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Great Theoretical ldeas in Computer Science

Lecture 6:
Turing’s Legacy Continues - Undecidability
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3-Slide Review of Last Lecture



Comparing the cardinality of sets

Al < [B

Al > B

Al =B




Definition: countable and uncountable sets

-

Definition:

e Aset A is called countable if |A| < |N].

e A set A is called countably infinite
if it is infinite and countable.

e A set A is called uncountable if it is not countable.
(so |A] > |NJ)

o




One slide guide to countability questions

You are given a set A .
Is it countable or uncountable?
Al < IN| or |A|>|N| 2

Al < |NJ:
- show directly that A — N or N— A

- show |A| < |B|, where
Bel{z, 7xZ, Q, [ Q]

Al > N -
- show directly using a diagonalization argument
- show |A| > [{0,1}°°




Another thing to remember from last week

Encoding different objects with strings
Fix some alphabet 2..

We use the (-) notation to denote the encoding of an object
as a string in X7

Examples:

(M) € 3™ is the encodingaTM M

(D) € is the encodinga DFA D
(My, M) € ¥* is the encoding of a pair of TMs (M7, M>)
(M

LX) € is the encoding a pair (M, x), where
M isaTM, and x € X7,



Poll

Let A be the set of all languages over ¥ = {1}.
Select the correct ones:

- A is finite
- A is infinite
- A is countable

- A is uncountable



Applications to Computer Science
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Most problems are undecidable

Just count!

ForanyTM M, (M) € X~.
So {M : M is a TM} is countable.
(the CS method)

So the set of decidable languages is countable.

How about the set of all languages!?

{L:LCX¥"} =P(X*) isuncountable.



Maybe all undecidable languages are uninteresting !



Working as a course assistant for [5-112

4 )
We need to write an

autograder for

nthAwesomeHappyCarolPrime
- J




Working as a course assistant for |5-112

-

\_

We need to write an
autograder for

isAwesomeHappyCarolPrime

~

J

student submission

isAwesomeHappyCarolPrime

the correct program

isAwesomeHappyCarolPrime

Do they accept and reject exactly the same inputs?



Working as a course assistant for |5-112

[
We need to write an

autograder for

isAwesomeHappyCarolPrime

~

J

.
Kosbie’s @ p
version = T~
Student /\

Ul

submission

Accepts and rejects
same strings?

J

True
or

False



Working as a course assistant for |5-112

4 )
We need to write an

autograder for

isAwesomeHappyCarolPrime
- J

4 )

Koz, | can’t figure it out.

- J




Working as a course assistant for |5-112

a2 )
Fine.

Just write an autograder
that checks if a given program

goes into an infinite loop.
- J

Hmm.
This seems hard too.
Let me ask Prof. Procaccia




An explicit undecidable language

This is called the halting problem.

[Theorem: The halting problem is undecidable.




Proof by Python

Halting Problem

|

Inputs: A Python program source code.
An input to the program. X

Outputs: True if the program halts for the given input.
False otherwise.

1l

4 )
T~ Halting T';t'e
7 Program y False

X




Proof by Python

Assume such a program exists:

def halt(program, inputToProgram):
# program and inputToProgram are both strings
# Returns True if program halts when run with inputloProgram
# as 1ts input.

def turing(program):
if (halt(program, program)):
while True:
pass # 1.e.do nothing
return None



Proof by Python

input (viewed as the source code

| of a program)

l

(input, input)

Loop
forever

~




Proof by Python

Assume such a program exists:

def halt(program, inputToProgram):
# program and inputToProgram are both strings
# Returns True if program halts when run with inputloProgram
# as 1ts input.

def turing(program):
if (halt(program, program)):
while True:
pass # 1.e.do nothing
return None

What happens when you call turing(turing) ?



