|5-25|
 Great Theoretical Ideas in Computer Science

Lecture 5:
 Cantor's Legacy

September I5th, 2015

Poll

Select the ones that apply to you:

- I know what an uncountable set means.
- I know Cantor's diagonalization argument.
- I used to know what uncountable meant, I forgot.
- I used to know the diagonalization argument, I forgot.
- l've never learned about uncountable sets.
- I've never learned about the diagonalization argument.

This Week
All languages

Our heroes for this week

father of set theory

Uncountability
father of computer science

Uncomputability

Infinity in mathematics

Pre-Cantor:

"Infinity is nothing more than a figure of speech which helps us talk about limits.
The notion of a completed infinity doesn't belong in mathematics"

- Carl Friedrich Gauss

Post-Cantor:
Infinite sets are mathematical objects just like finite sets.

Some of Cantor's contributions

> The study of infinite sets
> Explicit definition and use of I -to-I correspondence

- This is the right way to compare the cardinality of sets
> There are different levels of infinity.
-There are infinitely many infinities.
$>|\mathbb{N}|<|\mathbb{R}|$ even though they are both infinite.
$>|\mathbb{N}|=|\mathbb{Z}|$ even though $\mathbb{N} \subsetneq \mathbb{Z}$.
> The diagonal argument.

Reaction to Cantor's ideas at the time

Most of the ideas of Cantorian set theory should be banished from mathematics once and for all!

- Henri Poincaré

Reaction to Cantor's ideas at the time

I don't know what predominates in Cantor's theory philosophy or theology.

- Leopold Kronecker

Reaction to Cantor's ideas at the time

Scientific charlatan.

- Leopold Kronecker

Reaction to Cantor's ideas at the time

Corrupter of youth.

- Leopold Kronecker

Reaction to Cantor's ideas at the time

Wrong.

- Ludwig Wittgenstein

Reaction to Cantor's ideas at the time

Utter non-sense.

- Ludwig Wittgenstein

Reaction to Cantor's ideas at the time

Laughable.

- Ludwig Wittgenstein

Reaction to Cantor's ideas at the time

No one should expel us from the Paradise that Cantor has created.

- David Hilbert

Reaction to Cantor's ideas at the time

If one person can see it as a paradise, why should not another see it as a joke?

- Ludwig Wittgenstein

First we start with finite sets

How do we count a finite set?

$A=\{$ apple, orange, banana, melon $\}$
What does $|A|=4$ mean?
There is a I-to-I correspondence (bijection) between

$$
\begin{aligned}
& A \quad \text { and } \quad\{1,2,3,4\} \\
& \text { apple } \longleftrightarrow 1 \\
& \text { orange } \longleftrightarrow 4 \\
& \text { banana } \longleftrightarrow 3 \\
& \text { melon } \longleftrightarrow 4
\end{aligned}
$$

How do we compare the sizes of finite sets?

$A=\{$ apple, orange, banana, melon $\}$
$B=\{200,300,400,500\}$
What does $|A|=|B|$ mean?

How do we compare the sizes of finite sets?

$A=\{$ apple, orange, banana, melon $\}$
$B=\{200,300,400,500\}$
What does $|A|=|B|$ mean?

$$
\begin{aligned}
& \text { apple } \longleftrightarrow 500 \\
& \text { orange } \longleftrightarrow 200 \\
& \text { banana } \longleftrightarrow 300 \\
& \text { melon } \longleftrightarrow 400
\end{aligned}
$$

$|A|=|B| \quad$ iff there is a l-to-I correspondence (bijection) between A and B.

How do we compare the sizes of finite sets?

$A=\{$ apple, orange, banana $\}$
$B=\{200,300,400,500\}$
What does $|A| \leq|B|$ mean?

How do we compare the sizes of finite sets?

$A=\{$ apple, orange, banana $\}$
$B=\{200,300,400,500\}$
What does $|A| \leq|B|$ mean?

$$
\begin{array}{ll}
\text { apple } \longrightarrow & 500 \\
\text { orange } \longrightarrow & 200 \\
\text { banana } \longrightarrow \\
& 300 \\
400
\end{array}
$$

$|A| \leq|B|$ iff there is an injection from A to B.

How do we compare the sizes of finite sets?

$A=\{$ apple, orange, banana $\}$
$B=\{200,300,400,500\}$
What does $|A| \leq|B|$ mean?

$|A| \leq|B|$ iff there is a surjection from B to A.

