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Great Theoretical Ideas in Computer Science 

Lecture 6:
Turing’s Legacy Continues - Undecidability



Regular languages

Decidable languages

EvenLength
...

Primality

0n1n

Factoring

...

?
All languages



3-Slide Review of Last Lecture  



Comparing the cardinality of sets

A $ B

A ,! B

A ⇣ B

|A|  |B|

|A| = |B|

|A| � |B|



Definition:  countable and uncountable sets

A |A|  |N|

Definition:

A set      is called countable if                . 

A set      is called countably infinite 
if it is infinite and countable. 

A

A set      is called uncountable if it is not countable.A
(so                )|A| > |N|



One slide guide to countability questions

You are given a set     .A
Is it countable or uncountable?

|A|  |N| |A| > |N|or                   ?

- show directly that               or A ,! N N ⇣ A

- show                ,  where  |A|  |B|
B 2 {Z, Z⇥ Z, Q, ⌃⇤

, Q[x]}

|A|  |N| :

|A| > |N| :

- show directly using a diagonalization argument

- show                  |A| � |{0, 1}1|



Another thing to remember from last week

Encoding different objects with strings

We use the      notation to denote the encoding of an object
as a string in       .

h·i
⌃⇤

Examples:

Fix some alphabet     .⌃

hMi 2 ⌃⇤ is the encoding a TM M

hDi 2 ⌃⇤ is the encoding a DFA D

hM1,M2i 2 ⌃⇤ is the encoding of a pair of  TMs (M1,M2)

hM,xi 2 ⌃⇤ is the encoding a pair            ,  where (M,x)

     is a TM,  and             .M x 2 ⌃⇤



Poll

Let      be the set of all languages over              .⌃ = {1}A

Select the correct ones:

- A is finite

- A is countable

- A is uncountable

- A is infinite



Applications to Computer Science



Regular languages

Decidable languages

EvenLength
...

Primality

0n1n

Factoring

...

?
All languages



Most problems are undecidable

Just count!

For any TM      ,                  .M hMi 2 ⌃⇤

So                                is countable.{M : M is a TM}

How about the set of all languages?

{L : L ✓ ⌃⇤} = P(⌃⇤) is uncountable.

(the CS method)

So the set of decidable languages is countable.



Maybe all undecidable languages are uninteresting ?



Working as a course assistant for 15-112

We need to write an 
autograder for

nthAwesomeHappyCarolPrime



Working as a course assistant for 15-112

We need to write an 
autograder for

isAwesomeHappyCarolPrime

isAwesomeHappyCarolPrime

the correct programstudent submission

isAwesomeHappyCarolPrime

Do they accept and reject exactly the same inputs?



Working as a course assistant for 15-112

We need to write an 
autograder for

isAwesomeHappyCarolPrime

Accepts and rejects
same strings?

True
or

False

Kosbie’s
version

Student
submission



Working as a course assistant for 15-112

We need to write an 
autograder for

isAwesomeHappyCarolPrime

Koz, I can’t figure it out.



Working as a course assistant for 15-112

Fine. 
Just write an autograder
that checks if a given program
goes into an infinite loop. 

Hmm.
This seems hard too.

Let me ask Prof. Procaccia



An explicit undecidable language

Theorem: The halting problem is undecidable.

This is called the halting problem.



Proof by Python

Halting
Program

x

True
or

False

Outputs:  True if the program halts for the given input.
               False otherwise.

Inputs:  A Python program source code.
            An input to the program.

Halting Problem

x



Proof by Python
Assume such a program exists:

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
    # Returns True if program halts when run with inputToProgram
    # as its input.
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # i.e. do nothing
    return None



Proof by Python

Halt Loop
forever

yesno

input

(input, input)

Does it
halt?

(viewed as the source code 
of a program)turing



Proof by Python
Assume such a program exists:

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
    # Returns True if program halts when run with inputToProgram
    # as its input.
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # i.e. do nothing
    return None

What happens when you call  turing(turing) ?



Proof by Python

Halt Loop
forever

yesno

(input, input)

Does it
halt?



