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MILLENNIUM PRIZE PROBLEMS

* Seven famous problems in math stated in
2000 by the Clay Foundation

« $1,000,000 prize for solving any of them
* One of the problems: P vs. NP
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MILLENNIUM PRIZE PROBLEMS

It one is solved in the

next few years, it’ll
probably be P vs. NP

Keith Devlin

If, in the year 3000,
one of them is

unsolved, 1t will be
P vs. NP

W 2]

Laszlo Lovasz

. 15-251 Fall 2015: Lecture 13 Carnegie Mellon University 3



MILLENNIUM PRIZE PROBLEMS

 The P vs. NP problem is the only

Millennium Prize problem that has the
potential to change the world

e So what is it?
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SUDOKU
* SUDOKU: Given a partially filled
n X n Xn Xn Sudoku board, can it be filled?
* Naive decision algorithm: Check all
possibilities, in time O(n2"4)
 Verifying a solution: 0(n*)
* Forn =100

o Veritying a solution: 100M steps
o Deciding YES/NO: Number with 400M digits!
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SUDOKU

* Question: Is there a polynomial-time
algorithm that can solve SUDOKU?

* This is equivalent to the P vs. NP
problem!

Is this famous problem
really about Sudoku?
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P vs. NP

e Informal formulation of P vs. NP:
o Let L be an algorithmic task

o Suppose there is an efficient algorithm for
verifying solutions to L (L € NP)

o Is there an efficient algorithm for finding
solutions to L? (L € P)

SUDOKU is not just one instance
of this problem; if the answer is
“yes” for SUDOKU, it is “yes” in
general!
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EFFICIENCY

» Efficient = polynomial time

* (Given a decision problem L, x € L means
that x is a YES instance of L; |x| is its size

P = Decision problems L such that there
exists a constant ¢ and an algorithm A
such that A runs in time |x|¢ and A(x) =
YES if and only if x € L

e We saw last time that 2-COLORING is in P
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VERIFYING SOLUTIONS

* In problems like SUDOKU, verifying the solution
can be done etficiently

* NP = Decision problems whose solutions can be
verified in polynomial time in their input size

The N in NP stands
for “nondeterministic”

15-251 Fall 2015: Lecture 13 Carnegie Mellon University 11



NP: SEMI-FFORMAL DEFINITION

L € NP if and only if there are constants
¢,d and an algorithm V' called the verifier
such that:

o V takes two inputs, x and y, where |y| <
|x|€; x is called the instance and y is called
the certificate

o V(x,y) runs in time O ((lxl + |y|)d)

- If x € L, 3y such that V(x,y) = YES
o Ifxe& L, Vy, V(x,y) = NO
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EXAMPLES

513
6 1 5
. o 98 6
 SUDOKU: Given a partially : s 3
. 4 8 3 1
filled n X n X n X n Sudoku ; : :
board, can it be completed? R N A
. 8 7|9
. o
Input size: n Instence
e (Certificate: board filled with SRS
numbers 6|7|2[1]o5]3]a]s
119|813 |4|2|5|6|7
e Verifier: Check that each e I
square, row, and column AREEAEYEI A RILAL
9(6|1)53|7|12|8|4
contain all numbers 2|a]7faf1]of6]s]s
3|/4|5]|2|8|6)1|7]|9

Certificate
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EXAMPLES

 HAMILTONIAN-CYCLE: Given a
graph G = (V,E), does it contain
a Hamiltonian cycle?

* Input size: n = |V|

Instance

* (Certificate: A permutation of the
n vertices

e Verifier: Check that the
permutation contains each vertex
exactly once, and there is an
edge between adjacent vertices Certificate
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EXAMPLES

e INDEPENDENT-SET: Given a
oraph G = (V,E) and k €

N, does G contain an + 3

independent set of size k?

* Input size: n = |V| Instance
e (Certificate: k vertices
e Veritier: Check that there
are no edges between pairs
of vertices
Certificate
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EXAMPLES

e Poll 1: Which of the following two
problems is in NP7

(1) Given numbers ay, ...,a, and k € N, is there
a subset S such that };cca; = k7

2. Given a graph G and k € N, is the largest
clique of size at most k'

3. Both
1. Neither
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EXAMPLES

e Poll 2: Which of the following two
problems is in NP7

1. Given a graph G, does it not have a 2-
coloring?

2. Given a graph G, does it not have an
Fulerian cycle?

@ Both

1. Neither
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P vs. NP
e Theorem: P € NP

* Prootf:
o Suppose L € P

o Let A be a poly-time algorithm that decides
L

o The verifier IV takes as input the instance x
and an empty certificate y

o V(x,y) outputs A(x) m
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P vs. NP

* We know that P € NP; does P = NP?

 If P = NP then there would be an
efficient algorithm for SUDOKU,
3-COLORING, CIRCUIT-SAT... Awesome!

