15-251
Great Theoretical ldeas in Computer Science

Lecture 6:
Turing’s Legacy Continues - Undecidability

Does it
halt?

S |

Halt Loop forever

September | 7th, 2015

All languages

Decidable languages

‘)

Factoring

on|n
Regular languages
Primality

EvenLength

3-Slide Review of Last Lecture

Comparing the cardinality of sets

Al < [B

Al > B

Al =B

Definition: countable and uncountable sets

-

Definition:

e Aset A is called countable if |A| < |N].

e A set A is called countably infinite
if it is infinite and countable.

e A set A is called uncountable if it is not countable.
(so |A] > |NJ)

o

One slide guide to countability questions

You are given a set A .
Is it countable or uncountable?
Al < IN| or |A|>|N| 2

Al < |NJ:
- show directly that A — N or N— A

- show |A| < |B|, where
Bel{z, 7xZ, Q, [Q]

Al > N -
- show directly using a diagonalization argument
- show |A| > [{0,1}°°

Another thing to remember from last week

Encoding different objects with strings
Fix some alphabet 2..

We use the (-) notation to denote the encoding of an object
as a string in X7

Examples:

(M) € 3™ is the encodingaTM M

(D) € is the encodinga DFA D
(My, M) € ¥* is the encoding of a pair of TMs (M7, M>)
(M

LX) € is the encoding a pair (M, x), where
M isaTM, and x € X7,

Poll

Let A be the set of all languages over ¥ = {1}.
Select the correct ones:

- A is finite
- A is infinite
- A is countable

- A is uncountable

Applications to Computer Science

All languages

Decidable languages

‘)

Factoring

on|n
Regular languages
Primality

EvenLength

Most problems are undecidable

Just count!

ForanyTM M, (M) € X~.
So {M : M is a TM} is countable.
(the CS method)

So the set of decidable languages is countable.

How about the set of all languages!?

{L:LCX¥"} =P(X*) isuncountable.

Maybe all undecidable languages are uninteresting !

Working as a course assistant for [5-112

4)
We need to write an

autograder for

nthAwesomeHappyCarolPrime
- J

Working as a course assistant for |5-112

-

_

We need to write an
autograder for

isAwesomeHappyCarolPrime

~

J

student submission

isAwesomeHappyCarolPrime

the correct program

isAwesomeHappyCarolPrime

Do they accept and reject exactly the same inputs?

Working as a course assistant for |5-112

[
We need to write an

autograder for

isAwesomeHappyCarolPrime

~

J

.
Kosbie’s @ p
version = T~
Student /\

Ul

submission

Accepts and rejects
same strings?

J

True
or

False

Working as a course assistant for |5-112

4)
We need to write an

autograder for

isAwesomeHappyCarolPrime
- J

4)

Koz, | can’t figure it out.

- J

Working as a course assistant for |5-112

a2)
Fine.

Just write an autograder
that checks if a given program

goes into an infinite loop.
- J

Hmm.
This seems hard too.
Let me ask Prof. Procaccia

An explicit undecidable language

This is called the halting problem.

[Theorem: The halting problem is undecidable.

Proof by Python

Halting Problem

|

Inputs: A Python program source code.
An input to the program. X

Outputs: True if the program halts for the given input.
False otherwise.

1l

4)
T~ Halting T';t'e
7 Program y False

X

Proof by Python

Assume such a program exists:

def halt(program, inputToProgram):
program and inputToProgram are both strings
Returns True if program halts when run with inputloProgram
as 1ts input.

def turing(program):
if (halt(program, program)):
while True:
pass # 1.e.do nothing
return None

Proof by Python

input (viewed as the source code

| of a program)

l

(input, input)

Loop
forever

~

Proof by Python

Assume such a program exists:

def halt(program, inputToProgram):
program and inputToProgram are both strings
Returns True if program halts when run with inputloProgram
as 1ts input.

def turing(program):
if (halt(program, program)):
while True:
pass # 1.e.do nothing
return None

What happens when you call turing(turing) ?

Proof by Python

«—

v
(input, input)

N

Loop
forever

Proof by Python

Assume such a program exists:

def halt(program, inputToProgram):
program and inputToProgram are both strings
Returns True if program halts when run with inputloProgram
as 1ts input.

def turing(program):
if (halt(program, program)):
while True:
pass # 1.e.do nothing
return None

What happens when you call turing(turing) ?
if halt(turing, turing) ----> turing doesn’t halt
if not halt(turing, turing) ----> turing halts []

That was a diagonalization argument

def turing(program):
if (halt(program, program)):
while True:
pass # 1.e.do nothing

return None

(f1)(f2) (f3){fa) **

flooHoo
fo| H [Hl H oo
ngOOOH

faloo H H [

turing H oo oo H

Halting problem is undecidable

Proof by a theoretical computer scientist:

HALT = {(M,x) : M is a TM and it halts on input =}

Suppose Mia1 T decides HALT.
Consider the following TM (let’s call it Mtyring):

MTURING

Treat the input as (M) for someTM M .
Run Myarr with input (M, M).
If it accepts, go into an infinite loop.