3 important types of functions

injective, I-to-I
$f: A \rightarrow B$ is injective if $a \neq a^{\prime} \Longrightarrow f(a) \neq f\left(a^{\prime}\right)$
$A \hookrightarrow B$

surjective, onto

$f: A \rightarrow B$ is surjective if $\forall b \in B, \exists a \in A$ s.t. $f(a)=b$

$$
A \rightarrow B
$$

bijective, I-to-I correspondence
$f: A \rightarrow B$ is bijective if f is injective and surjective

Comparing the cardinality of finite sets

$$
\begin{aligned}
& |A| \leq|B| \\
& A \hookrightarrow B \\
& \overbrace{0}^{A} \\
& |A| \geq|B| \\
& A \rightarrow B \\
& |A|=|B|
\end{aligned}
$$

Sanity checks

$$
\begin{aligned}
|A| \leq|B| \text { iff }|B| & \geq|A| \\
& A \hookrightarrow B \text { iff } B \rightarrow A
\end{aligned}
$$

$$
|A|=|B| \text { iff }|A| \leq|B| \text { and }|A| \geq|B|
$$

$$
A \leftrightarrow B \text { iff } A \hookrightarrow B \text { and } A \rightarrow B
$$

$$
A \leftrightarrow B \text { iff } A \hookrightarrow B \text { and } B \hookrightarrow A
$$

If $|A| \leq|B|$ and $|B| \leq|C|$ then $|A| \leq|C|$
If $A \hookrightarrow B$ and $B \hookrightarrow C$ then $A \hookrightarrow C$

One more definition

$$
\begin{aligned}
|A| & <|B| \\
\text { not } \quad|A| & \geq|B|
\end{aligned}
$$

There is no surjection from A to B.

There is no injection from B to A.

There is an injection from A to B, but there is no bijection between A and B.

So what is the big deal?

This way of comparing the size of sets
generalizes to infinite sets!

Comparing the cardinality of infinite sets

$$
|A| \leq|B|
$$

$A \hookrightarrow B$

$$
|A| \geq|B|
$$

$A \rightarrow B$

$$
|A|=|B|
$$

Sanity checks for infinite sets

$$
\begin{aligned}
|A| \leq|B| \text { iff }|B| & \geq|A| \\
& A \hookrightarrow B \text { iff } B \rightarrow A
\end{aligned}
$$

$$
|A|=|B| \text { iff }|A| \leq|B| \text { and }|B| \leq|A|
$$

$A \leftrightarrow B$ iff $A \hookrightarrow B$ and $A \rightarrow B$
$A \leftrightarrow B$ iff $A \hookrightarrow B$ and $B \hookrightarrow A$

Cantor
Schröder
Bernstein

If $|A| \leq|B|$ and $|B| \leq|C|$ then $|A| \leq|C|$
If $A \hookrightarrow B$ and $B \hookrightarrow C$ then $A \hookrightarrow C$

So what is the big deal?

Examples of equal size sets

$$
|\mathbb{N}|=|\mathbb{Z}|
$$

$\mathbb{N}=\{0,1,2,3,4, \ldots\}$
$\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
$01 \quad 23 \quad 45 \quad 678 \ldots$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \quad f(n)=(-1)^{n+1}\left\lceil\frac{n}{2}\right\rceil$
$0,1,-1,2,-2,3,-3,4,-4, \ldots$

Examples of equal size sets

$$
|\mathbb{N}|=|\mathbb{Z}|
$$

Does this make any sense? $\quad \mathbb{N} \subsetneq \mathbb{Z}$

$$
A \subsetneq B \Longrightarrow|A|<|B| ? \quad \text { Shouldn't }|\mathbb{N}|<|\mathbb{Z}| ?
$$

Does renaming the elements of a set change its size? No. Let's rename the elements of \mathbb{Z} :
$\{\ldots$, banana, apple, melon, orange, mango, ... $\}$
Let's call this set F. How can you justify saying $|\mathbb{N}|<|F|$?
Bijection is nothing more than renaming.

Examples of equal size sets

$$
|\mathbb{N}|=|S|
$$

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots\} \\
S & =\{0,1,4,9,16, \ldots\}
\end{aligned}
$$

$$
f(n)=n^{2}
$$

Examples of equal size sets

$$
|\mathbb{N}|=|P|
$$

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots\} \\
P & =\{2,3,5,7,11, \ldots\}
\end{aligned}
$$

$f(n)=n$ 'th prime number.

