 …

1
2
3
4
5

0 0 1 0 0
0 1 0 0 1
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1

…

...
...

…
…

…
…

—>  cannot appear in the list

Direct diagonal proof:  Suppose |{0, 1}1|  |N|
N ⇣ {0, 1}1

{0, 1}1 is uncountable,   i.e. |{0, 1}1| > |N|



Uncountable sets

R is uncountable. In fact           is uncountable.(0, 1)

exercise

Be careful:

0.4999999999…   =   0.500000000…



Appreciating the diagonalization argument

If you want to appreciate something,
try to break it…

Exercise:
Why doesn’t the diagonalization argument work for

N {0, 1}⇤,                  ,      a countable subset of               ?{0, 1}1



Uncountable sets

Let      be the set of bijections from     to    .B N N

B is uncountable.

CS method to show a set      is uncountable                   :A (|A| > |N|)

i.e. 

Show |A| � |{0, 1}1|

A ⇣ {0, 1}1

i.e.   Show that the elements of            
       “encode” all the elements of              .

A
{0, 1}1



One slide guide to countability questions

You are given a set     .A
Is it countable or uncountable?

|A|  |N| |A| > |N|or                   ?

- show directly that               or A ,! N N ⇣ A

- show                ,  where  |A|  |B|
B 2 {Z, Z⇥ Z, Q, ⌃⇤

, Q[x]}

|A|  |N| :

|A| > |N| :

- show directly using a diagonalization argument

- show                  |A| � |{0, 1}1|



An Interesting Question

Is there a set      such that 

|N| < |S| < |P(N)|?

S

Continuum Hypothesis:
No such set exists.

(Hilbert’s 1st problem)



The story continues next lecture…


