
September 17th, 2015

15-251
Great Theoretical Ideas in Computer Science

Lecture 6:
Turing’s Legacy Continues - Undecidability

Regular languages

Decidable languages

EvenLength
...

Primality

0n1n

Factoring

...

?
All languages

3-Slide Review of Last Lecture

Comparing the cardinality of sets

A $ B

A ,! B

A ⇣ B

|A|  |B|

|A| = |B|

|A| � |B|

Definition: countable and uncountable sets

A |A|  |N|

Definition:

A set is called countable if .

A set is called countably infinite
if it is infinite and countable.

A

A set is called uncountable if it is not countable.A
(so)|A| > |N|

One slide guide to countability questions

You are given a set .A
Is it countable or uncountable?

|A|  |N| |A| > |N|or ?

- show directly that or A ,! N N ⇣ A

- show , where |A|  |B|
B 2 {Z, Z⇥ Z, Q, ⌃⇤

, Q[x]}

|A|  |N| :

|A| > |N| :

- show directly using a diagonalization argument

- show |A| � |{0, 1}1|

Another thing to remember from last week

Encoding different objects with strings

We use the notation to denote the encoding of an object
as a string in .

h·i
⌃⇤

Examples:

Fix some alphabet .⌃

hMi 2 ⌃⇤ is the encoding a TM M

hDi 2 ⌃⇤ is the encoding a DFA D

hM1,M2i 2 ⌃⇤ is the encoding of a pair of TMs (M1,M2)

hM,xi 2 ⌃⇤ is the encoding a pair , where (M,x)

 is a TM, and .M x 2 ⌃⇤

Poll

Let be the set of all languages over .⌃ = {1}A

Select the correct ones:

- A is finite

- A is countable

- A is uncountable

- A is infinite

Applications to Computer Science

Regular languages

Decidable languages

EvenLength
...

Primality

0n1n

Factoring

...

?
All languages

Most problems are undecidable

Just count!

For any TM , .M hMi 2 ⌃⇤

So is countable.{M : M is a TM}

How about the set of all languages?

{L : L ✓ ⌃⇤} = P(⌃⇤) is uncountable.

(the CS method)

So the set of decidable languages is countable.

Maybe all undecidable languages are uninteresting ?

Working as a course assistant for 15-112

We need to write an
autograder for

nthAwesomeHappyCarolPrime

Working as a course assistant for 15-112

We need to write an
autograder for

isAwesomeHappyCarolPrime

isAwesomeHappyCarolPrime

the correct programstudent submission

isAwesomeHappyCarolPrime

Do they accept and reject exactly the same inputs?

Working as a course assistant for 15-112

We need to write an
autograder for

isAwesomeHappyCarolPrime

Accepts and rejects
same strings?

True
or

False

Kosbie’s
version

Student
submission

Working as a course assistant for 15-112

We need to write an
autograder for

isAwesomeHappyCarolPrime

Koz, I can’t figure it out.

Working as a course assistant for 15-112

Fine.
Just write an autograder
that checks if a given program
goes into an infinite loop.

Hmm.
This seems hard too.

Let me ask Prof. Procaccia

An explicit undecidable language

Theorem: The halting problem is undecidable.

This is called the halting problem.

Proof by Python

Halting
Program

x

True
or

False

Outputs: True if the program halts for the given input.
 False otherwise.

Inputs: A Python program source code.
 An input to the program.

Halting Problem

x

Proof by Python
Assume such a program exists:

def halt(program, inputToProgram):
 # program and inputToProgram are both strings
 # Returns True if program halts when run with inputToProgram
 # as its input.
def turing(program):
 if (halt(program, program)):
 while True:
 pass # i.e. do nothing
 return None

Proof by Python

Halt Loop
forever

yesno

input

(input, input)

Does it
halt?

(viewed as the source code
of a program)turing

Proof by Python
Assume such a program exists:

def halt(program, inputToProgram):
 # program and inputToProgram are both strings
 # Returns True if program halts when run with inputToProgram
 # as its input.
def turing(program):
 if (halt(program, program)):
 while True:
 pass # i.e. do nothing
 return None

What happens when you call turing(turing) ?

Proof by Python

Halt Loop
forever

yesno

(input, input)

Does it
halt?