Proof by Python

«—

v
(input, input)

N

Loop
forever




Proof by Python

Assume such a program exists:

def halt(program, inputToProgram):
# program and inputToProgram are both strings
# Returns True if program halts when run with inputloProgram
# as 1ts input.

def turing(program):
if (halt(program, program)):
while True:
pass # 1.e.do nothing
return None

What happens when you call turing(turing) ?
if halt(turing, turing) ----> turing doesn’t halt
if not halt(turing, turing) ----> turing halts []



That was a diagonalization argument

def turing(program):
if (halt(program, program)):
while True:
pass # 1.e.do nothing

return None

(f1)(f2) (f3){fa) **

flooHoo
fo| H [Hl H oo
ngOOOH

faloo H H [

turing H oo oo H



Halting problem is undecidable

Proof by a theoretical computer scientist:

HALT = {(M,x) : M is a TM and it halts on input =}

Suppose Mia1 T decides HALT.
Consider the following TM (let’s call it Mtyring ):

MTURING

Treat the input as (M) for someTM M .
Run Myarr with input (M, M).
If it accepts, go into an infinite loop.

If it rejects, accept (i.e. halt).




Halting problem is uncomputable

Proof by a theoretical computer scientist:

HALT = {(M,x) : M is a TM and it halts on input =}

Suppose Mia1 T decides HALT.
Consider the following TM (let’s call it Mtyring ):

MTUuRrING

reject ——» accept

(M, M)— Mygavt
accept




Halting problem is uncomputable

MruriNG
(M, M)—|  Myarr re]ect; — 1 » accept
accep
(M) — l
O

What happens when (Mrtyring) is input to MruriNGg?



So what!?

- No guaranteed autograder program.

- Consider the following program:

def fermat():
t N 3 THE INTERNATIONAL BESTSELLER B
While (Trlle) . \\‘ c. X 55‘7:57:}5,,534,“ ,

<z —<F

for n in xrange(3, t+1):
for x in xrange(1, t+1):
for y in xrange(1, t+1):
for z in xrange(1, t+1):
if (X**n + y**n == z**n): return (x, y, z, n)

SIMON SINGH

t+=1

Question: Does this program halt?



So what!?

- Consider the following program (written in MAPLE):

numberToTest := 2;
flag := 1;
while flag =1 do
flag :=0;
numberToTest := numberToTest + 2;
for p from 2 to numberToTest do
if IsPrime(p) and IsPrime(numberToTest—p) then

flag := 1;
break; #exits the for loop
end if Goldbach
end for Conjecture
end do

Question: Does this program halt?



So what!?

- Reductions to other problems
imply that those problems are undecidable as well.

Entscheidungsproblem

Is there a finitary procedure to determine the validity
of a given logical expression!?

e.g. —dx,y,z,n € N: (n>3)A (2" +y" = 2")

(Mechanization of mathematics)

Hilbert’s 10th Problem

Is there a program to determine if a given multivariate
polynomial with integral coefficients has an integral
solution?



So what!?

Different laws of physics ----- >
Different computational devices ----- >

Every problem computable (?)

Can you come up with sensible laws of physics
such that the Halting Problem becomes computable?



Is there a way to show
other languages are undecidable?



Reductions

A central concept used to compare the “difficulty” of
languages/problems. $

will differ based on context

Now we are interested in decidability vs undecidability
(computability vs uncomputability)

Let A and B be two languages.

Want to define: A < B to mean

B is at least as hard as A (with respect to decidability).

i.,e., B decidable — A decidable
A undecidable — B undecidable



Reductions

-

\_

Definition: Let A and B be two languages.
A<y B ( A reducesto B)

if it is possible to decide A
using a TM that decides B as a subroutine.

To show A <t B:

yv—=| Mp >
L —> B

M 4

you want to specify
the orange part
- assume the existence of Mg

- construct M 4 that uses M g as a subroutine.




Reductions

def fooB(input):
# assume some code exists
# that solves the problem B

def fooA(input):
# some code that solves the problem A
# that makes calls to function fooB when needed

To show A <7 B:

Give me the code for fooA.

So to show a reduction, you give an algorithm.



Reduction example

A: Given a sequence of integers, and a number k,
is there an increasing subsequence of length at least k?

3,1,52,3,6,4,8

B: Given two sequences of integers, and a number k,
is there a common inc. subsequence of length at least k?

3,1,52,3,6,4,8
,5,7,9,2,4,1,0,2,0,3,0,4,0,8

A reduces to B

Give me an algorithm to solve A
assuming an algorithm for B is given for free.