Proof by Python
Assume such a program exists:

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
    # Returns True if program halts when run with inputToProgram
    # as its input.
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # i.e. do nothing
    return None

What happens when you call  turing(turing) ?

if halt(turing, turing)

if not halt(turing, turing)

----> turing doesn’t halt

----> turing halts



That was a diagonalization argument
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # i.e. do nothing
    return None

…

...
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Halting problem is undecidable

Consider the following TM (let’s call it                 ):MTURING

Run              with input              .MHALT

MTURING

Treat the input as         for some TM      .   hMi M

hM,Mi

If it accepts, go into an infinite loop.

If it rejects, accept (i.e. halt).

Suppose              decides           .HALTMHALT

Proof by a theoretical computer scientist:
HALT = {hM,xi : M is a TM and it halts on input x}



Halting problem is uncomputable

Consider the following TM (let’s call it                 ):MTURING

Suppose              decides           .HALTMHALT

Proof by a theoretical computer scientist:

MTURING

hMi
hM,Mi MHALT

accept
reject accept

1

HALT = {hM,xi : M is a TM and it halts on input x}



Halting problem is uncomputable

What happens when                     is input to                 ?            hMTURINGi MTURING

MTURING

hMi
hM,Mi MHALT

accept
reject accept

1



So what?

- No guaranteed autograder program.

- Consider the following program:
def fermat():
    t = 3
    while (True):
        for n in xrange(3, t+1):
            for x in xrange(1, t+1):
                for y in xrange(1, t+1):
                    for z in xrange(1, t+1):
                        if (x**n + y**n == z**n): return (x, y, z, n)
        t += 1

Question: Does this program halt? 



So what?

numberToTest := 2; 
flag := 1; 
while flag = 1 do 
    flag := 0; 
    numberToTest := numberToTest + 2;  
    for p from 2 to numberToTest do  
        if IsPrime(p) and IsPrime(numberToTest−p) then  
            flag := 1; 
            break;       #exits the for loop  
        end if  
    end for  
end do

Question: Does this program halt? 

- Consider the following program (written in MAPLE):

Goldbach
Conjecture



So what?

- Reductions to other problems
  imply that those problems are undecidable as well.

Is there a program to determine if a given multivariate 
polynomial with integral coefficients has an integral 
solution?

Hilbert’s 10th Problem

Entscheidungsproblem 
Is there a finitary procedure to determine the validity 
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.



So what?

Different laws of physics ----->

Different computational devices ----->

Every problem computable (?)

Can you come up with sensible laws of physics
such that the Halting Problem becomes computable?



Is there a way to show  
other languages are undecidable?



Reductions

A central concept used to compare the “difficulty” of 
languages/problems.

will differ based on context

Now we are interested in decidability vs undecidability
                                  (computability vs uncomputability) 

Want to define:                A  B

     is at least as hard as     (with respect to decidability).AB

i.e.,         decidable                       decidable=)B A

              undecidable                   undecidable=) BA

Let      and      be two languages.A B

to mean



Reductions

A T B

Definition:
(      reduces to     )A B

if it is possible to decide
using a TM that decides      as a subroutine.

A
B

To show              :A T B

x

y MB

MA

- assume the existence of MB

- construct         that uses          as a subroutine. MA MB

Let      and      be two languages.A B

you want to specify
the orange part



Reductions

def fooB(input):
     # assume some code exists 
     # that solves the problem B

def fooA(input):
     # some code that solves the problem A
     # that makes calls to function fooB when needed

To show              :A T B

Give me the code for fooA.

So to show a reduction,  you give an algorithm.



Reduction example
A:

B:

A reduces to B

Given a sequence of integers, and a number k,
is there an increasing subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8

Given two sequences of integers, and a number k,
is there a common inc. subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8
1, 5, 7, 9, 2, 4, 1, 0, 2, 0, 3, 0, 4, 0, 8

Give me an algorithm to solve A
assuming an algorithm for B is given for free.



