15-251
Great Theoretical Ideas in Computer Science

Lecture 6:
Turing’s Legacy Continues - Undecidability

September 17th, 2015
All languages

Decidable languages

Regular languages

EvenLength

Factoring

0^n | 1^n

Primality
3-Slide Review of Last Lecture
Comparing the cardinality of sets

\[|A| \leq |B| \]

\[|A| \geq |B| \]

\[|A| = |B| \]
Definition: countable and uncountable sets

A set A is called **countable** if $|A| \leq |\mathbb{N}|$.

A set A is called **countably infinite** if it is infinite and countable.

A set A is called **uncountable** if it is not countable. (so $|A| > |\mathbb{N}|$)
You are given a set A. Is it countable or uncountable?

$|A| \leq |\mathbb{N}| \quad \text{or} \quad |A| > |\mathbb{N}|$?

$|A| \leq |\mathbb{N}|$:
- show directly that $A \leftrightarrow \mathbb{N}$ or $\mathbb{N} \rightarrow A$
- show $|A| \leq |B|$, where $B \in \{\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}, \mathbb{Q}, \Sigma^*, \mathbb{Q}[x]\}$

$|A| > |\mathbb{N}|$:
- show directly using a diagonalization argument
- show $|A| \geq |\{0, 1\}^\infty|$
Another thing to remember from last week

Encoding different objects with strings

Fix some alphabet Σ.

We use the $\langle \cdot \rangle$ notation to denote the encoding of an object as a string in Σ^*.

Examples:

$\langle M \rangle \in \Sigma^*$ is the encoding a TM M

$\langle D \rangle \in \Sigma^*$ is the encoding a DFA D

$\langle M_1, M_2 \rangle \in \Sigma^*$ is the encoding of a pair of TMs (M_1, M_2)

$\langle M, x \rangle \in \Sigma^*$ is the encoding a pair (M, x), where M is a TM, and $x \in \Sigma^*$.
Let A be the set of all languages over $\Sigma = \{1\}$.

Select the correct ones:

- A is finite
- A is infinite
- A is countable
- A is uncountable
Applications to Computer Science
All languages

Decidable languages

Regular languages

EvenLength

Factoring

$0^n \mid n$

Primality

?
Most problems are undecidable

Just count!

For any TM M, $\langle M \rangle \in \Sigma^*$. So $\{M : M \text{ is a TM}\}$ is countable.

(the CS method)

So the set of decidable languages is countable.

How about the set of all languages?

$$\{L : L \subseteq \Sigma^*\} = \mathcal{P}(\Sigma^*)$$ is uncountable.
Maybe all **undecidable** languages are uninteresting?
Working as a course assistant for 15-112

We need to write an autograder for

nthAwesomeHappyCarolPrime
Working as a course assistant for 15-112

We need to write an autograder for

isAwesomeHappyCarolPrime

student submission

isAwesomeHappyCarolPrime

the correct program

isAwesomeHappyCarolPrime

Do they accept and reject exactly the same inputs?
Working as a course assistant for 15-112

We need to write an autograder for `isAwesomeHappyCarolPrime`

Accepts and rejects same strings?

Kosbie's version

Student submission

Accepts and rejects same strings?

True or False
Working as a course assistant for 15-112

We need to write an autograder for

isAwesomeHappyCarolPrime

Koz, I can’t figure it out.
Fine.
Just write an autograder that checks if a given program goes into an infinite loop.

Hmm.
This seems hard too.
Let me ask Prof. Procaccia
An explicit undecidable language

This is called the **halting problem**.

Theorem: The halting problem is undecidable.
Proof by Python

Halting Problem

Inputs: A Python program source code. An input to the program.

