

SOCIAL CHOICE THEORY

- A mathematical theory that deals with aggregation of individual preferences
- Origins in ancient Greece
- Formal foundations: 18th Century (Condorcet and Borda)
- 19th Century: Charles Dodgson
- 20th Century: Nobel prizes to Arrow and Sen

THE VOTING MODEL

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A, |A| = m
- Each voter has a ranking over the alternatives
- Preference profile = collection of all voters' rankings

1	2	3
a	\mathbf{c}	b
b	a	\mathbf{c}
\mathbf{c}	b	a

VOTING RULES

• Voting rule = function from preference profiles to alternatives that specifies the winner of the election

Plurality

- Each voter awards one point to top alternative
- Alternative with most points wins
- Used in almost all political elections

• Borda count

- Each voter awards m kpoints to alternative ranked k'th
- Alternative with most points wins
- Proposed in the 18th Century
 by the chevalier de Borda
- Used for elections to the national assembly of Slovenia
- Similar to rule used in the Eurovision song contest

Lordi, Eurovision 2006 winners

- Positional scoring rules
 - $_{\circ}$ Defined by vector $(s_1, ..., s_m)$
 - Plurality = (1,0,...,0), Borda = (m-1,m-2,...,0)
- x beats y in a pairwise election if the majority of voters prefer x to y
- Plurality with runoff
 - First round: two alternatives with highest plurality scores survive
 - Second round: pairwise election between these two alternatives

- Single Transferable vote (STV)
 - $_{\circ}$ m-1 rounds
 - o In each round, alternative with least plurality votes is eliminated
 - Alternative left standing is the winner
 - Used in Ireland, Malta, Australia, and New Zealand (and Cambridge, MA)

STV: EXAMPLE

$egin{array}{c} 2 \ \mathbf{voters} \end{array}$	$rac{2}{ ext{voters}}$	$1 \ m voter$
a	b	\mathbf{c}
b	a	d
\mathbf{c}	d	b
d	\mathbf{c}	a

$rac{2}{ ext{voters}}$	$rac{2}{ ext{voters}}$	$1 \ m voter$
a	b	\mathbf{c}
b	a	b
c	c	a

$egin{array}{c} 2 \ \mathbf{voters} \end{array}$	$egin{array}{c} 2 \ \mathbf{voters} \end{array}$	$1 \ m voter$
a	b	b
b	a	a

$rac{2}{ ext{voters}}$	$egin{array}{c} 2 \ \mathbf{voters} \end{array}$	$1 \ m voter$
l _a	l.	votei
D	D	D

SOCIAL CHOICE AXIOMS

- How do we choose among the different voting rules? Via desirable properties!
- Majority consistency = if a majority of voters rank alternative x first, then x should be the winner
- Poll 1: Which rule is **not** majority consistent?
 - 1. Plurality
 - 2. Plurality with runoff
 - 3. Borda count
 - 4. STV

MARQUIS DE CONDORCET

- 18th Century French Mathematician, philosopher, political scientist
- One of the leaders of the French revolution
- After the revolution became a fugitive
- His cover was blown and he died mysteriously in prison

CONDORCET WINNER

- Recall: x beats y in a pairwise election if a majority of voters rank x above y
- Condorcet winner beats every other alternative in pairwise election
- Condorcet paradox = cycle in majority preferences

1	2	3
a	\mathbf{c}	b
b	a	\mathbf{c}
c	b	a

CONDORCET CONSISTENCY

- Condorcet consistency = select a Condorcet winner if one exists
- Poll 2: Which rule is Condorcet consistent?
 - 1. Plurality
 - 2. Borda count
 - 3. Both
 - 4. Neither

CONDORCET CONSISTENCY

- Poll 3: What is the relation between majority consistency and Condorcet consistency?
 - Majority cons. \Rightarrow Condorcet cons.
 - Condorcet cons. \Rightarrow Majority cons.
 - Equivalent
 - Incomparable

- Copeland: Alternative's score is #alternatives it beats in pairwise elections
- Why does Copeland satisfy the Condorcet criterion?
 - If x is a Condorcet winner, score = m 1
 - $_{\circ}$ Otherwise, score < m-1

DODGSON'S RULE

- Dodgson score of x = the number of swaps between adjacent alternatives needed to make x a Condorcet winner
- Dodgson's rule: select alternative that minimizes Dodgson score
- The problem of computing the Dodgson score is NP-complete!

AWESOME EXAMPLE

• Plurality: a

• Borda: *b*

• Condorcet winner: *c*

• STV: *d*

• Plurality with runoff:

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters
a	b	c	c	d	e
b	d	d	e	e	\mathbf{c}
c	\mathbf{c}	b	b	\mathbf{c}	b
d	e	a	d	b	d
e	a	e	a	a	a

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!
- Borda responded: "My scheme is intended only for honest men!"

1	2	3
b	b	a
a	a	b
\mathbf{c}	\mathbf{c}	c
d	d	d

1	2	3
b	b	a
a	a	c
c	\mathbf{c}	d
d	d	b

STRATEGYPROOFNESS

- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences
- Poll 4: What is the largest value of m for which plurality is SP?
 - 1. m = 1
 - 2. m = 2
 - m = 3
 - 4. $m=\infty$

STRATEGYPROOFNESS

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is constant if the same alternative is always chosen

- Only dictatorships
- Only constant functions 2
- Both
- Neither

Dictatorship

Constant function

GIBBARD-SATTERTHWAITE

- A voting rule is onto if any alternative can win
- Theorem (Gibbard-Satterthwaite): If $m \geq 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

Gibbard

Satterthwaite

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al., SC&W 1989]

THE COMPUTATIONAL PROBLEM

- R-MANIPULATION problem:
 - $_{\circ}$ Given votes of nonmanipulators and a preferred candidate p
 - Can manipulator cast
 vote that makes p
 uniquely win under R?
- Example: Borda, p = a

1	2	3
b	b	
\mathbf{a}	a	
\mathbf{c}	c	
d	d	

1	2	3
b	b	a
a	a	\mathbf{c}
\mathbf{c}	\mathbf{c}	d
d	d	b

A GREEDY ALGORITHM

- Rank p in first place
- While there are unranked alternatives:
 - o If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
 - Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	c
\mathbf{c}	c		c	c		\mathbf{c}	\mathbf{c}	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
1 b	2 b	3	1 b	2 b	3	1 b	2 b	3
b	b	a	b	b	a	b	b	a

WHEN DOES THE ALG WORK?

- Fact: The greedy algorithm is a polynomial-time algorithm for $R\text{-}\mathrm{MANIPULATION}$ for $R\in\{\mathrm{plurality},\,\mathrm{Borda}$ count, plurality with runoff, Copeland,...}
- Theorem [Bartholdi and Orlin, 1991]: the STV-MANIPULATION problem is NPcomplete!

IS SOCIAL CHOICE PRACTICAL?

- UK referendum: Choose between plurality and STV as a method for electing MPs
- Academics agreed STV is better...
- ... but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!

COMPUTATIONAL SOCIAL CHOICE

• However:

o in human computation systems...

o in multiagent systems... the designer is free to employ any voting rule!

• Computational social choice focuses on positive results through computational thinking

WHAT WE HAVE LEARNED

• Definitions:

- Plurality, Borda count, plurality with runoff, STV, Copeland
- Majority consistency
- Condorcet winner, Condorcet consistency
- Strategyproofness
- The Gibbard-Satterthwaite Thm

• Principles:

NP-hardness can be good!