Reduction example

def fooB(seq1, seq2, k):
     # assume some code exists 
     # that solves the problem B

     return fooB(seq, sorted(seq), k)
def fooA(seq, k):

3, 1, 5, 2, 3, 6, 4, 8

1, 2, 3, 4, 5, 6, 7, 8



Wanted to define:                to meanA  B

Reductions

              decidable                       decidable=)B A

              undecidable                   undecidable=) BA

     is at least as hard as     (with respect to decidability).AB

i.e.,         decidable                       decidable=)B A
              undecidable                   undecidable=) BA

A T B (      reduces to     ):A BIf

x

y MB

MA



Wanted to define:                to meanA  B

Reductions

     is at least as hard as     (with respect to decidability).AB

i.e.,         decidable                       decidable=)B A
              undecidable                   undecidable=) BA

A T B (      reduces to     ):A BIf

x

y MB

MA

“The task of solving      reduces to the task of solving     .”A B



Reductions

We know              is undecidable.HALT

       is undecidable!B

If HALT T B

x

y MB

MHALT

(You want to come up with an algorithm that solves
  the HALTING problem,  assuming          exists.) MB



x

If

Reductions

We know              is undecidable.HALT

       is undecidable!B

HALT T B

y MB

MHALT

To show      is undecidable,  i.e.           cannot exist:B MB

- assume it does exist 
- then show how to decide HALT



Proving other languages are undecidable 
via reductions



Example 1:  ACCEPTS

Theorem:

is undecidable.

ACCEPTS = {hM,xi : M is a TM that accepts x}

           leads to a reject state,  or      loops forever.Mx

hM,xi            is not in the language =)

hM,xi 2 HALT                            iff      leads to an accept or reject state.x

            is in the language         
M

x

hM,xi
 leads to an accept state in     .

=)



hM,xi

MHALT

Example 1:  ACCEPTS

Proof: (by picture)

hM,xi MACCEPTS
accept
reject

accept

hM 0
, xi MACCEPTS

accept
reject

accept
reject

reverse
accept & reject

states
hMi hM 0i

ACCEPTS = {hM,xi : M is a TM that accepts x}



Example 1:  ACCEPTS

Proof:
We will show                                     . HALT T ACCEPTS

Let                    be a TM that decides                   . MACCEPTS ACCEPTS

Here is a TM that decides            :HALT

If it accepts, accept.

On input            , run                                .hM,xi
MACCEPTS(hM,xi)

Reverse the accept and rejects states of     . Call it      . M M 0

Run                                 .MACCEPTS(hM 0
, xi)

If it accepts (      rejects    ),  accept.M x

Reject.

ACCEPTS = {hM,xi : M is a TM that accepts x}



Example 1:  ACCEPTS

Proof:
ACCEPTS = {hM,xi : M is a TM that accepts x}

Argue that if hM,xi 2 HALT

the machine accepts it.

And if hM,xi 62 HALT

the machine rejects it.



Interesting Observation

To show a negative result (that there is no algorithm)

we are showing a positive result (that there is a reduction)



Example 2:  EMPTY

Theorem:

is undecidable.

EMPTY = {hMi : M is a TM that accepts no strings}

Suffices to show                                       ACCEPTS T EMPTY



Example 2:  EMPTY

EMPTY = {hMi : M is a TM that accepts no strings}
ACCEPTS = {hM,xi : M is a TM that accepts x}

MEMPTY

MACCEPTS

hM,xi

If we feed         into                ,  won’t quite work.hMi MEMPTY

,  we can rejectif                             acceptsMEMPTY(hMi)
if                             rejectsMEMPTY(hMi) ,  we don’t know

hMi



Example 2:  EMPTY

if                             accepts

We want        such that:

MEMPTY(hM 0i)
M 0

,  we reject

if                             rejectsMEMPTY(hM 0i) ,  we accept

MEMPTY

MACCEPTS

hM,xi
hM 0i

Construct      s.t.:  if      accepts    ,         only accepts    .   M
x M 0

x

     if      rejects     ,         rejects everything. M
x

M 0
M 0



Example 2:  EMPTY

def M_ACCEPTS(< M, x >): 

run M_EMPTY(< M’ >)
    if it accepts, reject
    if it rejects, accept

Creating an input that will 
be fed into M_EMPTY

It depends on the 
inputs M and x.

def M’(y):
if(y != x): reject
run M(y) 
if it accepts, accept
if it rejects, reject

Mx
maybe a better name
for      is       .M’

Note:  M_ACCEPTS  defines  M’,  it does not run it!