Reduction example

def fooB(seql, seq2, k):
# assume some code exists
# that solves the problem B

def fooA(seq, k):
return fooB(seq, sorted(seq), k)

3,1,5,2,3,6,4,8
1,2,3,4,5,6,7,8



Reductions

Wanted to define: A < B to mean

B is at least as hard as A (with respect to decidability).
i.e., B decidable —> A decidable
A undecidable =— B undecidable

If A<y B ( A reducesto B):

yv—=| Mp >
T —> —

M 4

B decidable —> A decidable

A undecidable — B undecidable



Reductions

Wanted to define: A < B to mean

B is at least as hard as A (with respect to decidability).
i.e., B decidable —> A decidable
A undecidable =— B undecidable

If A<y B ( A reducesto B):

y—=| Mp >
L —> )

M 4

“The task of solving A reduces to the task of solving B .’



Reductions

We know HALT is undecidable.

If HALT <+ B
B is undecidable!

Y—> MB —>
g — —

MyarT

(You want to come up with an algorithm that solves
the HALTING problem, assuming M p exists.)



Reductions

We know HALT is undecidable.

If HALT <+ B
B is undecidable!

Y—> MB —>
g — —

MyarT

To show B is undecidable, i.e. Mg cannot exist:

- assume it does exist
- then show how to decide HALT



Proving other languages are undecidable
via reductions



Example |: ACCEPTS

[Theorem: A
ACCEPTS = {(M,x) : M is a TM that accepts z}
1s undecidable.

\_ Y,

(M, x) is in the language —

x leads to an accept state in M.

(M, x) is not in the language —>

x leads to a reject state, or M loops forever.

(M, z) € HALT iff x leads to an accept or reject state.



(M, x)—>

Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof: (by picture)

MyarT

MaccepTs P>

reverse
accept & reject
states

MaccepTs >

accept » accept
reject

— (M)
accept » accept
reject —+—» reject




Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof:

We will show HALT < ACCEPTS.

Let MaccrpTs be aTM that decides ACCEPTS.
Here is a TM that decides HALT :

On input (M, x),run Macceprs((M, x)).
If it accepts, accept.

Reverse the accept and rejects states of M. Call it M.

Run Macceprs((M', ).
If it accepts (M rejects x ), accept.

Reject.




Example |: ACCEPTS

ACCEPTS = {(M,z) : M is a TM that accepts x}
Proof:

Argue that if (M, z) € HALT

the machine accepts it.

And if (M,z) ¢ HALT

the machine rejects it.



Interesting Observation

To show a negative result (that there is no algorithm)

we are showing a positive result (that there is a reduction)



Example 2: EMPTY

-

Theorem:

\_

1s undecidable.

~

EMPTY = {(M) : M is a TM that accepts no strings}

/

Suffices to show ACC]

OPTS <7 |

SMPTY



Example 2: EMPTY

EMPTY = {(M) : M is a TM that accepts no strings}
ACCEPTS = {(M,x) : M is a TM that accepts x}

MaccEPTS

(M)—| MgmprTy P>
(M, z)— —

If we feed (M) into MEmpTY, Won't quite work.
if Mgypry((M)) accepts, we can reject

if Mpyvpry ((M)) rejects, we don’t know



Example 2: EMPTY

MaccEPTS

(M"—| Mpmpry P>
(M, x)—> —

We want M’ such that:
if Mgvmpry ((M')) accepts, we reject

if Mgvmpry ((M')) rejects , we accept

Construct M's.t.: if M accepts x, M’ only accepts .
if M rejects =, M’ rejects everything.



Example 2: EMPTY
def M_ACCEPTS(< M, x >):
4 N )
de.f My . Creating an input that will
if(y !=x): reject be fed into M_EMPTY
run M(y)
if 1t accepts, accept It depends on the
if it rejects, reject inputs M and x.

\_

run M_EMPTY (< M’ >)
if 1t accepts, reject
if it rejects, accept

maybe a better name
for M’ is M.

Note: M ACCEPTS defines M’, it does not run it!




Example 2: EMPTY

def M_ACCEPTS(< M, x >):

de.fM v If M accepts x:
if(y !=x): reject
run M(y) L(M') = {x}
1f 1t accepts, accept
if it rejects, reject If M rejects x:
run M_EMPTY(< M’ >) L(M") =0

if 1t accepts, reject
if it rejects, accept




MaccEPTS

(M, x) —>

(M"—| MgnmpTY

A<r B

This structure is very common

. possibly flip

the answer



Example 3: EQ

(" N

Theorem:

\_

EQ = {<M1,M2> . M1 and M2 are T'Ms and L(Ml) = L(Mg)}

1s undecidable.