Outputs: True if the program halts for the given input. False otherwise.
Proof by Python

Assume such a program exists:

```python
def halt(program, inputToProgram):
    # program and inputToProgram are both strings
    # Returns True if program halts when run with inputToProgram
    # as its input.

def turing(program):
    if (halt(program, program)):
        while True:
            pass  # i.e. do nothing
    return None
```
Proof by Python

(input, input) (viewed as the source code of a program)

Does it halt?

no

Halt

yes

Loop forever
Assume such a program exists:

```python
def halt(program, inputToProgram):
    # program and inputToProgram are both strings
    # Returns True if program halts when run with inputToProgram
    # as its input.

def turing(program):
    if (halt(program, program)):
        while True:
            pass  # i.e. do nothing
    return None

What happens when you call turing(turing)?
Proof by Python

Does it halt?

- Yes
- No

Halt
Loop forever

(input, input)
Assume such a program exists:

```python
def halt(program, inputToProgram):
 # program and inputToProgram are both strings
 # Returns True if program halts when run with inputToProgram
 # as its input.

def turing(program):
 if (halt(program, program)):
 while True:
 pass # i.e. do nothing
 return None
```

What happens when you call `turing(turing)`?

If `halt(turing, turing)` ----> `turing` doesn’t halt
If not `halt(turing, turing)` ----> `turing` halts
**That was a diagonalization argument**

```python
def turing(program):
 if (halt(program, program)):
 while True:
 pass # i.e. do nothing
 return None
```

| $\langle f_1 \rangle \langle f_2 \rangle \langle f_3 \rangle \langle f_4 \rangle \cdots$ |  
|---|---|---|---|---|
| $f_1$ | $\infty$ | $\infty$ | $H$ | $\infty$ |
| $f_2$ | $H$ | $H$ | $H$ | $\infty$ |
| $f_3$ | $\infty$ | $\infty$ | $H$ | $H$ | \ldots |
| $f_4$ | $\infty$ | $H$ | $H$ | $\infty$ |
| \vdots | \vdots | \vdots | \vdots | \vdots |
| turing | $H$ | $\infty$ | $\infty$ | $H$ | \ldots |
Halting problem is undecidable

Proof by a theoretical computer scientist:

\[ \text{HALT} = \{ \langle M, x \rangle : M \text{ is a TM and it halts on input } x \} \]

Suppose \( M_{\text{HALT}} \) decides \( \text{HALT} \).

Consider the following TM (let’s call it \( M_{\text{TURING}} \)):

\[ M_{\text{TURING}} \]

Treat the input as \( \langle M \rangle \) for some TM \( M \).

Run \( M_{\text{HALT}} \) with input \( \langle M, M \rangle \).

If it accepts, go into an infinite loop.

If it rejects, accept (i.e. halt).
Halting problem is uncomputable

Proof by a theoretical computer scientist:

HALT = \{ \langle M, x \rangle : M \text{ is a TM and it halts on input } x \}\)

Suppose $M_{\text{HALT}}$ decides HALT.

Consider the following TM (let’s call it $M_{\text{TURING}}$):

\[
\begin{align*}
  M_{\text{TURING}} \\
\end{align*}
\]

\[
\begin{align*}
  \langle M, M \rangle & \rightarrow M_{\text{HALT}} \\
  \langle M \rangle & \rightarrow \\
  \infty & \rightarrow \text{accept} \\
  \text{reject} & \rightarrow \text{accept} \\
  \text{accept} & \rightarrow
\end{align*}
\]
Halting problem is uncomputable

What happens when \( \langle M, M \rangle \) is input to \( M_{\text{TURING}} \)?
So what?

- No guaranteed autograder program.

- Consider the following program:

```python
def fermat():
 t = 3
 while (True):
 for n in xrange(3, t+1):
 for x in xrange(1, t+1):
 for y in xrange(1, t+1):
 for z in xrange(1, t+1):
 if (x**n + y**n == z**n): return (x, y, z, n)
 t += 1
```

**Question:** Does this program halt?
- Consider the following program (written in MAPLE):