 If P # NP then there is some particular
L € NP such that L € P; but maybe it is

an obscure L7
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THE COOK-LEVIN THEOREM

* Theorem (Cook 71, Levin 73):
P = NP if and only if
CIRCUIT-SAT € P

* In particular, if P # NP then
CIRCUIT-SAT € P

* In a sense, CIRCUIT-SAT is the
hardest problem in NP
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REDUCTIONS, REVISITED

* L has a polynomial time reduction to L,
denoted L <% L', if and only if it is pos&ble
to solve L in polynomlal time using a
polynomial-time algorithm for L'

e If L <% L' then:
. LeP=>LEeP
2 LeP=>L¢P
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THE HARDEST PROBLEM(S)

o If CIRCUIT-SAT is in P then all of NP is
in P

* Last lecture: there is a poly-time reduction
from CIRCUIT-SAT to 3-COLORING

= It 3-COLORING is in P then CIRCUIT-
SAT is in P, and hence all of NP is in P

= P = NP if and only if 3-COLORING € P
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THE HARDEST PROBLEM(S)

* Theorem (Yato-Seta 2002): There is a

poly-time reduction from 3-COLORING to
SUDOKU

= If SUDOKU is in P then 3-COLORING is
in P, and hence all of NP is in P

= P = NP if and only if SUDOKU € P
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COOK-LEVIN, REVISITED

 Actual statement of Cook-Levin: Let L €
NP, then there is a poly-time reduction

from L to CIRCUIT-SAT

CIRCUIT-SATE P =>P = NP
P = NP = CIRCUIT-SAT € P
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NP-COMPLETENESS

* L is NP-hard if every problem in NP has
a polynomial time reduction to L

* L is NP-complete if L € NP and L is
NP-hard

* To show that a problem is NP-complete:
o oShow that it is in NP

o Show that a known NP-hard problem
reduces to it
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NP-COMPLETENESS

[AH problems in NP}
v
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ES—COLORING} [ SUDOKU } [ INDEP.-SET }
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NP-COMPLETE PROBLEMS

* Tens of thousands of problems are known
to be NP-complete

* If even one of them has a poly-time
algorithm then all of them are in P

& 15-251 Fall 2015: Lecture 13 Carnegie Mellon University 27




NP-COMPLETE PROBLEMS

* CYCLE-COVER: Given a
directed graph and L € N,
is there a collection of
disjoint cycles of length < L
that covers = k vertices?

e Theorem: CYCLE-COVER
is NP-complete

* Relevant to kidney
exchange
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P-COMPLETE PROBLEMS

e ———
Artificial Intelligence
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ARTICLE INFO ABSTRACT

The voting rules proposed by Dodgson and Young are both designed to find an alternative
t winner, 3ccording to two different notions of proximity; the
e is known to be hard to compute under either rule, In this paper,
we put forward two algorithms for approcimating the Dodgson score: a combinatorial
gmcdy algorithm and an LP-based algorithm, both of which yield an approximation ratio of

o
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in revised form B April 2012
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Availanie oniine 16 Apil 2012

Keyworas — Hy_1. where m is the number of alternatives and Hg, 1 is the (m — 1)st harmenic number,
Compurationai social We also prove that our algorithms are optimal within a factor of 2. unless problems in
Approimation algorsthms AP have quasi-polynomiah-time algorithms. Despite the intuitive appeal of the greedy

algorithm, we argue that the LP-based algorithm has an advantage from a social choice
point of view. Further, we demanstrate that computing any reasonable approximation of
the ranking produced by Dodgson’s rule is AP-hard. This result provides a complexity-
theoretic explanation of sharp discrepancies that have been abserved in the social choice
theory literature when comparing Dodgsan elections with simpler voring ules, Finaly. we
show that the problem of calculating the Young score is A'P-hard to .\ppr:mm'llc by any
factor. This leads to an inappraximability result for the Young rankin

o 2012 Eseier BY. Al rights reserved.

1. Intreduction

The discipline of voting theory deals with the following setting: there is a group of n agents and each of them ranks a
set of m alternatives; one alternative is to be elected. The big question is: which alternative best reflects the social good?

This question is fundamental to the study of multiagent systems, because the agents of such a system often need to
combine their individual objectives into 3 single ourput or decision that best reflects the aggregate needs of all the agents
in the system. For instance. web meta-search engines [12] and recommender systems [21] have used methods based on
woting theory.

