

DEEP QUESTIONS

GREAT EXPECTATIONS

RANDOM VARIABLE

- Let S be a sample space
- A random variable is a function $X: S \to \mathbb{R}$
- Examples:
 - $_{\circ}$ X = value of red die when red and blue are rolled:

$$X(3,4) = 3, X(1,5) = 1$$

 $_{\circ}$ X = value of the sum of two dice when red and blue are rolled:

$$X(3,4) = 7, X(1,5) = 6$$

TWO COINS TOSSED

• $X: \{TT, HT, TH, HH\} \rightarrow \{0,1,2\}$ counts the number of heads

FROM RVS TO EVENTS

• For RV X and $a \in \mathbb{R}$ we can define the event E that X =*a*:

$$\Pr[E] = \Pr[X = a] = \Pr[\{t \in S | X(t) = a\}]$$

$$Pr[X = 1] = Pr[\{HT, TH\}] = 1/2$$

FROM EVENTS TO RVS

• For any event E, define the indicator random variable for E:

$$\mathbb{I}_E(t) = \begin{cases} 1 & t \in E \\ 0 & t \notin E \end{cases}$$

E = exactly one head

INDEPENDENT RVs

• Two random variables are independent if for every a, b, the events X = a and Y = b are independent

EXPECTATION

• The expectation of a random variable X is:

$$\mathbb{E}[X] = \sum_{t \in S} \Pr[t] \times X(t) = \sum_{k} \Pr[X = k] \times k$$

- Poll 1: X is the #heads in 3 coin tosses. $\mathbb{E}[X] = ?$

 - *2.* 4/3
 - *3.* 3/2

Don't always expect the expected!

$$\Pr[X = \mathbb{E}[X]]$$
 could be 0

EXPECTATION

- If \mathbb{I}_E is the indicator RV for the event E, $\mathbb{E}[\mathbb{I}_E] = \Pr[\mathbb{I}_E = 1] \times 1 = \Pr[E]$
- If X and Y are two RVs (on the same sample space S) then Z = X + Y is also an RV, defined by Z(t) = X(t) + Y(t)
- Example: X is one die roll, Y is another, and Z is their sum

LINEARITY OF EXPECTATION

• If Z = X + Y, then $\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$

> Even if X and Y are not independent!

LINEARITY OF EXPECTATION

$$\mathbb{E}[Z] = \sum_{t \in S} \Pr[t]Z(t)$$

$$= \sum_{t \in S} \Pr[t] (X(t) + Y(t))$$

$$= \sum_{t \in S} \Pr[t] X(t) + \sum_{t \in S} \Pr[t] Y(t)$$

$$= \mathbb{E}[X] + \mathbb{E}[Y] \blacksquare$$

General approach:

View thing you care about as expected value of some RV; write this RV as sum of simpler RVs (typically indicator RVs); Solve for their expectations and add them up!

• If I randomly put 100 letters into 100 addressed envelopes, what is the expected number of letters that will end up in their correct envelopes?

- Let A_i be the event that the *i*th letter is in the correct envelope
- Let \mathbb{I}_{A_i} be the indicator variable for A_i
 - o Not independent!
- $\mathbb{E}[\mathbb{I}_{A_i}] = \Pr[A_i = 1] = 1/100$
- We are interested in $Z = \sum_{i=1}^{100} \mathbb{I}_{A_i}$
- $\mathbb{E}[Z] = 100 \times \frac{1}{100} = 1$

- Poll 2: We flip n coins of bias p; what is the expected number of heads?
 - 1. 1
 - 2. p

 - np

BALLS AND BINS

- n jobs are assigned to n servers uniformly at random
- What is the expected number of jobs per server?

BALLS AND BINS

- Let X_i be the number of jobs on server i
- $n = \mathbb{E}[X_1 + \cdots X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n]$
- By symmetry, $\mathbb{E}[X_i] = 1$ for all i
- Fact: The expected number of jobs assigned to the busiest server is roughly $\log n / \log \log n$

BALLS AND BINS

- n jobs are assigned to n servers, but for every job we choose two servers uniformly at random, and use the less busy server
- Poll 3: Expected number of jobs per server?
 - 1. 1/n
 - *2.* 1/4
 - *3.* 1/2

• Fact: Busiest server has $\sim \log \log n$ jobs

CONDITIONAL EXPECTATION

- $\mathbb{E}[X \mid E] = \sum_{k} \Pr[X = k \mid E] \times k$
- Similarly to conditional probability: $\mathbb{E}[X] = \mathbb{E}[X \mid E] \times \Pr[E] + \mathbb{E}[X \mid \overline{E}] \times \Pr[\overline{E}]$

GEOMETRIC RVS

- Flip a coin with probability p of heads
- X = #flips until first heads
- $\mathbb{E}[X] = \mathbb{E}[X \mid H] \Pr[H] + \mathbb{E}[X \mid T] \Pr[T]$ = $1 \cdot p + (\mathbb{E}[X] + 1)(1 - p)$ = $1 + \mathbb{E}[X](1 - p)$
- It follows that $\mathbb{E}[X] = 1/p$

251 LAND

- All 15251 students fly off to space and colonize Mars
- Faced with the problem that there are more men than women, the authorities impose a new rule: When having kids, stop after you have a girl
- Poll 4 yes/no: Will the number of new boys be higher than the number of new girls?
- Poll 5 yes/no: What if the rule is: stop after having two girls?

CAPSTONE PROJECT*

computational
social choice +
approximation algs +
linearity of
expectation

- A k-selection system receives a directed graph as input and outputs $V' \subseteq V$ such that |V'| = k
- Edges are interpreted as approval votes, trust, or support
- Think of graph as directed social network
- A k-selection system f is impartial if $i \in f(G)$ does not depend on the votes of i

- Optimization target: sum of indegrees of selected agents
- Optimal solution: not impartial
- k = n: no problem
- k = 1: no positive impartial approximation
- k = n 1: no positive impartial approximation, even if each vertex has at most one outgoing edge!

- Each tribe member votes for at most one member
- One member must be eliminated
- Impartial rule cannot have property: if unique member received votes he is not eliminated

- The random partition algorithm:
 - Assign vertices uniformly at random to 2 subsets
 - \circ For each subset, select $\sim \frac{\kappa}{2}$ vertices with highest indegrees based on edges from the other subset
- This mechanism is clearly impartial

• Theorem [Alon et al. 2011]: Random Partition is a $\frac{1}{4}$ -approximation algorithm

Proof:

- Assume for ease of exposition: k is even
- Let K be the optimal set
- A partition $\pi = (\pi_1, \pi_2)$ divides K into two subsets $K_1^{\pi} = K \cap \pi_1$ and $K_2^{\pi} = K \cap \pi_2$
- $d_1^{\pi} = \{(u, v) \in E | u \in \pi_2, v \in K_1^{\pi}\}, d_2^{\pi} \text{ defined}$ analogously
- $\mathbb{E}[d_1^{\pi} + d_2^{\pi}] = \frac{OPT}{2}$ by linearity of expectation
- We get at least $\frac{d_1^{\pi} + d_2^{\pi}}{2}$

WHAT WE HAVE LEARNED

- Definitions / facts
 - Random variables
 - Expectation
 - Conditional expectation
 - Geometric RVs
- Principles / problem solving
 - Using the linearity of expectation by writing RVs as sums of simple RVs