```maple
numberToTest := 2;
flag := 1;
while flag = 1 do
 flag := 0;
 numberToTest := numberToTest + 2;
 for p from 2 to numberToTest do
 if IsPrime(p) and IsPrime(numberToTest−p) then
 flag := 1;
 break; # exits the for loop
 end if
 end for
end do
```

**Question**: Does this program halt?
- **Reductions** to other problems imply that those problems are undecidable as well.

**Entscheidungsproblem**

Is there a finitary procedure to determine the validity of a given logical expression?

e.g. \[ \neg \exists x, y, z, n \in \mathbb{N} : (n \geq 3) \land (x^n + y^n = z^n) \]

(Mechanization of mathematics)

**Hilbert’s 10th Problem**

Is there a program to determine if a given multivariate polynomial with integral coefficients has an integral solution?
So what?

Different laws of physics ----->

Different computational devices ----->

Every problem computable (?)

Can you come up with sensible laws of physics such that the Halting Problem becomes computable?
Is there a way to show other languages are \textit{undecidable}?
A central concept used to compare the "difficulty" of languages/problems.

will differ based on context

Now we are interested in decidability vs undecidability
(computability vs uncomputability)

Let $A$ and $B$ be two languages.

Want to define: $A \leq B$ to mean

$B$ is at least as hard as $A$ (with respect to decidability).

i.e., $B$ decidable $\implies A$ decidable

$A$ undecidable $\implies B$ undecidable
**Reductions**

**Definition:** Let $A$ and $B$ be two languages. 

$$A \leq_T B \quad ( \text{ } A \text{ reduces to } B )$$

if it is possible to decide $A$ using a TM that decides $B$ as a subroutine.

To show $A \leq_T B$:

- assume the existence of $M_B$
- construct $M_A$ that uses $M_B$ as a subroutine.
Reductions

def fooB(input):
    # assume some code exists
    # that solves the problem B

def fooA(input):
    # some code that solves the problem A
    # that makes calls to function fooB when needed

To show $A \leq_T B$:

Give me the code for fooA.

So to show a reduction, you give an algorithm.
Reduction example

A: Given a sequence of integers, and a number $k$, is there an increasing subsequence of length at least $k$?

3, 1, 5, 2, 3, 6, 4, 8

B: Given two sequences of integers, and a number $k$, is there a common increasing subsequence of length at least $k$?

3, 1, 5, 2, 3, 6, 4, 8
1, 5, 7, 9, 2, 4, 1, 0, 2, 0, 3, 0, 4, 0, 8

A reduces to B

Give me an algorithm to solve A assuming an algorithm for B is given for free.
def fooB(seq1, seq2, k):
    # assume some code exists
    # that solves the problem B
    return fooB(seq, sorted(seq), k)

def fooA(seq, k):
    return fooB(seq, sorted(seq), k)

3, 1, 5, 2, 3, 6, 4, 8
1, 2, 3, 4, 5, 6, 7, 8
Wanted to define: \( A \leq B \) to mean

\( B \) is at least as hard as \( A \) (with respect to decidability).

i.e.,  
\[
\begin{align*}
B \text{ decidable} & \implies A \text{ decidable} \\
A \text{ undecidable} & \implies B \text{ undecidable}
\end{align*}
\]

If \( A \leq_T B \) ( \( A \) reduces to \( B \)):

\[
\begin{align*}
B \text{ decidable} & \implies A \text{ decidable} \\
A \text{ undecidable} & \implies B \text{ undecidable}
\end{align*}
\]
**Reductions**

**Wanted to define:** \( A \leq B \) to mean

\( B \) is at least as hard as \( A \) (with respect to decidability).

i.e., \( B \) decidable \( \implies \) \( A \) decidable

\( A \) undecidable \( \implies \) \( B \) undecidable

If \( A \leq_T B \) (\( A \) reduces to \( B \)):