Reflecting on this question. the French philosopher and Marie Jean Antoine Nicolas de Caritat, marquis de
Condorcet, suggested the following intuitive criterion: the winner should be an alternative that beats every other alternative
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Proof. Let H <. be a cover for (U,.S) with |H| = K. By the definition of a cover, H covers all elements of U. Hence, by
pushing a* to the first position in the preference of the critical agent £' such that 5 < H. a* will decrease its deficit with
respect to each of the basic alternatives by 1, and hence it will become a Condorcet winner. The total number of positions
o rises is at most [H| - (1Z|+n) = (1 + OnK. O

Lemma 5.5. If every cover of (U, 5) has size at least a.X Inn. then a* has Dodgson score ot least a:CKninn.

Proof. We first assume that the minimum number of positions a* has to rise in order to beat the basic alternatives and
become a Condorcet winner includes raising a® by at least |F| positions in the ranking of some indifferent agent r'. Hence,
a* rises |F| positions in the preference of ' in order to reach position |\ +1 and at least n additional positions in order
10 beat the basic alternatives. Its Dodgson scare s thus at least |F| +n 3 atKninn

Now, assume that the minimum number of positions o* has o rise in order (o beat the basic alternatives does not
include raising a* by at least |F| positions in the ranking of some indifferent agent. We will show that if the Dodgson scare
of g* is less than of Knlnn. then there exists a cover of (U.S) of size less than o Inn. contradicting the assumption of
the lemma.

Let H be the set of critical agents in whose preferences a* is pushed at least |Z| positions higher. Over all the preference
lists of all the agents in H, a* rises a total of [H]-|Z| positions in order to reach position |S;| + 1 in each list, plus at least n
additional pasitions in order to decrease by 1 its deficit with respect 1o each of the alternatives in U. So, recalling | Z| — n,
a* rises at least ¢|HIn +n positions. Denoting the Dodgson score of ¢* by scpig*). we thus have |H| < Frsca(a®) — § <
oK Inn._ The proof is completed by observing that the union of the sets S; for each critical agent ¥ belonging to H contains
all the basic alternatives. ie. H corresponds to a cover for (U, 5) of size less than eKlnn. ©

This completes the proof of Theorem 5.1. O

52. Inappraximability of Dodgson rankings

A question related 1o the appreximability of Dodgson scores s the appraximability of the Dodgson ranking, that is, the
ranking of alternatives given by ordering them by nondecreasing Dodgson score. To the best of our knowledge. no rank
aggregation function, which maps preference profiles to rankings of the alternatives, is known to provably produce rankings
that are close to the Dodgson ranking [38,39.27-29] (see the survey of related work in Section 1).

Our next result establishes that efficient approximation aigorithms for Dodgson ranking are unlikely to exist unless
P = A'P. It does so by proving that the problem of distinguishing between whether a given alternative is the unique
DDd’sDn winner or in the last O(/m) positions is A"P-hard. This result provides a complexity-theoretic explanation for
the sharp discrepancies observed in the Social Choice Theory literature when comparing Dodgson elections With simpler,
efficiently computable, voting rules.

Theorem 5.6. Given a preference profile with m alternatives and cn altemative o*. it is N'P-hard to decide whether a* is o Dodgson
winner orhas rank et leastm — G/ in any Dodgsan ranking

Proof. We use a reduction from Minimum Vertex Cover in 3-regular graphs, and exploit a result concerning its inapprox-
imability that follows from the work of Berman and Karpinski [3]. Our approach is similar to the proof of Theorem 5.1,
albeit considerably more involved. We use the following result

Theorem 5.. (See Serman and Kerpinski 3], see clso [25].) Given a 3-regular groph G withn = 2t nodes for same itegert = 0 end
an integer K in “hard to distinguish between the following two cases:

« G has a verrex cover of size at most K.
« Any vertex cover of G has size at feast K + 6.

Given an instance of Minimum Vertex Cover consisting of a 3-regular graph G with n =22t nodes v, vy, ... vy_y and
an integer K € [n/2,n — 6], we construct in polynomial time a preference profile in which if we could distinguish whether a
particular altemative is a Dodgsan Winner or not very far from the last position in any Dodgson ranking, then we could also
distinguish between the two cases mentioned in Theorem 5.7 for the original Minimum Vertex Cover instance. See page 45
for an example of the construction. The Dodgson election has the following sets of altematives:

» A special alternative o*

o A set F of 4Kn/11 + 3n/2 alternatives. These alternatives are partitioned into n disjoint blocks Fo, Fy...., Fy_; so that
<ach block contains either [4K /11 +3/2] or [4K/11 +3/2| alternatives.
« A set A of n alternatives ao.ar. ..., 61
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P-COMPLETE PROBLEMS

gadget includes an item block containing a Super Mushroom which makes Mario into Super Mario
(see Figure 2). The Super Mushroom serves two purposes: first, Super Mario is 2 tiles tall, which
prevents him from fitting into narrow horizontal corridors, a property essential to our other gadgets;
Classic Nintendo Games are (NP-)Hard second, Super Mario is able to destroy bricks whereas normal Mario cannot. In order to force the

’ player to take the Super Mushroom in the beginning, we block off the Finish gadget with bricks
(see Figure 3).

