15-251
Great Theoretical ldeas in Computer Science

Lecture 9:
Boolean Circuits

September 29th, 2015

Where we are, where we are going

Combputer science is no more about computers
than astronomy is about telescopes.

Monday Tuesday Wednesday Thursday Friday
Aug 31 Sep1 Sep 2 Sep 3 Sep 4
Introduction On proofs Quiz 1
Sep7 Sep 8 Sep 9 Sep 10 Sep 11
Finite automata hw1 w.s. Turing machines Quiz 2
Sep 14 Sep 15 Sep 16 Sep 17 Sep 18
Uncountability hw2 w.s. Undecidability Quiz 3
Sep 21 Sep 22 Sep 23 Sep 24 Sep 25
Intro to complexity 1 hw3 w.s. Intro to complexity 2 Quiz 4
Sep 28 Sep 29 Sep 30 Oct 1 Oct 2
Circuit complexity hw4 w.s. Graphs 1 Quiz 5
Oct 5 Oct 6 Oct 7 Oct 8 Oct 9
Graphs 2 hw5 w.s. Graphs 3 Quiz 6
Oct 12 Oct 13 Oct 14 Oct 15 ct 1
Reductions Midterm 1 NP-completeness Quiz 7

P = NP

P vs NP is on the horizon

ABOUT PROGRAMS MILLENNIUM PEOPLE PUBLICATIONS EUCLID EVENTS

Millennium Problems

Yang-Mills and Mass Gap

Experiment and computer simulations suggest the existence of a "mass gap" in the solution to the quantum versions of the Yang-Mills equations. But no

| million dollar question
Riemann Hypothesis

The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average.

proof of this property is known.

Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part 1/2.

————— (or maybe 6 million dollar question

at a solufion to a problem is correct, is it also easy to solve the problem? This is the essence of the P vs NP question. Typical of the

LIS €asy to chec
NP problems is that of the Hamiltonian Path Problem: given N cities to visit, how can one do this without visiting a city twice? If you give me a solution, |

= 20?
Navier-Stokes Equation P N P R

This is the equation which governs the flow of fluids such as water and air. However, there is no proof for the most basic questions one can ask: do

can easily check that it is correct. But | cannot so easily find a solution.

solutions exist, and are they unique? Why ask for a proof? Because a proof gives not only certitude, but also understanding.

Hodge Conjecture

The answer to this conjecture determines how much of the topology of the solution set of a system of algebraic equations can be defined in terms of
further algebraic equations. The Hodge conjecture is known in certain special cases, e.g., when the solution set has dimension less than four. But in
dimension four it is unknown.

Poincaré Conjecture

In 1904 the French mathematician Henri Poincaré asked if the three dimensional sphere is characterized as the unique simply connected three
manifold. This question, the Poincaré conjecture, was a special case of Thurston's geometrization conjecture. Perelman's proof tells us that every three
manifold is built from a set of standard pieces, each with one of eight well-understood geometries.

Birch and Swinnerton-Dyer Conjecture

Supported by much experimental evidence, this conjecture relates the number of points on an elliptic curve mod p to the rank of the group of rational
points. Elliptic curves, defined by cubic equations in two variables, are fundamental mathematical objects that arise in many areas: Wiles' proof of the
Fermat Conjecture, factorization of numbers into primes, and cryptography, to name three.

Computational complexity of an algorithm

Recall:

Definition:

The running time of an algorithm A is defined as

worst-case
Ta(n) = steps A takes on [}

instances [

\ of size n /

Computational complexity of a problem

The intrinsic complexity of a problem:

Complexity of the best algorithm computing the problem.

How to show an upper bound on the intrinsic complexity?

> Give an algorithm that solves the problem.

How to show a lower bound on the intrinsic complexity?

> Argue against all possible algorithms that solve
the problem.

The dream: Get a matching upper and lower bound.

What is P ?

P

The set of languages that can be decided in
O(n®) steps for some constant £.

The theoretical divide between efficient and inefficient:

L € P —— efficiently solvable.
L ¢ P —» not efficiently solvable.

What is P ?

In practice:

O(n) Awesome! Like really awesome!
O(nlogn) Great!

O(n?) Kind of efficient.

O(n?) Barely efficient. (227)

O(n°) Would not call it efficient.
O(n'?) Definitely not efficient!