Proof by Python
Assume such a program exists:

def halt(program, inputToProgram):
 # program and inputToProgram are both strings
 # Returns True if program halts when run with inputToProgram
 # as its input.
def turing(program):
 if (halt(program, program)):
 while True:
 pass # i.e. do nothing
 return None

What happens when you call turing(turing) ?

if halt(turing, turing)

if not halt(turing, turing)

----> turing doesn’t halt

----> turing halts

That was a diagonalization argument
def turing(program):
 if (halt(program, program)):
 while True:
 pass # i.e. do nothing
 return None

…

...

f1
f2

f3

f4

hf1ihf2ihf3ihf4i

…

...

1

1
1

1 1
1

1
1

H

H

H

HH

HH

H

turing 1 1H …H

Halting problem is undecidable

Consider the following TM (let’s call it):MTURING

Run with input .MHALT

MTURING

Treat the input as for some TM . hMi M

hM,Mi

If it accepts, go into an infinite loop.

If it rejects, accept (i.e. halt).

Suppose decides .HALTMHALT

Proof by a theoretical computer scientist:
HALT = {hM,xi : M is a TM and it halts on input x}

Halting problem is uncomputable

Consider the following TM (let’s call it):MTURING

Suppose decides .HALTMHALT

Proof by a theoretical computer scientist:

MTURING

hMi
hM,Mi MHALT

accept
reject accept

1

HALT = {hM,xi : M is a TM and it halts on input x}

Halting problem is uncomputable

What happens when is input to ? hMTURINGi MTURING

MTURING

hMi
hM,Mi MHALT

accept
reject accept

1

So what?

- No guaranteed autograder program.

- Consider the following program:
def fermat():
 t = 3
 while (True):
 for n in xrange(3, t+1):
 for x in xrange(1, t+1):
 for y in xrange(1, t+1):
 for z in xrange(1, t+1):
 if (x**n + y**n == z**n): return (x, y, z, n)
 t += 1

Question: Does this program halt?

So what?

numberToTest := 2; 
flag := 1; 
while flag = 1 do 
 flag := 0; 
 numberToTest := numberToTest + 2;  
 for p from 2 to numberToTest do  
 if IsPrime(p) and IsPrime(numberToTest−p) then  
 flag := 1; 
 break; #exits the for loop  
 end if  
 end for  
end do

Question: Does this program halt?

- Consider the following program (written in MAPLE):

Goldbach
Conjecture

So what?

- Reductions to other problems
 imply that those problems are undecidable as well.

Is there a program to determine if a given multivariate
polynomial with integral coefficients has an integral
solution?

Hilbert’s 10th Problem

Entscheidungsproblem
Is there a finitary procedure to determine the validity
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

So what?

Different laws of physics ----->

Different computational devices ----->

Every problem computable (?)

Can you come up with sensible laws of physics
such that the Halting Problem becomes computable?

Is there a way to show
other languages are undecidable?

Reductions

A central concept used to compare the “difficulty” of
languages/problems.

will differ based on context

Now we are interested in decidability vs undecidability
 (computability vs uncomputability)

Want to define: A  B

 is at least as hard as (with respect to decidability).AB

i.e., decidable decidable=)B A

 undecidable undecidable=) BA

Let and be two languages.A B

to mean

Reductions

A T B

Definition:
(reduces to)A B

if it is possible to decide
using a TM that decides as a subroutine.

A
B

To show :A T B

x

y MB

MA

- assume the existence of MB

- construct that uses as a subroutine. MA MB

Let and be two languages.A B

you want to specify
the orange part

Reductions

def fooB(input):
 # assume some code exists
 # that solves the problem B

def fooA(input):
 # some code that solves the problem A
 # that makes calls to function fooB when needed

To show :A T B

Give me the code for fooA.

So to show a reduction, you give an algorithm.

Reduction example
A:

B:

A reduces to B

Given a sequence of integers, and a number k,
is there an increasing subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8

Given two sequences of integers, and a number k,
is there a common inc. subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8
1, 5, 7, 9, 2, 4, 1, 0, 2, 0, 3, 0, 4, 0, 8

Give me an algorithm to solve A
assuming an algorithm for B is given for free.