If it rejects, accept (i.e. halt).

Halting problem is uncomputable

Proof by a theoretical computer scientist:

HALT = {(M,x) : M is a TM and it halts on input =}

Suppose Mia1 T decides HALT.
Consider the following TM (let’s call it Mtyring):

MTUuRrING

reject ——» accept

(M, M)— Mygavt
accept

Halting problem is uncomputable

MruriNG
(M, M)—| Myarr re]ect; — 1 » accept
accep
(M) — l
O

What happens when (Mrtyring) is input to MruriNGg?

So what!?

- No guaranteed autograder program.

- Consider the following program:

def fermat():
t N 3 THE INTERNATIONAL BESTSELLER B
While (Trlle) . \\‘ c. X 55‘7:57:}5,,534,“ ,

<z —<F

for n in xrange(3, t+1):
for x in xrange(1, t+1):
for y in xrange(1, t+1):
for z in xrange(1, t+1):
if (X**n + y**n == z**n): return (x, y, z, n)

SIMON SINGH

t+=1

Question: Does this program halt?

So what!?

- Consider the following program (written in MAPLE):

numberToTest := 2;
flag := 1;
while flag =1 do
flag :=0;
numberToTest := numberToTest + 2;
for p from 2 to numberToTest do
if IsPrime(p) and IsPrime(numberToTest—p) then

flag := 1;
break; #exits the for loop
end if Goldbach
end for Conjecture
end do

Question: Does this program halt?

So what!?

- Reductions to other problems
imply that those problems are undecidable as well.

Entscheidungsproblem

Is there a finitary procedure to determine the validity
of a given logical expression!?

e.g. —dx,y,z,n € N: (n>3)A (2" +y" = 2")

(Mechanization of mathematics)

Hilbert’s 10th Problem

Is there a program to determine if a given multivariate
polynomial with integral coefficients has an integral
solution?

So what!?

Different laws of physics ----- >
Different computational devices ----- >

Every problem computable (?)

Can you come up with sensible laws of physics
such that the Halting Problem becomes computable?

Is there a way to show
other languages are undecidable?

Reductions

A central concept used to compare the “difficulty” of
languages/problems. $

will differ based on context

Now we are interested in decidability vs undecidability
(computability vs uncomputability)

Let A and B be two languages.

Want to define: A < B to mean

B is at least as hard as A (with respect to decidability).

i.,e., B decidable — A decidable
A undecidable — B undecidable

Reductions

-

_

Definition: Let A and B be two languages.
A<y B (A reducesto B)

if it is possible to decide A
using a TM that decides B as a subroutine.

To show A <t B:

yv—=| Mp >
L —> B

M 4

you want to specify
the orange part
- assume the existence of Mg

- construct M 4 that uses M g as a subroutine.

Reductions

def fooB(input):
assume some code exists
that solves the problem B

def fooA(input):
some code that solves the problem A
that makes calls to function fooB when needed

To show A <7 B:

Give me the code for fooA.

So to show a reduction, you give an algorithm.

Reduction example

A: Given a sequence of integers, and a number k,
is there an increasing subsequence of length at least k?

3,1,52,3,6,4,8

B: Given two sequences of integers, and a number k,
is there a common inc. subsequence of length at least k?

3,1,52,3,6,4,8
,5,7,9,2,4,1,0,2,0,3,0,4,0,8

A reduces to B

Give me an algorithm to solve A
assuming an algorithm for B is given for free.

Reduction example

def fooB(seql, seq2, k):
assume some code exists
that solves the problem B

def fooA(seq, k):
return fooB(seq, sorted(seq), k)

3,1,5,2,3,6,4,8
1,2,3,4,5,6,7,8

Reductions

Wanted to define: A < B to mean

B is at least as hard as A (with respect to decidability).
i.e., B decidable —> A decidable
A undecidable =— B undecidable

If A<y B (A reducesto B):

yv—=| Mp >
T —> —

M 4

B decidable —> A decidable

A undecidable — B undecidable

Reductions

Wanted to define: A < B to mean

B is at least as hard as A (with respect to decidability).
i.e., B decidable —> A decidable
A undecidable =— B undecidable

If A<y B (A reducesto B):

y—=| Mp >
L —>)

M 4

“The task of solving A reduces to the task of solving B .’

Reductions

We know HALT is undecidable.

If HALT <+ B
B is undecidable!

Y—> MB —>
g — —

MyarT

(You want to come up with an algorithm that solves
the HALTING problem, assuming M p exists.)