O(n') WTF?

Why P ?

- P is not meant to mean “efficient in practice”

- It means “You have done something extraordinarily
better than brute force (exhaustive) search.”

- So P is about mathematical insight into a problem’s
structure.

- Robust to notion of what is an elementary step,
what model we use, reasonable encoding of input,
implementation details.

- Wouldn’t make sense to cut it off at some specific
exponent.

- Plus, big exponents don’t really arise.

- If it does arise, usually can be brought down.

Why P ?

Summary: Being in P vs not being in P
is a qualitative difference, not a quantitative one.

What is NP ?

EXP

The set of languages that can be decided in
O(k™) steps for some constant k& > 1.

DECIDABLE LANGUAGES

EXP

NP NP:
A class between

P and EXP.

What is NP ?

NP
P = NP

asks whether these two sets are equal.

How would you show P = NP ?

Show that every problem in NP
can be solved in poly-time. [

You have to argue against
all possible poly-time TMs.

How would you show P = NP?

Show that there is a problem in NP
which cannot be solved in poly-time.

Boolean Circuits

Some preliminary questions

What is a Boolean circuit?

- It is a computational model for computing
decision problems (or computational problems).

We already have TMs. Why Boolean circuits!?
- The definition is simpler.
- Easier to understand, usually easier to reason about.

- Boolean circuits can efficiently simulate TMs.
(efficient decider TM = efficient/small circuits.)

- Circuits are good models to study parallel computation.

- Real computers are built with digital circuits.

Sounds awesome!

So why didn’t we just learn about circuits first?

There is a small catch.

[
An algorithm is a finite answer
to infinite number of questions.

-

~

-

Stephen Kleene
(1909 - 1994)

Sounds awesome!

So why didn’t we just learn about circuits first?

There is a small catch.

-

-

Circuits are an infinite answer
to infinite number of questions.

~

/

Anil Ada
(2222 - 2077)

Dividing a problem according to length of input

> = {0,1}

L C{0,1}*

L,={welL:|w=n}

L=LoUL;ULyU---

f:4{0,1}* —{0,1}

{0,1}"™ = all strings of length n

fr:.4{0,1}" —{0,1}
for z € {0,1}",
f*(z) = f(z)

F=(0 1)

Dividing a problem according to length of input

A TM is a finite object (finite number of states)
but can handle any input length.

input —{ ™ J—» output

computes L

Imagine a model where we allow the TM to grow
with input length.

SONET T

Dividing a problem according to length of input

So one machine does not compute L.

You use a family of machines:

(Mo, M+, Ms, ...)

(Imagine having a different Python function for each input length.)
s this a reasonable/realistic model of computation!?

Boolean circuits work this way.
Need a separate circuit for each input length.

Picture of a circuit

©

@ @@ - @

Picture of a circuit

@ > gates
/
® @

@ @ @ - @

Picture of a circuit

©

@ @@ - @

@ binary OR gate
@ binary AND gate

@ unary NOT gate
@ Input gate

é output gate

Picture of a circuit

@ binary OR gate
@ binary AND gate

@ unary NOT gate
@ Input gate

é output gate

Picture of a circuit

@ ®
a a @ No feedback loops

allowed!

@ @@ - @

Information flows from input gates to the output gate.

Picture of a circuit

®

©

@
0

©

o
@)

0

@ binary OR gate
@ binary AND gate

@ unary NOT gate
@ Input gate

é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

&D @ binary OR gate
A () binary AND gate

(=) unary NOT gate

() input gate

@ @ é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

&D @ binary OR gate
A () binary AND gate

(=) unary NOT gate

| () input gate

@ @ é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

&D @ binary OR gate
A () binary AND gate

(=) unary NOT gate

| () input gate

@ @ é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

@ binary OR gate
@ binary AND gate

@ unary NOT gate
@ Input gate

é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

@D (V) binary OR gate
A () binary AND gate

(=) unary NOT gate

| O () input gate

T @ |) oupuegue

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

@ binary OR gate
@ binary AND gate

@ unary NOT gate
@ Input gate

é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

@D @ binary OR gate
2 A () binary AND gate
| @ unary NOT gate
| O () input gate
@ @09 é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

@D @ binary OR gate
2 O () binary AND gate
| @ unary NOT gate
| O () input gate
@ @09 é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Picture of a circuit

ég @ binary OR gate
A () binary AND gate
| @ unary NOT gate
| O () input gate
@ @09 é output gate

Computes a function f:{0,1}" — {0, 1}.