Example 2:  EMPTY

def M_ACCEPTS(< M, x >): 

run M_EMPTY(< M’ >)
    if it accepts, reject
    if it rejects, accept

def M’(y):
if(y != x): reject
run M(y) 
if it accepts, accept
if it rejects, reject

If M accepts x: 

L(M 0) = {x}

If M rejects x: 

L(M 0) = ;



possibly flip
the answer

A T B
MA

MBx

x

0

MEMPTY

MACCEPTS

hM,xi
hM 0i

This structure is very common



Example 3:  EQ

Theorem:

is undecidable.

EQ = {hM1,M2i : M1 and M2 are TMs and L(M1) = L(M2)}

Suffices to show                                       EMPTY T EQ



Example 3:  EQ
EQ = {hM1,M2i : M1 and M2 are TMs and L(M1) = L(M2)}
EMPTY = {hMi : M is a TM that accepts no strings}

MEMPTY

MEQhMi hM1,M2i

MEQ

MEMPTY

hMi



Example 3:  EQ
EQ = {hM1,M2i : M1 and M2 are TMs and L(M1) = L(M2)}
EMPTY = {hMi : M is a TM that accepts no strings}

MEMPTY

MEQhMi hM1,M2i

Let M1 = M

Let        be the TM that rejects everything, i.e.M2 L(M2) = ;



Example 3:  EQ

def M_EMPTY(< M >):
    
    def M’(y):
        reject
         

    run M_EQ(< M, M’ >)
    if it accepts, accept
    if it rejects, reject

L(M 0) = ;



HALT T ACCEPTS T EMPTY T EQ



HALT reduces to EMPTY

def M_HALT(< M, x >):

If M halts on x: 

L(M 0) = ⌃⇤

If M does not halt on x: 

L(M 0) = ;run M_EMPTY(< M’ >)
if it accepts, reject
if it rejects, accept

run M(x)
accept

def M’(y):



HALT reduces to EQ

def M_HALT(< M, x >):        

If M does not halt on x: 

L(M 00) = ;

L(M 0) = ;

If M halts on x: 

L(M 00) = ⌃⇤

run M_EQ(< M’, M’’ >)
if it accepts, reject
if it rejects, accept

run M(x)
accept

reject

def M’’(y):

def M’(y): 



Undecidable problems not involving Turing Machines



Entscheidungsproblem

Determining the validity of a given FOL sentence.
¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Undecidable!

Proved in 1936 by Turing.



Hilbert’s 10th Problem

Determining if a given multivariate polynomial with 
integral coefficients has an integer root.

e.g.

Undecidable!
Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Does it have a real root? Decidable!

Does it have a rational root? No one knows!

5xy2z + 8yz3 + 100x99

Proved in 1951 by Tarski.



Post’s Correspondence Problem

Input:  A finite collection of  “dominoes”
           having strings written on each half.

Output:  Accept if it is possible to match the strings.

abccabcc

abccabcc

Undecidable!
Proved in 1946 by Post.



Post’s Correspondence Problem

Proof idea:

Corresponding language is 

PCP = {hDomino Seti : there’s a match}

Create a domino set such that only matches are
computation traces of        that end in an accept state.M

ACCEPTS T PCPShow                                   .

i.e.  you want to solve                  
      assuming you can solve         .

ACCEPTS
PCP

hM,xi �! hDomino Seti



Wang Tiles

Input:  A finite collection of  “Wang Tiles” (squares)
           with colors on the edges.

Output:  Accept iff it is possible to make an infinite grid
             from copies of the given squares,
             where touching sides must color-match.

Undecidable!
Proved in 1966 by Berger.



Modular Systems

Input:  A finite set of rules of the form 

“from ax+ b, can derive cx+ d” where                     ,a, b, c, d 2 Z
and a starting integer    , and a target integer    .u v

Output:  Accept iff    can be derived starting from    . v u

e.g.

“from 2x derive x”

“from 2x+ 1 derive 6x+ 4”

v = 1

Undecidable!
Proved in 1989 by Börger.



Mortal Matrices

Input:  Two 21x21 matrices of integers      and     .A B

Output:  Accept iff it is possible to multiply      and
             together (multiple times in any order)
             to get to the 0 matrix.

A B

Undecidable!
Proved in 2007 by Halava, Harju, Hirvensalo.



Most problems are undecidable.

Some very interesting problems undecidable.

But most interesting problems are decidable.

So what next?




