
September 29th, 2015

15-251
Great Theoretical Ideas in Computer Science

Lecture 9:
Boolean Circuits

Where we are, where we are going
Computer science is no more about computers
than astronomy is about telescopes.

P
?
= NP

P vs NP is on the horizon

1 million dollar question

(or maybe 6 million dollar question)

P = NP ???

Computational complexity of an algorithm

Recall:

Definition:
The running time of an algorithm A is defined as

TA(n) = max

instances I
of size n

{# steps A takes on I}
worst-case

Computational complexity of a problem

Complexity of the best algorithm computing the problem.

The intrinsic complexity of a problem:

How to show an upper bound on the intrinsic complexity?

> Give an algorithm that solves the problem.

How to show a lower bound on the intrinsic complexity?

> Argue against all possible algorithms that solve
 the problem.

The dream: Get a matching upper and lower bound.

What is P ?

The set of languages that can be decided in

P

O(nk) steps for some constant .k

The theoretical divide between efficient and inefficient:

efficiently solvable.L 2 P

L 62 P not efficiently solvable.

What is P ?

In practice:

O(n)

O(n log n)

O(n2)

O(n3)

O(n5)

O(n100)

Awesome! Like really awesome!

Great!

Kind of efficient.

Barely efficient. (???)

Would not call it efficient.

Definitely not efficient!O(n10)

WTF?

Why P ?
- P is not meant to mean “efficient in practice”

- It means “You have done something extraordinarily
better than brute force (exhaustive) search.”

- Robust to notion of what is an elementary step,
 what model we use, reasonable encoding of input,
 implementation details.

- So P is about mathematical insight into a problem’s
structure.

- Plus, big exponents don’t really arise.

- If it does arise, usually can be brought down.

- Wouldn’t make sense to cut it off at some specific
exponent.

Why P ?

 Summary: Being in P vs not being in P
 is a qualitative difference, not a quantitative one.

What is NP ?

 steps for some constant .
The set of languages that can be decided in

EXP

O(kn) k > 1

EXP

P

NP

DECIDABLE LANGUAGES

and .

A class between

P EXP

NP :

What is NP ?

P
?
= NP

asks whether these two sets are equal.
P

NP

How would you show ?P = NP

How would you show ?P 6= NP

Show that every problem in
can be solved in poly-time.

NP

Show that there is a problem in
which cannot be solved in poly-time.

NP

You have to argue against
all possible poly-time TMs.

Boolean Circuits

Some preliminary questions

What is a Boolean circuit?
- It is a computational model for computing
 decision problems (or computational problems).

- The definition is simpler.

We already have TMs. Why Boolean circuits?

- Easier to understand, usually easier to reason about.

- Boolean circuits can efficiently simulate TMs.
(efficient decider TM efficient/small circuits.)=)

- Circuits are good models to study parallel computation.

- Real computers are built with digital circuits.

Sounds awesome!
So why didn’t we just learn about circuits first?

There is a small catch.

Stephen Kleene
(1909 - 1994)

An algorithm is a finite answer
to infinite number of questions.

Sounds awesome!
So why didn’t we just learn about circuits first?

There is a small catch.

Anil Ada
(???? - 2077)

Circuits are an infinite answer
to infinite number of questions.

Dividing a problem according to length of input

L ✓ {0, 1}⇤

⌃ = {0, 1}

Ln = {w 2 L : |w| = n}

L = L0 [L1 [L2 [· · ·

f : {0, 1}⇤ ! {0, 1}

fn : {0, 1}n ! {0, 1}

{0, 1}n = all strings of length n

for x 2 {0, 1}n,
f

n
(x) = f(x)

f = (f0, f1, f2, . . .)

Dividing a problem according to length of input

A TM is a finite object (finite number of states)
but can handle any input length.

Imagine a model where we allow the TM to grow
with input length.

input outputTM

computes L

TM0

L0

TM1

L1

TM2

L2

TM3

L3

…
…

Dividing a problem according to length of input

So one machine does not compute .L

You use a family of machines:

(M0,M1,M2, . . .)

Is this a reasonable/realistic model of computation?

(Imagine having a different Python function for each input length.)

Boolean circuits work this way.
Need a separate circuit for each input length.

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _

gates

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _

^ binary AND gate

_ binary OR gate

¬ unary NOT gate

xi input gate

output gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate

wires

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _

Information flows from input gates to the output gate.

No feedback loops
allowed!