Greg Aloupis* Exil

D. Demai Alan Guo

March 8, 2012

o™l
oy Abstract
st We prove NP-hardness results for five of Nintendo’s largest video game franchises: Mario,

Donkey Kong, Legend of Zelds, Metroid, and Pokémon. Our results apply to Super Mario
Bros. 1, 3, Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda Figure 2: Left: Start gadget for Mario. Right: The item block contains a Super Mushroom
games except Zelda I1: The Adventure of Link; all Metroid games; and all Pokémon role-playing
games. For Mario and Donkey Kong, we show NP-completeness. In addition, we observe that
several games in the Zelda series are PSPACE-complete.

1

1 Introduction

A series of recent papers have analyzed the computational complexity of playing many different
video games [L, 4, 5], yet the most well known Nintendo games of our youth have yet to be included
among these results. In this paper, we consider some of the hest-known Nintendo games of all
time— Mario, Donkey Kang, Legend of Zelda, Metroid, and Pokémon—and prove that it is NP-
hard to play gener
apply to the N

jzed versions of many games in these serics. In particula, our results for Mario
games Super Mario Bros., Super Mario Bros.: The Last Levels, Super Mario
Bros. 3, and Super Mario Workd (developed by Nintendo); our results for Donkey Kong apply
o the SNES games Donkey Kong Conntry 1-3 (developed by Rare Lid.); our results for Legend )
of Zelda apply to all Legend of Zelda games (developed by Nintendo) except the side-scrolling Figure 3: Fi
Zelda I1: The Adventure of Link; our resnlts for Metroid apply to all Metraid games (developed by
Nintendo); and our results for Pokémon apply to all Pokémon rale-playing games (developed by
Came Freak and Creatures Inc.).!

Our results are motivated in particular by tookassisted speed runs for video games. A speed
run of a game is a play through that aims to achieve a fast completion time, usually performed by
a human. In a toalassisted speed run, the player uses special tools, such as emulators, to allow
them to slow the game down to a frame-by-frame rate in order to achieve superhuman reflexes and
timing. In some sense, tool assistance is not cheating becanse the rules of the game are still oheyed.

sh gadget for Mario

Next, we implement the Variable gadget, illustrated in Figure 4. There are two entrances, one
from each literal of the previous variable (if the variable is z4, the two entrances come from ;1
and ~z,1). Once Mario falls down, he cannot jump back onto the ledges at the top, so Mario
cannot go hack to a previous variable. In particular, Mario cannot go hack to the negation of the
literal he chose. To choose which value to assign to the variable, Mario may fall down either the
left passage or the right.

Now we present the Clause gadget, illustrated in Figure 5. The three entrances at the top come
from the three literals that appear in the clause. To unlock the clause, Mario jumps onto a Red

rXiv:1203.1895v1 [cs.CC] 8 M

The resulting speed runs are impressive to watch, as the paths taken by a toolnssisted player are Koopa, kicke 65 shell down, which bounoee and breabs all the bricks n tho conridor at the bottam,
“Chargé de Recherches du Département & Informatique, Université Libre de Bruxelles, alowpis. gregd opening the path for later checking. Note that falling down is no use because Super Mario cannot
geail.con. Work initiated while at Institute of Information Science, Academis Sinica. fit into the narrow corridor unless he gets hurt by the Koopa, in which case he will not be able to
. MIT ('zmusu]u'r Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA reach the goal. There is not enough space for Mario to run and crouch-slide into the corridor. The
‘edenaine. aguolinit. edu o i - : s < ses.
e o NSI geamts CCF-0S20072, OCF- 1065135, and OCF-0522462 gap at the bottom of the wide corridor is so the Koopa. Shell does not unlock other clauses.
*All products, company names, brand names, trademarks, and sprites are properties of their respective owners Finally, we implement the Crossover gadget, illustrated in Figure 6. There are four entrances fexits
Sprites are used here under Fair Use for the educationsl purpose of illustrating mathematical theorems. top left, top right, bottom left, and bottom right. The Crossover gadget is designed so that, if Mario
1 5
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P vs. NP

* So what do the experts think about the P
vs. NP problem?
 Two polls from 2002 and 2012
o 100 respondents in 2002
o 152 respondents in 2012

B PR T I
61% 9% % 22%

2012 83% 9% 3% 3% 1%
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THE TWO POSSIBLE WORLDS
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COMPLEXITY UNIVERSE

A complete language for EXPSPACE:
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WHAT WE HAVE LEARNED

* Definitions / facts
o P and NP

o Cook-Levin Theorem
o INP-complete
* Principles:

o Proving that problems are in P,

NP, or NP-complete % ( '7

& 15-251 Fall 2015: Lecture 13 Carnegie Mellon University 34