/

Suffices to show EMPTY <p |

€3
'S



Example 3: EQ

EQ — {<M1,M2> . M1 and M2 are TMs and L(Ml) — L(Mg)}
EMPTY = {(M) : M is a TM that accepts no strings}

MempTy




Example 3: EQ

EQ — {<M1,M2> . M1 and M2 are TMs and L(Ml) — L(Mg)}
EMPTY = {(M) : M is a TM that accepts no strings}

MempTY

(M) ——»‘ — (M, My)—| Mgqg >

let M =M
Let M5 be the TM that rejects everything, i.e. L(Ms) = ()



Example 3: EQ

def M_EMPTY (< M >):

def M’(y):
reject

run M_EQ(<M, M’ >)
if 1t accepts, accept
if it rejects, reject



HALT < ACC]

OPTS <7 |

SMPTY <7

)



HALT reduces to EMPTY

def M_HALT(< M, x >):

 def M’ (y): A If M halts on x:
run M(x) L(M’) — ¥
accept
- / If M does not halt on x:
run M_EMPTY(< M’ >) L(M")y =10

if 1t accepts, reject
if 1t rejects, accept




HALT reduces to EQ

def M_HALT(< M, x >):

def M’(y):
reject

def M’ (y):

run M(x)
accept

run M_EQ(<M’, M” >)
if 1t accepts, reject
if 1t rejects, accept

L(M") =10

If M halts on x:
L(M//) _ Z*

If M does not halt on x:

L(M//) — ()



Undecidable problems not involving Turing Machines



Entscheidungsproblem

Determining the validity of a given FOL sentence.
e.g. —dz,y,z,neEN:(n>3) A" +y" = 2"

5 ) A M Tosms [Now. 12,

ON CONPUTABLE NUMBERS, WITH AN APFLICATION TO
THE ENTSCHEIDUNGSFROBLEM

By A N. Tumso
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Hilbert’s 10th Problem

Determining if a given multivariate polynomial with
integral coefficients has an integer root.

eg. bry’z+ 8yz° + 10027

Undecidable!
Proved in 1970 by Matiyasevich-Robinson-‘P&\ﬁé-Putnam.
I\

Does it have a real root? Decidable!

Proved in 1951 by Tarski.

e
|y 5
Rl %=
} \
B
N =
D i
’ - g “}' o
;S N
a5 -
R g o R}y
SR L S Tl

Does it have a rational root!? No one knows!



Post’s Correspondence Problem

Input: A finite collection of “dominoes”
having strings written on each half.

Output: Accept if it is possible to match the strings.

n m “ m == abccabcc
n == abccabcc

Undecidable!
Proved in 1946 by Post.




Post’s Correspondence Problem

Corresponding language is
PCP = {(Domino Set) : there’s a match}

Proof idea:

Show ACCEPTS <+ PCP.

i.e. you want to solve ACCEPTS
assuming you can solve PCP.

(M, x) — (Domino Set)

Create a domino set such that only matches are
computation traces of M that end in an accept state.



Wang Tiles

Input: A finite collection of “VWang Tiles” (squares)
with colors on the edges.

Output: Accept iff it is possible to make an infinite grid
from copies of the given squares,
where touching sides must color-match.

Undecidable!
Proved in 1966 by Berger.



Modular Systems

Input: A finite set of rules of the form

“from ax + b, can derive cx + d” where a,b,c,d € Z,

and a starting integer u,and a target integer v.

Output: Accept iff v can be derived starting from v .

e.g.
“from 2x derive “from 2x + 1 derive 6x + 4”

v=1

Undecidable!
Proved in 1989 by Borger.



Mortal Matrices

Input: Two 21x21 matrices of integers A and B.

Output: Accept iff it is possible to multiply A and B
together (multiple times in any order)
to get to the 0 matrix.

Undecidable!
Proved in 2007 by Halava, Harju, Hirvensalo.



Most problems are undecidable.

Some very interesting problems undecidable.

But most interesting problems are decidable.

So what next?