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0 1 1

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0 1 1 1

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0 1 1

1

1

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0 1 1

1 00

1

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0 1 1

1 0 10

1

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0 1 1

1 0 10

1

0

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0 1 1

1 0 10

1

0 0

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _
¬ unary NOT gate

xi input gate

output gate
0 1 1 0

0 1 1

1 0 10

1

0 0

0

Computes a function .f : {0, 1}n ! {0, 1}
So how does it compute ?f(x1, x2, . . . , xn)

^ binary AND gate

_ binary OR gate

Poll: What does this circuit compute ?
(sometimes circuits are drawn upside down)

¬ ¬ ¬

¬¬

¬

^ ^ ^ ^

^^

_ _

_

Poll: What does this circuit compute ?
(sometimes circuits are drawn upside down)

¬ ¬ ¬

¬¬

¬

^ ^ ^ ^

^^

_ _

_

¬ ¬ ¬

¬¬

¬

^ ^ ^ ^

^^

_ _

_

Poll: What does this circuit compute ?
(sometimes circuits are drawn upside down)

parity of
x + x1 2

parity of
x + x3 4

x1 � x2 x3 � x4

x1 � x2 � x3 � x4

How does a circuit decide/compute a language?

How do we measure the complexity of a circuit?

How can a circuit compute a language?

A circuit family is a collection of circuits C (C0, C1, C2, . . .)

where each takes input variables.Cn n

A circuit has a fixed number of inputs.

How can we compute/decide a decision problem
f : {0, 1}⇤ ! {0, 1} with circuits?

Construct a circuit for each input length.

C C C C0 1 2 3 …

f0 f1 f2 f3

f = (f0, f1, f2, . . .) fn : {0, 1}n ! {0, 1}where

How can a circuit compute a language?

A circuit family is a collection of circuits C (C0, C1, C2, . . .)

where each takes input variables.Cn n

A circuit has a fixed number of inputs.

How can we compute/decide a decision problem
f : {0, 1}⇤ ! {0, 1} with circuits?

f = (f0, f1, f2, . . .) fn : {0, 1}n ! {0, 1}where

We say that a circuit family decides/computes
 if computes for every .

C
f : {0, 1}⇤ ! {0, 1} Cn fn n

Circuit size and complexity

(This is the intrinsic complexity with respect to circuit size)

The size of a circuit is the total number of gates
(counting the input variables as gates too) in the circuit.

Definition: [size of a circuit]

The circuit complexity of a decision problem
is the size of the minimal circuit family that decides it.

Definition: [circuit complexity]

The size of a circuit family
is a function such that is the size of . s(·) s(n) Cn

Definition: [size of a circuit family]
C = (C0, C1, C2, . . .)

Poll

Let be the parity decision problem.f : {0, 1}⇤ ! {0, 1}

f(x) = x1 � · · ·� xn

(where n = |x|)

What is the circuit complexity of this function?

Choose the tightest one:

O(2STACK(n))

O(n)

O(n2)

O(n2.5)

O(2n)

O(22
n

)

None of the above. Beats me.

f(x) = x1 + . . .+ xn mod 2

Poll

¬ ¬ ¬

¬¬

¬

^ ^ ^ ^

^^

_ _

_

s(1) = 1 =) s(n) = O(n).
s(n) = 2s(n/2) + 5

The big picture

Theorem: Any decision problem f : {0, 1}⇤ ! {0, 1}
can be computed by a circuit family of size O(2n).

Computability with respect to circuits

The big picture

Limits of efficient computability
with respect to circuits

 .

Theorem: There exists a decision problem such that
any circuit family computing it must have size at least

2n/4n

In fact, most decision problems require exponential size.

The big picture

Circuits can efficiently “simulate” TMs

Theorem: Let be a decision problemf : {0, 1}⇤ ! {0, 1}
which can be decided in time O(T (n)).

Then it can be computed by a circuit family of size
O(T (n)2).

poly-time TM poly-size circuits=)
no poly-size circuits no poly-time TM=)

The big picture

Circuits can efficiently “simulate” TMs

P

NP
h

To show : P 6= NP

Find in NP whose circuit complexity
is

h
more than poly(n).

The big picture

So we can just work with circuits instead

This is awesome in 2 ways:

Circuits: clean and simple definition of computation.
“Just” a composition of AND , OR , NOT gates.

1.

2. Restrict the circuit.

Make it less powerful.

e.g. (i) restrict depth

 (ii) restrict types of gates

The big picture

So we can just work with circuits instead

Exciting progress was made in the 1980s.

People thought would be proved soon. P 6= NP

Alas…

After 60 years of research,
best lower bound on circuit size for an explicit function:

5n� peanuts

 .

The big picture

Theorem:

Theorem:

Theorem:

Any decision problem f : {0, 1}⇤ ! {0, 1}
can be computed by a circuit family of size O(2n).

There exists a decision problem such that
any circuit family computing it must have size at least

2n/4n

Let be a decision problemf : {0, 1}⇤ ! {0, 1}
which can be decided in time O(T (n)).