So how does it compute f(z1,x2,...,2,)!

Poll: What does this circuit compute !

(sometimes circuits are drawn upside down)

QQQQ > 9@ S
e?,e

Poll: What does this circuit compute !

(sometimes circuits are drawn upside down)

QQQQ > 9@ S
e?,e

Poll: What does this circuit compute !

(sometimes circuits are drawn upside down)

parity of
X| * X

T D T2

T1 D T2 D T3 DXy

parity of
X3 ¥ X4

T3 D Ta

How does a circuit decide/compute a language?

How do we measure the complexity of a circuit?

How can a circuit compute a language!
A circuit has a fixed number of inputs.

How can we compute/decide a decision problem
f:40,1}* — {0, 1} with circuits?

f:(f07f17f27-.-) where fn{ovl}n%{o’l}

Construct a circuit for each input length.

) G Gt

A circuit family C'is a collection of circuits (Cy, C7,Co, .. .)

where each (', takes 71 input variables.

How can a circuit compute a language!
A circuit has a fixed number of inputs.

How can we compute/decide a decision problem
f:40,1}* — {0, 1} with circuits?

f:(f07f17f27-.-) where fn{ovl}n%{()’l}

A circuit family C'is a collection of circuits (Cy, C7,Co, .. .)

where each (,, takes n input variables.

We say that a circuit family C' decides/computes
f:{0,1}* — {0,1} if C,, computes f" for every n.

Circuit size and complexity

.

(Definition: [size of a circuit]

The size of a circuit is the total number of gates
(counting the input variables as gates too) in the circuit.

_

.

Definition: [size of a circuit family]

The size of a circuit family C' = (Cy, C1,Co, .. .)
is a function s(-) such that s(n) is the size of C, .

/

_

‘Definition: [circuit complexity]

.

The circuit complexity of a decision problem
is the size of the minimal circuit family that decides it.

J

(This is the intrinsic complexity with respect to circuit size)

Poll

Let f:{0,1}" — {0,1} be the parity decision problem.
fle)=21+...4+x, mod 2 (where n = |x|)

What is the circuit complexity of this function?

Choose the tightest one:

O(n) 0(2772
O(n?) 0(2*)
O(n*°) O(2STACK(n))

None of the above. Beats me.

The big picture

Computability with respect to circuits

can be computed by a circuit family of size O(2").

a)
Theorem: Any decision problem f:{0,1}" — {0,1}

_/

The big picture

Limits of efficient computability
with respect to circuits

[Theorem: There exists a decision problem such that A
any circuit family computing it must have size at least
2" [4An,,

(27 /4n y

In fact, most decision problems require exponential size.

The big picture

Circuits can efficiently “simulate” TMs

a)
Theorem: Let f : {0,1}" — {0, 1} be a decision problem

which can be decided in time O(7'(n)).

Then it can be computed by a circuit family of size
O(T(n)?).

-

poly-time TM = poly-size circuits
no poly-size circuits = no poly-time TM

The big picture

Circuits can efficiently “simulate” TMs

NP To show P # NP:

h Find 7 in NP whose circuit complexity

is more than poly(n).

The big picture

So we can just work with circuits instead

This is awesome in 2 ways:

I Circuits: clean and simple definition of computation.
“Just” a composition of [AND], (OR], ([NOT/ gates.

fn(ibl, LYy o« ,iBn)

2 Restrict the circuit. R

Make it less powerful.
depth

e.g. (i) restrict depth) (AND) (NOT)

(i) restrict types of gates T1 Ty Tz 0 Tn

The big picture

So we can just work with circuits instead

Exciting progress was made in the 1980s.

People thought P % NP would be proved soon.

Alas...

After 60 years of research,
best lower bound on circuit size for an explicit function:

Sn — peanuts

The big picture

-)
Theorem: Any decision problem f:{0,1}" — {0,1}
can be computed by a circuit family of size O(2"). y
a . - A
Theorem: There exists a decision problem such that
any circuit family computing it must have size at least
2" [An
\ _/

a)
Theorem: Let f : {0,1}" — {0, 1} be a decision problem

which can be decided in time O(7'(n)).