```
\[M_A \] \[M_B \]
```

```
x \rightarrow y \rightarrow M_B \rightarrow
```

\[ x \rightarrow M_A \rightarrow \]

“The task of solving \( A \) reduces to the task of solving \( B \).”

We know \textsc{Halt} is undecidable.

If \( \text{HALT} \leq_T B \)

\( B \) is undecidable!

(You want to come up with an algorithm that solves the \textsc{Halting} problem, assuming \( M_B \) exists.)
Reductions

We know \textsc{Halt} is undecidable.

If \textsc{Halt} \leq_T B

\quad \quad B \text{ is undecidable!}

To show \( B \) is undecidable, i.e. \( M_B \) cannot exist:

- assume it does exist
- then show how to decide \textsc{Halt}
Proving other languages are **undecidable** via reductions
Example 1: ACCEPTS

**Theorem:**

$\text{ACCEPTS} = \{\langle M, x \rangle : M \text{ is a TM that accepts } x \}$ is undecidable.

$\langle M, x \rangle$ is in the language $\implies x$ leads to an accept state in $M$.

$\langle M, x \rangle$ is not in the language $\implies x$ leads to a reject state, or $M$ loops forever.

$\langle M, x \rangle \in \text{HALT} \iff x$ leads to an accept or reject state.
Example 1: ACCEPTS

$\text{ACCEPTS} = \{ \langle M, x \rangle : M \text{ is a TM that accepts } x \}$

**Proof:** (by picture)
Example 1: ACCEPTS

ACCEPTS = \{\langle M, x \rangle : M \text{ is a TM that accepts } x \}\}

Proof:
We will show \( \text{HALT} \leq_T \text{ACCEPTS} \).

Let \( M_{\text{ACCEPTS}} \) be a TM that decides \( \text{ACCEPTS} \).

Here is a TM that decides \( \text{HALT} \):

On input \( \langle M, x \rangle \), run \( M_{\text{ACCEPTS}}(\langle M, x \rangle) \).
If it accepts, accept.
Reverse the accept and rejects states of \( M \). Call it \( M' \).
Run \( M_{\text{ACCEPTS}}(\langle M', x \rangle) \).
If it accepts (\( M \) rejects \( x \)), accept.
Reject.
Example 1: ACCEPTS

\[ \text{ACCEPTS} = \{ \langle M, x \rangle : M \text{ is a TM that accepts } x \} \]

**Proof:**

Argue that if \( \langle M, x \rangle \in \text{HALT} \)
the machine accepts it.

And if \( \langle M, x \rangle \notin \text{HALT} \)
the machine rejects it.
To show a negative result (that there is no algorithm) we are showing a positive result (that there is a reduction).
Theorem:

\[ \text{EMPTY} = \{ \langle M \rangle : M \text{ is a TM that accepts no strings} \} \]
is undecidable.

Suffices to show\[ \text{ACCEPTS} \leq_T \text{EMPTY} \]
Example 2: EMPTY

EMPTY = \{\langle M \rangle : M \text{ is a TM that accepts no strings} \}\n
ACCEPTS = \{\langle M, x \rangle : M \text{ is a TM that accepts } x \}\n
If we feed \langle M \rangle into \text{M}_{\text{EMPTY}}, won’t quite work.

if \text{M}_{\text{EMPTY}} (\langle M \rangle) \text{ accepts}, we can reject

if \text{M}_{\text{EMPTY}} (\langle M \rangle) \text{ rejects}, we don’t know
Example 2: \textsc{EMPTY}

We want $M'$ such that:

- if $M_{\text{EMPTY}}(\langle M' \rangle)$ accepts, we reject
- if $M_{\text{EMPTY}}(\langle M' \rangle)$ rejects, we accept

Construct $M'$ s.t.: if $M$ accepts $x$, $M'$ only accepts $x$.
- if $M$ rejects $x$, $M'$ rejects everything.
def M_ACCEPTS(< M, x >):

    def M'(y):
        if(y != x): reject
        run M(y)
        if it accepts, accept
        if it rejects, reject

    run M_EMPTY(< M' >)
    if it accepts, reject
    if it rejects, accept

Note: M_ACCEPTS defines M', it does not run it!
Example 2: EMPTY

\[
\text{def } M\_\text{ACCEPTS}(<M, x>):
\]

\[
\text{def } M'(y):
\]

\[
\text{if}(y \neq x): \text{reject} \\
\text{run } M(y) \\
\text{if it accepts, accept} \\
\text{if it rejects, reject}
\]

\[
\text{run } M\_\text{EMPTY}(<M'>) \\
\text{if it accepts, reject} \\
\text{if it rejects, accept}
\]

If M accepts x:
\[L(M') = \{x\}\]

If M rejects x:
\[L(M') = \emptyset\]
This structure is very common

\[ A \leq_T B \]
Example 3: EQ

**Theorem:**

\[ \text{EQ} = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

is undecidable.

Suffices to show \( \text{EMPTY} \leq_T \text{EQ} \)
Example 3: EQ

\[ EQ = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

\[ EMPTY = \{ \langle M \rangle : M \text{ is a TM that accepts no strings} \} \]
Example 3: EQ

\[ EQ = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

\[ EMPTY = \{ \langle M \rangle : M \text{ is a TM that accepts no strings} \} \]

Let \( M_1 = M \)

Let \( M_2 \) be the TM that rejects everything, i.e. \( L(M_2) = \emptyset \)
Example 3: EQ

