Ski rental

• You are on a ski vacation; you can buy skis for B or rent for 1/day

• You’re very spoiled: You’ll go home when it’s not sunny

• Rent or buy when $B = 5$?

What is the complexity of the problem?
Ski rental

• Now assume you don’t know in advance how many days of sunshine there are
• Every day of sunshine you need to decide whether to rent or buy
• Algorithm: Rent for B days, then buy

\[
\begin{array}{cccc}
\text{☀} & \text{☀} & \text{☀} & \text{☀} & \text{☀} & \text{☁} & \Rightarrow & $10 \\
\text{☀} & \text{☀} & \text{☀} & \text{☀} & \text{☁} & \Rightarrow & $4 \\
\end{array}
\]
Ski rental

Poll 1: Assume $B \geq 8$. How bad can the “rent B days, then buy” algorithm be compared to the optimal solution in the worst case?

1. $ALG(I) = 2 \cdot OPT(I)$
2. $ALG(I) = 3 \cdot OPT(I)$
3. $ALG(I) = \frac{B}{2} \cdot OPT(I)$
4. $ALG(I) = B \cdot OPT(I)$
Competitive ratio

• For a minimization problem and \(c > 1 \), \(ALG \) is a \(c \)-competitive algorithm if for every instance \(I \), \(ALG(I) \leq c \cdot OPT(I) \)

• For a maximization problem and \(c < 1 \), \(ALG \) is a \(c \)-competitive algorithm if for every instance \(I \), \(ALG(I) \geq c \cdot OPT(I) \)

• The difference from approximation algorithms is that here \(ALG \) is online, whereas \(OPT(I) \) is the optimal offline solution
Ski rental, revisited

• Our ski-rental algorithm is 2-competitive
• Renting for $B - 1$ days is $(\frac{2B - 1}{B})$-competitive
• We prove that no online algorithm can do better by constructing an evil adversary
Ski rental, revisited

- **Theorem:** No online algorithm for the ski rental problem is α-competitive for $\alpha < \frac{2B-1}{B}$

- **Proof:**
 - Alg is defined by renting for K days and buying on day $K + 1$
 - Evil adversary makes it rain on day $K + 2$
 - $K \geq B$: $OPT(I) = B, ALG(I) = K + B \geq 2B$
 - $K \leq B - 2$: $OPT(I) = K + 1,
 ALG(I) = K + B \geq 2K + 2$
Pancakes, revisited

Competitive analysis ≈ Pancakes

“The Bth ski number is $\frac{2B-1}{B}$,”
Ski rental, revisited

Proving lower bounds for online algorithms is much easier than for approximation algorithms!
Paging

• Hard drive holds N pages, memory holds k pages
• When a page of the hard drive is needed, it is brought into the memory
• If it’s already in the memory, we have a hit, otherwise we have a miss
• If the memory is full, we may need to evict a page
• Paging algorithm tries to minimize misses
Paging

<table>
<thead>
<tr>
<th>Memory</th>
<th>Request sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>4 1 3 2 4</td>
</tr>
<tr>
<td>4 2 3</td>
<td>4 1 3</td>
</tr>
<tr>
<td>4 1 3</td>
<td>4 1 3</td>
</tr>
<tr>
<td>4 1 3</td>
<td>4 1 3</td>
</tr>
<tr>
<td>2 1 3</td>
<td>4 1 3</td>
</tr>
</tbody>
</table>
Paging

<table>
<thead>
<tr>
<th>Memory</th>
<th>Request sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>4</td>
</tr>
<tr>
<td>1 4 3</td>
<td>4 1</td>
</tr>
<tr>
<td>1 4 3</td>
<td>4 1 3</td>
</tr>
<tr>
<td>1 4 3</td>
<td>4 1 3 2</td>
</tr>
<tr>
<td>2 4 3</td>
<td>4 1 3 2 4</td>
</tr>
</tbody>
</table>
Paging

• Four online paging algorithms (start with $1, \ldots, k$) in memory
• LRU (least recently used)
• LFU (least frequently used)
• FIFO (first in first out): memory works like a queue; evict the page at the head and enqueue the new page
• LIFO (last in first out): memory works like a stack; evict top, push new page
Example: LIFO

<table>
<thead>
<tr>
<th>Memory</th>
<th>Request sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>1 2 4</td>
<td></td>
</tr>
<tr>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>1 2 4</td>
<td></td>
</tr>
<tr>
<td>1 2 3</td>
<td></td>
</tr>
</tbody>
</table>

15-251 Fall 2015: Lecture 16
Paging

• Poll 2: What is the smallest α for which LIFO is α-competitive?

 1. $\alpha = 2$
 2. $\alpha = k$ (size of memory)
 3. $\alpha = N$ (number of pages)
 4. $\alpha = \infty$ (can’t be bounded with these parameters)
Paging

• **Poll 3:** What is the smallest α for which LFU is α-competitive?
 1. $\alpha = 2$
 2. $\alpha = k$
 3. $\alpha = N$
 4. $\alpha = \infty$
Paging

• **Theorem:** LRU is k-competitive

• **Proof:**

 o We divide the request sequence into phases; phase 1 starts at the first page request; each phase is the longest possible with at most k requests for distinct pages

 o Example with $k = 3$:

 | 4 | 1 | 2 | 1 |
 |---|---|---|---|
 | 5 | 3 | 4 | 5 |
 | 1 | 2 | 3 |

 Phase 1 Phase 2 Phase 3
Paging

- Theorem: LRU is k-competitive
- Proof (continued):
 - Denote $m = \# \text{stages}$, and by p_j^i the jth distinct page in phase i
 - Pages $p_1^i, \ldots, p_k^i, p_1^{i+1}$ are all distinct
 - If OPT hasn’t missed on pages p_2^i, \ldots, p_k^i, it will miss on p_1^{i+1}, i.e., it misses at least once for every new phase (including phase 1) $\Rightarrow OPT \geq m$
Paging

- Theorem: LRU is \(k \)-competitive
- Proof (continued):
 - LRU misses at most once on each distinct page in a phase
 - Therefore, \(ALG \leq km \) ■

<table>
<thead>
<tr>
<th>4</th>
<th>1</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Phase 2 of the example on slide 17
Paging

• Theorem: FIFO is k-competitive

• Proof: Essentially the same ■

• Theorem: No online alg for the paging problem is α-competitive for $\alpha < k$
Paging

- **Proof:**
 - At each step the evil adversary requests the missing page in \(\{1, ..., k + 1 \} \Rightarrow \text{miss every time} \)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

15-251 Fall 2015: Lecture 16
Paging

- **Proof:**
 - If OPT evicts a page, it will take at least k requests to miss again.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
List update

- Linked list of length \(n \)
- Each request asks for an element; traverse links to element; pay 1 for each such link
- Allowed to move requested element up the list for free
List update

• Three list update algorithms
• Transpose: Move requested element one position up (if it’s not first)
• Move to front: Move requested element to the head of the list
• Frequency counter: Keep track of how many times each element was requested; move requested element past elements that were requested less frequently
List update

- **Poll 4**: Which algorithm is α-competitive for a constant α?
 1. Transpose
 2. Move to front
 3. Frequency counter
Summary

• Definitions:
 o Competitive algorithm
 o Ski rental, paging, list update problems

• Algorithms:
 o Competitive algs for ski rental, paging

• Principles:
 o Evil adversary!