Definition: countable and uncountable sets

Definition:

- A set A is called countable if $|A| \leq|\mathbb{N}|$.
- A set A is called countably infinite if it is infinite and countable.
- A set A is called uncountable if it is not countable. (so $|A|>|\mathbb{N}|$)

How to think about countable sets

A set A is called countable if $|A| \leq|\mathbb{N}|$.

So why is it called "countable"?
$|A| \leq|\mathbb{N}|$ means there is an injection $f: A \rightarrow \mathbb{N}$.
you could "count" the elements of A
(but could go on forever)

How to think about countable sets

A set A is called countable if $|A| \leq|\mathbb{N}|$.

Perhaps a better name would have been listable:
can list the elements of A so that every element appears in the list eventually.
$a_{1} \quad a_{2} \quad a_{3} \quad a_{4} \quad a_{5} \quad \cdots$
(this is equivalent to being countable)

How to think about countable sets

A set A is called countable if $|A| \leq|\mathbb{N}|$.
This seems to imply that if A is infinite, then $|A|=|\mathbb{N}|$. Is it possible that A is infinite, but $|A|<|\mathbb{N}|$?

Theorem:

A set A is countably infinite if and only if $|A|=|\mathbb{N}|$.

So if A is countable, there are two options:
I. A is finite
2. $|A|=|\mathbb{N}|$

Exercise: prove the theorem

Countable?

Countable?

Can we list them in the order they appear on the line?
Between any two rational numbers, there is another one.
Any rational number can be written as a fraction $\frac{a}{b}$.

$$
\begin{aligned}
& \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q} \quad\left(\operatorname{map}(a, b) \text { to } \frac{a}{b}\right) \\
& \Longrightarrow|\mathbb{Q}| \leq|\mathbb{Z} \times \mathbb{Z}|=|\mathbb{N}|
\end{aligned}
$$

Countable?

$$
|\mathbb{N}|=\left|\{0,1\}^{*}\right| ?
$$

$\{0,1\}^{*}=$ the set of finite length binary strings.
ε
0
1
$00,01,10,11$
$000,001,010,011,100,101,110,111$
-••

Countable?

$$
|\mathbb{N}|=\left|\Sigma^{*}\right| ?
$$

$\Sigma^{*}=$ the set of finite length words over Σ.

Same idea.

Countable?

$$
|\mathbb{N}|=|\mathbb{Q}[x]| ?
$$

$\mathbb{Q}[x]=$ the set of polynomials with rational coefficients.

$$
\text { e.g. } \quad x^{3}-\frac{1}{4} x^{2}+6 x-\frac{22}{7}
$$

Take $\Sigma=\left\{0,1, \ldots, 9, x,+,-, *, /{ }^{\wedge}\right\}$
Every polynomial can be described by a finite string over Σ.

$$
\text { e.g. } \quad x^{\wedge} 3-1 / 4 x^{\wedge} 2+6 x-22 / 7
$$

So $\quad \Sigma^{*} \rightarrow \mathbb{Q}[x] \quad$ i.e. $|\mathbb{Q}[x]| \leq\left|\Sigma^{*}\right|$

The CS method for showing a set is countable

CS method to show a set A is countable $(|A| \leq|\mathbb{N}|)$:
Show $|A| \leq\left|\Sigma^{*}\right| \quad$ for some alphabet Σ.
i.e. $\quad \Sigma^{*} \rightarrow A$
i.e. Show that you can encode the elements of A using finite length words over an alphabet Σ.

Seems like every set is countable...

Cantor's Theorem

Theorem: For any non-empty set A,

$$
|A|<|\mathcal{P}(A)|
$$

$$
S=\{1,2,3\}
$$

$$
\mathcal{P}(S)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}
$$

$$
|\mathcal{P}(S)|=2^{|S|}
$$

$$
\mathcal{P}(S) \leftrightarrow\{0,1\}^{|S|}
$$

binary strings of length $|S|$

$$
\begin{aligned}
& S=\{1,2,3\} \\
& 101 \longleftrightarrow\{1,3\} \\
& 000 \longleftrightarrow \emptyset
\end{aligned}
$$

Cantor's Theorem

Theorem: For any non-empty set A,

$$
|A|<|\mathcal{P}(A)|
$$

So:
$|\mathbb{N}|<|\mathcal{P}(\mathbb{N})|$. l.e. $\mathcal{P}(\mathbb{N})$ is uncountable.
$|\mathbb{N}|<|\mathcal{P}(\mathbb{N})|<|\mathcal{P}(\mathcal{P}(\mathbb{N}))|<|\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))|<\cdots$
(an infinity of infinities)

Cantor's Theorem - Proof by diagonalization

Assume $|\mathcal{P}(A)| \leq|A|$ for some set A.
So $A \rightarrow \mathcal{P}(A)$. Let f be such a surjection.