```python
def M_EMPTY(< M >):
 def M'(y):
 reject
 run M_EQ(< M, M' >)
 if it accepts, accept
 if it rejects, reject
```

$L(M') = \emptyset$
HALT \leq_T ACCEPTS \leq_T EMPTY \leq_T EQ
HALT reduces to EMPTY

```python
def M_HALT(< M, x >):
 def M'(y):
 run M(x)
 accept

 run M_EMPTY(< M' >)
 if it accepts, reject
 if it rejects, accept

 if M halts on x:
 L(M') = \Sigma^*
 If M does not halt on x:
 L(M') = \emptyset
```
def M_HALT(< M, x >):
    def M'(y):
        reject
    def M''(y):
        run M(x)
        accept
    run M_EQ(< M', M'' >)
    if it accepts, reject
    if it rejects, accept

$ L(M') = \emptyset $

If $ M $ halts on $ x $:
\[ L(M'') = \Sigma^* \]

If $ M $ does not halt on $ x $:
\[ L(M'') = \emptyset \]
Undecidable problems not involving Turing Machines
Determining the validity of a given FOL sentence.

e.g. \[\neg \exists x, y, z, n \in \mathbb{N} : (n \geq 3) \land (x^n + y^n = z^n)\]

Undecidable!

Proved in 1936 by Turing.
Hilbert’s 10th Problem

Determining if a given multivariate polynomial with integral coefficients has an integer root.

\[5xy^2z + 8yz^3 + 100x^{99}\]

Undecidable!

Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Does it have a real root? Decidable!

Proved in 1951 by Tarski.

Does it have a rational root? No one knows!
Post’s Correspondence Problem

Input: A finite collection of “dominoes” having strings written on each half.

Output: Accept if it is possible to match the strings.

Undecidable!
Proved in 1946 by Post.
Post’s Correspondence Problem

Corresponding language is

\[ \text{PCP} = \{ \langle \text{Domino Set} \rangle : \text{there’s a match} \} \]

Proof idea:

Show \( \text{ACCEPTS} \leq_T \text{PCP} \).

i.e. you want to solve \( \text{ACCEPTS} \)
assuming you can solve \( \text{PCP} \).

\[ \langle M, x \rangle \longrightarrow \langle \text{Domino Set} \rangle \]

Create a domino set such that only matches are computation traces of \( M \) that end in an accept state.
Wang Tiles

Input: A finite collection of “Wang Tiles” (squares) with colors on the edges.

Output: Accept iff it is possible to make an infinite grid from copies of the given squares, where touching sides must color-match.

Undecidable!
Proved in 1966 by Berger.
Modular Systems

Input: A finite set of rules of the form

“from $ax + b$, can derive $cx + d$” where $a, b, c, d \in \mathbb{Z}$,

and a starting integer $u$, and a target integer $v$.

Output: Accept iff $v$ can be derived starting from $u$.

e.g.

“from $2x$ derive $x$”  “from $2x + 1$ derive $6x + 4$”

$v = 1$

Undecidable!

Proved in 1989 by Börger.
Mortal Matrices

Input: Two 21x21 matrices of integers $A$ and $B$.

Output: Accept iff it is possible to multiply $A$ and $B$ together (multiple times in any order) to get to the 0 matrix.

Undecidable!
Proved in 2007 by Halava, Harju, Hirvensalo.
Most problems are **undecidable**.

Some very interesting problems **undecidable**.

But most interesting problems are **decidable**.

So what next?