Reduction example

def fooB(seq1, seq2, k):
 # assume some code exists
 # that solves the problem B

 return fooB(seq, sorted(seq), k)
def fooA(seq, k):

3, 1, 5, 2, 3, 6, 4, 8

1, 2, 3, 4, 5, 6, 7, 8

Wanted to define: to meanA  B

Reductions

 decidable decidable=)B A

 undecidable undecidable=) BA

 is at least as hard as (with respect to decidability).AB

i.e., decidable decidable=)B A
 undecidable undecidable=) BA

A T B (reduces to):A BIf

x

y MB

MA

Wanted to define: to meanA  B

Reductions

 is at least as hard as (with respect to decidability).AB

i.e., decidable decidable=)B A
 undecidable undecidable=) BA

A T B (reduces to):A BIf

x

y MB

MA

“The task of solving reduces to the task of solving .”A B

Reductions

We know is undecidable.HALT

 is undecidable!B

If HALT T B

x

y MB

MHALT

(You want to come up with an algorithm that solves
 the HALTING problem, assuming exists.) MB

x

If

Reductions

We know is undecidable.HALT

 is undecidable!B

HALT T B

y MB

MHALT

To show is undecidable, i.e. cannot exist:B MB

- assume it does exist
- then show how to decide HALT

Proving other languages are undecidable
via reductions

Example 1: ACCEPTS

Theorem:

is undecidable.

ACCEPTS = {hM,xi : M is a TM that accepts x}

 leads to a reject state, or loops forever.Mx

hM,xi is not in the language =)

hM,xi 2 HALT iff leads to an accept or reject state.x

 is in the language
M

x

hM,xi
 leads to an accept state in .

=)

hM,xi

MHALT

Example 1: ACCEPTS

Proof: (by picture)

hM,xi MACCEPTS
accept
reject

accept

hM 0
, xi MACCEPTS

accept
reject

accept
reject

reverse
accept & reject

states
hMi hM 0i

ACCEPTS = {hM,xi : M is a TM that accepts x}

Example 1: ACCEPTS

Proof:
We will show . HALT T ACCEPTS

Let be a TM that decides . MACCEPTS ACCEPTS

Here is a TM that decides :HALT

If it accepts, accept.

On input , run .hM,xi
MACCEPTS(hM,xi)

Reverse the accept and rejects states of . Call it . M M 0

Run .MACCEPTS(hM 0
, xi)

If it accepts (rejects), accept.M x

Reject.

ACCEPTS = {hM,xi : M is a TM that accepts x}

Example 1: ACCEPTS

Proof:
ACCEPTS = {hM,xi : M is a TM that accepts x}

Argue that if hM,xi 2 HALT

the machine accepts it.

And if hM,xi 62 HALT

the machine rejects it.

Interesting Observation

To show a negative result (that there is no algorithm)

we are showing a positive result (that there is a reduction)

Example 2: EMPTY

Theorem:

is undecidable.

EMPTY = {hMi : M is a TM that accepts no strings}

Suffices to show ACCEPTS T EMPTY

Example 2: EMPTY

EMPTY = {hMi : M is a TM that accepts no strings}
ACCEPTS = {hM,xi : M is a TM that accepts x}

MEMPTY

MACCEPTS

hM,xi

If we feed into , won’t quite work.hMi MEMPTY

, we can rejectif acceptsMEMPTY(hMi)
if rejectsMEMPTY(hMi) , we don’t know

hMi

Example 2: EMPTY

if accepts

We want such that:

MEMPTY(hM 0i)
M 0

, we reject

if rejectsMEMPTY(hM 0i) , we accept

MEMPTY

MACCEPTS

hM,xi
hM 0i

Construct s.t.: if accepts , only accepts . M
x M 0

x

 if rejects , rejects everything. M
x

M 0
M 0

Example 2: EMPTY

def M_ACCEPTS(< M, x >):

run M_EMPTY(< M’ >)
 if it accepts, reject
 if it rejects, accept

Creating an input that will
be fed into M_EMPTY

It depends on the
inputs M and x.

def M’(y):
if(y != x): reject
run M(y)
if it accepts, accept
if it rejects, reject

Mx
maybe a better name
for is .M’

Note: M_ACCEPTS defines M’, it does not run it!