Then it can be computed by a circuit family of size
O(T(n)?).

-

A small break

vvvvv

Alan Turing
(1912 - 1954)

A small break

Theorem |: Max circuit size of a function

a)
Theorem: Any decision problem f:{0,1}" — {0,1}
can be computed by a circuit family of size O(2"). y
Proof:
Goal:

construct a circuit of size O(2") for f™ :{0,1}" — {0,1}.

Observation:

ff(xy,29,...,2n) = (1 A f"(1,29,...,2,)) V
(—ICC1 A\ fn(O,CCQ, .« . ,ZL’n))

Theorem |: Max circuit size of a function

4)
Theorem: Any decision problem f :{0,1}* — {0,1}
can be computed by a circuit family of size O(2").)
Proof:
Goal:

construct a circuit of size O(2") for f™ :{0,1}" — {0,1}.

Observation:

Theorem |: Max circuit size of a function

4)
Theorem: Any decision problem f :{0,1}* — {0,1}
can be computed by a circuit family of size O(2").)
Proof:
Goal:

construct a circuit of size O(2") for f™ :{0,1}" — {0,1}.

Observation:

f”(xl,xg, e ,LEn) = W'(l,&?z, e /’rm\)_ V
ifX|=O (_\'I\l /\(fn(oaxZw"axn)))

Theorem |: Max circuit size of a function

Proof (continued):

fr(1,xe,...,x,)
[t —
4

371 332 CES oo :Cn

s(n) = max size of a circuit computing n-variable function

s(n) < 2s(n—1)+5, s(1)<3 = s(n)zO(Z”)D

Poll

How many different functions f: {0,1}" — {0,1}
are there!

- n

- 2n

- n2

. 9n

- 92"

- 2STACK(n)

- none of the above

- beats me

Theorem 2: Some functions are hard

-

Theorem: There exists a decision problem such that

any circuit family computing it must have size at least

o /4
2" /4n. p

Proof:
Want to show: there is a function f :{0,1}" — {0,1}

that cannot be computed by a circuit of size < 2" /4n.

Observation: # possible functions is 22"
Claim|: # circuits of size at most s is < 2451085
Claim2: For s <2"/4n, gdslogs - 92"

circuits < # functions

Theorem 2: Some functions are hard

-)
Theorem: There exists a decision problem such that

any circuit family computing it must have size at least

2" J4n.
(2" /4n y

Proof:
Want to show: there is a function f : {0,1}" — {0,1}

that cannot be computed by a circuit of size < 2" /4n.

Observation: # possible functions is 22"

Claim|: # circuits of size at most s is < 2451085
Claim2: For s <2"/4n, gdslogs - 92"

We are done once we prove Claim |. (Claim 2 is super easy.)

Theorem 2: Some functions are hard

Proof (continued):

Claim|: # circuits of size at most s is < 2451085

Proof of claim:
Recall |A| < |B| iff B— A.

Let A = {circuits of size at most s}
B — {O, 1}4slogs ‘B‘ _ 245 log s

Toshow B — A:

encode a circuit with a binary string of length 4slog s.

(just like the CS method)

Theorem 2: Some functions are hard

Proof (continued):

Claim|: # circuits of size at most s is < 2451085

Proof of claim (continued):

Encoding a circuit with a binary string of length 4slog s :
Number the gates: 1,2,3,4,...,s

For each gate in the circuit, write down:
- type of the gate (2 bits)
- from which gates the inputs are coming from
(2 log s bits)
Total: s(2 + 2 log s) bits
(2s *+ 2s log s) bits < (4s log s) bits []

Theorem 2: Some functions are hard

That was due to Claude Shannon (1949).

Father of Information Theory.

Claude Shannon
(1916 - 2001)

A non-constructive argument.

In fact, it is easy to show that most functions require
exponential size circuits.

Theorem 3: Circuits can simulate TMs

(Theorem: Let f : {0,1}" — {0, 1} be a decision problen?

which can be decided in time O(7'(n)).

Then it can be computed by a circuit family of size
O(T(n)?).

_

How can you prove such a theorem!?

If you like a challenge, try to prove it yourself.

If you don’t like a challenge, but still curious,
see the course notes for a sketch of the proof.

If you don’t like a challenge, and are not curious,
-- you can ignore the proof.

P= NP