Define $S=\{a \in A: a \notin f(a)\} \in \mathcal{P}(A)$.
Since f is a surjection, $\exists s \in A$ s.t. $f(s)=S$.
But this leads to a contradiction:
\quad if $s \in S$ then $s \notin f(s)=S$
Is $s \in S$?
Why is this called a diagonalization argument?
if $s \notin S$ then $s \in f(s)=S$

Cantor's Theorem - Proof by diagonalization

Example
$\mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$
$1 \longrightarrow\{3,7,9\}$
$2 \longrightarrow\{2,5\}$
$3 \rightarrow$
$S=\{1,4, \ldots\}$
S is defined so that
S cannot equal any $f(i)$

Uncountable sets

Let $\{0,1\}^{\infty}$ be the set of binary strings of infinite length.
$\{0,1,2,3,4,5,6,7,8,9, \ldots\}$
$0000000000 \ldots \quad \longleftrightarrow \emptyset$
|l||l|||||... $\longleftrightarrow \mathbb{N}$
IOIOIOIOIO $\ldots \longleftrightarrow$ \{even natural numbers $\}$
$\{0,1\}^{\infty}$ is uncountable, i.e. $\left|\{0,1\}^{\infty}\right|>|\mathbb{N}|$ because $\{0,1\}^{\infty} \leftrightarrow \mathcal{P}(\mathbb{N})$. (just like $\{0,1\}^{|S|} \leftrightarrow \mathcal{P}(S)$)
(Recall $\{0,1\}^{*}$ is countable.)

Uncountable sets

Let $\{0,1\}^{\infty}$ be the set of binary strings of infinite length. $\{0,1\}^{\infty}$ is uncountable, ie. $\left|\{0,1\}^{\infty}\right|>|\mathbb{N}|$ Direct diagonal proof: Suppose $\left|\{0,1\}^{\infty}\right| \leq|\mathbb{N}|$

$$
\mathbb{N} \rightarrow\{0,1\}^{\infty}
$$

I 00 | $0 \cdots \rightarrow$ cannot appear in the list

Uncountable sets

\mathbb{R} is uncountable. In fact $(0,1)$ is uncountable.

exercise

Be careful:

$$
0.4999999999 \ldots=0.500000000 \ldots
$$

Appreciating the diagonalization argument

If you want to appreciate something, try to break it...

Exercise:

Why doesn't the diagonalization argument work for
$\mathbb{N}, \quad\{0,1\}^{*}, \quad$ a countable subset of $\{0,1\}^{\infty}$?

Uncountable sets

Let B be the set of bijections from \mathbb{N} to \mathbb{N}.
B is uncountable.

CS method to show a set A is uncountable $(|A|>|\mathbb{N}|)$: Show $|A| \geq\left|\{0,1\}^{\infty}\right|$
i.e. $A \rightarrow\{0,1\}^{\infty}$
i.e. Show that the elements of A "encode" all the elements of $\{0,1\}^{\infty}$.

One slide guide to countability questions

You are given a set A.
Is it countable or uncountable?

$$
|A| \leq|\mathbb{N}| \quad \text { or } \quad|A|>|\mathbb{N}| \quad ?
$$

$|A| \leq|\mathbb{N}|:$

- show directly that $A \hookrightarrow \mathbb{N}$ or $\mathbb{N} \rightarrow A$
- show $|A| \leq|B|$, where

$$
B \in\left\{\mathbb{Z}, \quad \mathbb{Z} \times \mathbb{Z}, \quad \mathbb{Q}, \quad \Sigma^{*}, \quad \mathbb{Q}[x]\right\}
$$

$|A|>|\mathbb{N}|:$

- show directly using a diagonalization argument
- show $|A| \geq\left|\{0,1\}^{\infty}\right|$

An Interesting Question

Is there a set S such that

$$
|\mathbb{N}|<|S|<|\mathcal{P}(\mathbb{N})| ?
$$

Continuum Hypothesis: No such set exists.
(Hilbert's Ist problem)

The story continues next lecture...