Then it can be computed by a circuit family of size
O(T (n)2).

A small break

Alan Turing
(1912 - 1954)

A small break

Theorem 1: Max circuit size of a function

Theorem: Any decision problem f : {0, 1}⇤ ! {0, 1}
can be computed by a circuit family of size O(2n).

Proof:

construct a circuit of size for .fn : {0, 1}n ! {0, 1}O(2n)
Goal:

Observation:

f

n(x1, x2, . . . , xn) (x1 ^ f

n(1, x2, . . . , xn))

(¬x1 ^ f

n(0, x2, . . . , xn))

= _

Theorem 1: Max circuit size of a function

Theorem: Any decision problem f : {0, 1}⇤ ! {0, 1}
can be computed by a circuit family of size O(2n).

Proof:

construct a circuit of size for .fn : {0, 1}n ! {0, 1}O(2n)
Goal:

Observation:

f

n(x1, x2, . . . , xn) (x1 ^ f

n(1, x2, . . . , xn))

(¬x1 ^ f

n(0, x2, . . . , xn))

= _

if x = 11
0 0

1

Theorem 1: Max circuit size of a function

Theorem: Any decision problem f : {0, 1}⇤ ! {0, 1}
can be computed by a circuit family of size O(2n).

Proof:

construct a circuit of size for .fn : {0, 1}n ! {0, 1}O(2n)
Goal:

Observation:

f

n(x1, x2, . . . , xn) (x1 ^ f

n(1, x2, . . . , xn))

(¬x1 ^ f

n(0, x2, . . . , xn))

= _

if x = 01
1

00

Theorem 1: Max circuit size of a function
Proof (continued):

x2 x3 xnx1 …

_

¬
^^

=) s(n) = O(2n)

f

n(0, x2, . . . , xn)f

n(1, x2, . . . , xn)

s(n) 2s(n� 1) + 5

s(n) = max size of a circuit computing n-variable function

s(1) 3,

Poll

How many different functions f : {0, 1}n ! {0, 1}
are there?

-

-

-

-

n

n2

2n

22
n

- none of the above

- beats me

- 2STACK(n)

- 2n

Theorem 2: Some functions are hard

Proof:

 .

Theorem: There exists a decision problem such that
any circuit family computing it must have size at least

2n/4n

Want to show: there is a function f : {0, 1}n ! {0, 1}
that cannot be computed by a circuit of size . 2n/4n<

Observation: # possible functions is .22
n

Claim1: # circuits of size at most s is . 24s log s

Claim2: For , .s 2n/4n 24s log s < 22
n

circuits < # functions

Theorem 2: Some functions are hard

Proof:

 .

Theorem: There exists a decision problem such that
any circuit family computing it must have size at least

2n/4n

Want to show: there is a function f : {0, 1}n ! {0, 1}
that cannot be computed by a circuit of size . 2n/4n<

Observation: # possible functions is .22
n

Claim1: # circuits of size at most s is . 24s log s

Claim2: For , .s 2n/4n 24s log s < 22
n

We are done once we prove Claim 1. (Claim 2 is super easy.)

Theorem 2: Some functions are hard
Proof (continued):

Proof of claim:

Let A = {circuits of size at most s}
B = {0, 1}4s log s

(just like the CS method)

Claim1: # circuits of size at most s is . 24s log s

|B| = 24s log s

Recall iff . |A| |B| B ⇣ A

To show :

encode a circuit with a binary string of length .
4s log s

B ⇣ A

Theorem 2: Some functions are hard

Claim1: # circuits of size at most s is . 24s log s

Proof (continued):

Proof of claim (continued):

For each gate in the circuit, write down:
- type of the gate
- from which gates the inputs are coming from

(2 log s bits)

Total: s(2 + 2 log s) bits

(2 bits)

Number the gates: 1, 2, 3, 4, …, s

Encoding a circuit with a binary string of length :
4s log s

≤ (4s log s) bits(2s + 2s log s) bits

Theorem 2: Some functions are hard

In fact, it is easy to show that most functions require
exponential size circuits.

A non-constructive argument.

That was due to Claude Shannon (1949).

Claude Shannon
(1916 - 2001)

Father of Information Theory.

Theorem 3: Circuits can simulate TMs

Theorem: Let be a decision problemf : {0, 1}⇤ ! {0, 1}
which can be decided in time O(T (n)).

Then it can be computed by a circuit family of size
O(T (n)2).

How can you prove such a theorem?

If you like a challenge, try to prove it yourself.

If you don’t like a challenge, but still curious,
see the course notes for a sketch of the proof.

If you don’t like a challenge, and are not curious,
you can ignore the proof.😞

P
?
= NP