Example 2: EMPTY

def M_ACCEPTS(< M, x >):

run M_EMPTY(< M’ >)
 if it accepts, reject
 if it rejects, accept

def M’(y):
if(y != x): reject
run M(y)
if it accepts, accept
if it rejects, reject

If M accepts x:

L(M 0) = {x}

If M rejects x:

L(M 0) = ;

possibly flip
the answer

A T B
MA

MBx

x

0

MEMPTY

MACCEPTS

hM,xi
hM 0i

This structure is very common

Example 3: EQ

Theorem:

is undecidable.

EQ = {hM1,M2i : M1 and M2 are TMs and L(M1) = L(M2)}

Suffices to show EMPTY T EQ

Example 3: EQ
EQ = {hM1,M2i : M1 and M2 are TMs and L(M1) = L(M2)}
EMPTY = {hMi : M is a TM that accepts no strings}

MEMPTY

MEQhMi hM1,M2i

MEQ

MEMPTY

hMi

Example 3: EQ
EQ = {hM1,M2i : M1 and M2 are TMs and L(M1) = L(M2)}
EMPTY = {hMi : M is a TM that accepts no strings}

MEMPTY

MEQhMi hM1,M2i

Let M1 = M

Let be the TM that rejects everything, i.e.M2 L(M2) = ;

Example 3: EQ

def M_EMPTY(< M >):

 def M’(y):
 reject

 run M_EQ(< M, M’ >)
 if it accepts, accept
 if it rejects, reject

L(M 0) = ;

HALT T ACCEPTS T EMPTY T EQ

HALT reduces to EMPTY

def M_HALT(< M, x >):

If M halts on x:

L(M 0) = ⌃⇤

If M does not halt on x:

L(M 0) = ;run M_EMPTY(< M’ >)
if it accepts, reject
if it rejects, accept

run M(x)
accept

def M’(y):

HALT reduces to EQ

def M_HALT(< M, x >):

If M does not halt on x:

L(M 00) = ;

L(M 0) = ;

If M halts on x:

L(M 00) = ⌃⇤

run M_EQ(< M’, M’’ >)
if it accepts, reject
if it rejects, accept

run M(x)
accept

reject

def M’’(y):

def M’(y):

Undecidable problems not involving Turing Machines

Entscheidungsproblem

Determining the validity of a given FOL sentence.
¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Undecidable!

Proved in 1936 by Turing.

Hilbert’s 10th Problem

Determining if a given multivariate polynomial with
integral coefficients has an integer root.

e.g.

Undecidable!
Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Does it have a real root? Decidable!

Does it have a rational root? No one knows!

5xy2z + 8yz3 + 100x99

Proved in 1951 by Tarski.

Post’s Correspondence Problem

Input: A finite collection of “dominoes”
 having strings written on each half.

Output: Accept if it is possible to match the strings.

abccabcc

abccabcc

Undecidable!
Proved in 1946 by Post.

Post’s Correspondence Problem

Proof idea:

Corresponding language is

PCP = {hDomino Seti : there’s a match}

Create a domino set such that only matches are
computation traces of that end in an accept state.M

ACCEPTS T PCPShow .

i.e. you want to solve
 assuming you can solve .

ACCEPTS
PCP

hM,xi �! hDomino Seti

Wang Tiles

Input: A finite collection of “Wang Tiles” (squares)
 with colors on the edges.

Output: Accept iff it is possible to make an infinite grid
 from copies of the given squares,
 where touching sides must color-match.

Undecidable!
Proved in 1966 by Berger.

Modular Systems

Input: A finite set of rules of the form

“from ax+ b, can derive cx+ d” where ,a, b, c, d 2 Z
and a starting integer , and a target integer .u v

Output: Accept iff can be derived starting from . v u

e.g.

“from 2x derive x”

“from 2x+ 1 derive 6x+ 4”

v = 1

Undecidable!
Proved in 1989 by Börger.

Mortal Matrices

Input: Two 21x21 matrices of integers and .A B

Output: Accept iff it is possible to multiply and
 together (multiple times in any order)
 to get to the 0 matrix.

A B

Undecidable!
Proved in 2007 by Halava, Harju, Hirvensalo.

Most problems are undecidable.

Some very interesting problems undecidable.

But most interesting problems are decidable.

So what next?