Reductions

We know HALT is undecidable.

If HALT <+ B
B is undecidable!

Y—> MB —>
g — —

MyarT

To show B is undecidable, i.e. Mg cannot exist:

- assume it does exist
- then show how to decide HALT

Proving other languages are undecidable
via reductions

Example |: ACCEPTS

[Theorem: A
ACCEPTS = {(M,x) : M is a TM that accepts z}
1s undecidable.

_ Y,

(M, x) is in the language —

x leads to an accept state in M.

(M, x) is not in the language —>

x leads to a reject state, or M loops forever.

(M, z) € HALT iff x leads to an accept or reject state.

(M, x)—>

Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof: (by picture)

MyarT

MaccepTs P>

reverse
accept & reject
states

MaccepTs >

accept » accept
reject

— (M)
accept » accept
reject —+—» reject

Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof:

We will show HALT < ACCEPTS.

Let MaccrpTs be aTM that decides ACCEPTS.
Here is a TM that decides HALT :

On input (M, x),run Macceprs((M, x)).
If it accepts, accept.

Reverse the accept and rejects states of M. Call it M.

Run Macceprs((M',).
If it accepts (M rejects x), accept.

Reject.

Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof:

Argue that if (M, z) € HALT

the machine accepts it.

And if (M,z) ¢ HALT

the machine rejects it.

Interesting Observation

To show a negative result (that there is no algorithm)

we are showing a positive result (that there is a reduction)

Example 2: EMPTY

-

Theorem:

_

1s undecidable.

~

EMPTY = {(M) : M is a TM that accepts no strings}

/

Suffices to show ACC]

OPTS <7 |

SMPTY

Example 2: EMPTY

EMPTY = {(M) : M is a TM that accepts no strings}
ACCEPTS = {(M,x) : M is a TM that accepts x}

MaccEPTS

(M)—| MgmprTy P>
(M, z)— —

If we feed (M) into MEmpTY, Won't quite work.
if Mgypry((M)) accepts, we can reject

if Mpyvpry ((M)) rejects, we don’t know

Example 2: EMPTY

MaccEPTS

(M"—| Mpmpry P>
(M, x)—> —

We want M’ such that:
if Mgvmpry ((M')) accepts, we reject

if Mgvmpry ((M')) rejects , we accept

Construct M's.t.: if M accepts x, M’ only accepts .
if M rejects =, M’ rejects everything.

Example 2: EMPTY
def M_ACCEPTS(< M, x >):
4 N)
de.f My . Creating an input that will
if(y !=x): reject be fed into M_EMPTY
run M(y)
if 1t accepts, accept It depends on the
if it rejects, reject inputs M and x.

_

run M_EMPTY (< M’ >)
if 1t accepts, reject
if it rejects, accept

maybe a better name
for M’ is M.

Note: M ACCEPTS defines M’, it does not run it!

Example 2: EMPTY

def M_ACCEPTS(< M, x >):

de.fM v If M accepts x:
if(y !=x): reject
run M(y) L(M') = {x}
1f 1t accepts, accept
if it rejects, reject If M rejects x:
run M_EMPTY(< M’ >) L(M") =0

if 1t accepts, reject
if it rejects, accept

MaccEPTS

(M, x) —>

(M"—| MgnmpTY

A<r B

This structure is very common

. possibly flip

the answer

Example 3: EQ

(" N

Theorem:

_

EQ = {<M1,M2> . M1 and M2 are T'Ms and L(Ml) = L(Mg)}

1s undecidable.

/

Suffices to show EMPTY <p |

€3
'S

Example 3: EQ

EQ — {<M1,M2> . M1 and M2 are TMs and L(Ml) — L(Mg)}
EMPTY = {(M) : M is a TM that accepts no strings}

MempTy

Example 3: EQ

EQ — {<M1,M2> . M1 and M2 are TMs and L(Ml) — L(Mg)}
EMPTY = {(M) : M is a TM that accepts no strings}

MempTY

(M) ——»‘ — (M, My)—| Mgqg >

let M =M
Let M5 be the TM that rejects everything, i.e. L(Ms) = ()

Example 3: EQ

def M_EMPTY (< M >):

def M’(y):
reject

run M_EQ(<M, M’ >)
if 1t accepts, accept
if it rejects, reject

HALT < ACC]

OPTS <7 |

SMPTY <7

)

HALT reduces to EMPTY

def M_HALT(< M, x >):

 def M’ (y): A If M halts on x:
run M(x) L(M’) — ¥
accept
- / If M does not halt on x:
run M_EMPTY(< M’ >) L(M")y =10

if 1t accepts, reject
if 1t rejects, accept

HALT reduces to EQ

def M_HALT(< M, x >):

def M’(y):
reject

def M’ (y):

run M(x)
accept

run M_EQ(<M’, M” >)
if 1t accepts, reject
if 1t rejects, accept

L(M") =10

If M halts on x:
L(M//) _ Z*

If M does not halt on x:

L(M//) — ()

Undecidable problems not involving Turing Machines

Entscheidungsproblem

Determining the validity of a given FOL sentence.
e.g. —dz,y,z,neEN:(n>3) A" +y" = 2"

5) A M Tosms [Now. 12,

ON CONPUTABLE NUMBERS, WITH AN APFLICATION TO
THE ENTSCHEIDUNGSFROBLEM

By A N. Tumso

Povarvnd P Mag, 1008 . Band 17 Xovwnder, 108

potabie ' sumbers may b dosorited briefly as the mal

Undecidable!

roambors whine exprostionn 0 & Socemal are cakiulidde by flnite meeane

Ahoagh U valpat of thas pager s ostenm iy the compatatie sumbery

& v pretatie fendteces

" almest oqeally sasy 1o defom &

of an mtogral varedie or & redl or competable varmble, somputahie

prodcaton, aad 0 forsh The fandamensal peobinms nvolved ame
* ° b vor the samis i et cane arel | Nave cdimen e cin putable e bees
I Ove I n y u I I n f WAL Crma bamenrt aa v erdving the lmast combermis tovhoig o I hoge

[]

shortly 42 give s stcount of the relations of the compatabie nambens

functionn, ared o farth to oow another. This will include & developunendt

of 1he thosey of Turvtions of & roal vacishle axpesssed in terrs of oo

Al membens Accsnding 20 my defiainon, & ramber b

o s e
if s decimal cam be written down by & machne

In 142,10 1 pive sorse argumeats with the mtontion of showing that the
compuiable namberns mcleode Al nambers which conM
regindod s compun
of mumbers ace computable They inchede, for inntance, the soal parts of
ol algedens erebaey, e real parts of the peron of the Tl funitiona
the » ors v, 4, 080, The compatable namban 40 not, however, inclede
wbie sumbens, and an esaple s pyen of & defisadle sumber
which s Dot computable

Although the clam of
wars smdlar 40 the chass of real numbers, 8 s severthalos snemerable

ko § A [ervamne cortan arguments whick woald seem 4o prove the conlrary

anslly e

e, D pertionlar 1 show that onrtain large classes

wll o

potadle sumbars s a0 groat, and in many

By (e coronit applation of one of thase argemmnis, conibosiom am

reschod wisch are seporfoialy simdar 10 those of Godelt. These resuits

P Ootel, = Uter famnnl snmstmboniiuse Sates dor Puscigen Marhomation wnd var
wuohee S0 | e whase Mok Foge, 38 (19510 17019

Hilbert’s 10th Problem

Determining if a given multivariate polynomial with
integral coefficients has an integer root.

eg. bry’z+ 8yz° + 10027

Undecidable!
Proved in 1970 by Matiyasevich-Robinson-‘P&\ﬁé-Putnam.
I\

Does it have a real root? Decidable!

Proved in 1951 by Tarski.

e
|y 5
Rl %=
} \
B
N =
D i
’ - g “}' o
;S N
a5 -
R g o R}y
SR L S Tl

Does it have a rational root!? No one knows!

Post’s Correspondence Problem

Input: A finite collection of “dominoes”
having strings written on each half.

Output: Accept if it is possible to match the strings.

n m “ m == abccabcc
n == abccabcc

Undecidable!
Proved in 1946 by Post.

Post’s Correspondence Problem

Corresponding language is
PCP = {(Domino Set) : there’s a match}

Proof idea:

Show ACCEPTS <+ PCP.

i.e. you want to solve ACCEPTS
assuming you can solve PCP.

(M, x) — (Domino Set)

Create a domino set such that only matches are
computation traces of M that end in an accept state.

Wang Tiles

Input: A finite collection of “VWang Tiles” (squares)
with colors on the edges.

Output: Accept iff it is possible to make an infinite grid
from copies of the given squares,
where touching sides must color-match.

Undecidable!
Proved in 1966 by Berger.

Modular Systems

Input: A finite set of rules of the form

“from ax + b, can derive cx + d” where a,b,c,d € Z,

and a starting integer u,and a target integer v.

Output: Accept iff v can be derived starting from v .

e.g.
“from 2x derive “from 2x + 1 derive 6x + 4”

v=1

Undecidable!
Proved in 1989 by Borger.

Mortal Matrices

Input: Two 21x21 matrices of integers A and B.

Output: Accept iff it is possible to multiply A and B
together (multiple times in any order)
to get to the 0 matrix.

Undecidable!
Proved in 2007 by Halava, Harju, Hirvensalo.

Most problems are undecidable.

Some very interesting problems undecidable.

But most interesting problems are decidable.

So what next?

