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DEEP QUESTIONS

If I randomly put 100 letters into
100 addressed envelopes, on average
how many will end up in the correct
envelope?

How many times on
average do I need to

flip a fair coin to get
heads?
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RANDOM VARIABLE

 Let S be a sample space

* A random variable is a function X:S - R

* Examples:
o X = value of red die when red and blue are

rolled:
X(3,4) =3, X(1,5 =1

o X = value of the sum of two dice when red

and blue are rolled:
X(3,4) =17, X(1,5) =6
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TWO COINS TOSSED

« X:{TT,HT,TH,HH} — {0,1,2} counts the
number of heads

B—— P
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Distribution on S Distribution on R
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FROM RVS TO EVENTS

e For RV X and a € R we can define the event E that X =
a:
Pr[E] =Pr|X =a] =Pr[{t € S |X(t) = a}]

P
<P
——(-p

Distribution on R

=
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FROM EVENTS TO RVS

* For any event E, define the indicator random variable

for E:

1t€eE
[£(t) = {O t@E

1

/ E

—(P
Distribution on S Distribution on R
E = exactly one head
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INDEPENDENT RVS

 Two random variables are independent if
for every a, b, the events X =a and Y = b
are independent

.  15-251 Fall 2015: Lecture 19 Carnegie Mellon University 8




EXPECTATION

 The expectation of a random variable X is:

E[X] = Z Prt] x X(t) = Z PriX = k] X k

tes K
e Poll 1: X is the #heads in 3 coin tosses. E[X] =7

ro 1 Don’t always
2 43 expect the
s+ 3/2 expected!
.ol Pr(X = E[X]]

could be 0
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EXPECTATION

o If Iz is the indicator RV for the event E,
E[lz] = Pr|l; = 1] X 1 = Pr[E]

» If X and Y are two RVs (on the same
sample space S) then Z = X +Y is also an

RV, defined by Z(t) = X(t) + Y (¢t)

 Example: X is one die roll, Y is another,
and Z is their sum
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LINEARITY OF EXPECTATION

e [fZ=X+Y, then
E[Z] = E[X]| + E[Y]

Even if X and Y
are not
independent!
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LINEARITY OF EXPECTATION

— Z Pr(t]Z(¢)

tes
_ z Pr(t] (X(t) + Y(£))
tes
Prie] X(t) + Pr{t]Y(t)
= E[X]+ E[Y] =
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USING LINEARITY OF EXPECTATION

General approach:
View thing you care about
as expected value of some

RV write this RV as sum of

simpler RVs (typically
indicator RVs); Solve for
their expectations and add
them up!
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USING LINEARITY OF EXPECTATION

e If I randomly put 100 letters into 100
addressed envelopes, what is the expected
number of letters that will end up in their
correct envelopes?

z k X [..aargh!!..]

Z k x Pr[k correct letters] =
k k
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USING LINEARITY OF EXPECTATION

Let A; be the event that the ith letter is in

the correct envelope

Let 4, be the indicator variable for A;

- Not independent!
E|I4,| = Pr[4; = 1] = 1/100

We are interested in Z = Y;27 1,

E[Z] = 100 X — = 1
100
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USING LINEARITY OF EXPECTATION

* Poll 2: We {lip n coins of bias p; what is
the expected number of heads?

71
2. p
3 N
4 np
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BALLS AND BINS

* n jobs are assigned to n servers uniformly
at random

* What is the expected number of jobs per
server?’
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BALLS AND BINS

* Let X; be the number of jobs on server i
* By symmetry, E[X;] =1 for all i

* Fact: The expected number of jobs
assigned to the busiest server is roughly
logn /loglogn
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at random, and use the less

BALLS AND BINS

* n jobs are assigned to n servers, but for
every job we choose two servers uniformly

busy server

* Poll 3: ]
. 1/n
2 1/4
3 1/2
2 1

FainkS
’ N
/ \
1
: /
S ’
N

~--7

Fxpected number of j

obs per server?’

LN

’ N
/ \
! 1
! U

< -
- ~

7’ N

/ \

1

: /

S ’

N
~--7

* Fact: Busiest server has ~ loglogn jobs
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CONDITIONAL EXPECTATION

« E[X|E] =X, Pr[X =k|E] xk

* Similarly to conditional probability:
E[X] = E[X | E] X Pr[E] + E[X |E] X Pr[E]
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GEOMETRIC RVS

Flip a coin with probability p of heads
X = ##1lips until first heads

E[X] = E[X | H] Pr[H] -

- E[X | T] Pr[T]

=1-p+ (E[X] -

-1)(1 —p)

=1+ E[X](1 —p)
It follows that E[X] = 1/p
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251 LAND

All 15251 students fly off to space and
colonize Mars

Faced with the problem that there are
more men than women, the authorities
impose a new rule: When having kids,

stop after you have a girl

Poll 4 yes/no: Will the number of new

boys be higher than the number of new
girls’?

Poll 5 yes/no: What if the rule is: stop

after having two girls?
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CAPSTONE PROJECT *

computational
social choice +
approximation algs +
linearity of
expectation
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SELECTING A SUBSET *

* A k-selection system receives a directed
ograph as input and outputs V' € V such
that |V'| =k

 Edges are interpreted as approval votes,
trust, or support

* Think of graph as directed social network

* A k-selection system f is impartial if
[ € f(G) does not depend on the votes of i
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SELECTING A SUBSET *

* Optimization target: sum of
indegrees of selected agents

* Optimal solution: not impartial
* k = n: no problem

 k = 1: no positive impartial

approximation @
* k =n—1: no positive impartial

approximation, even if each vertex
has at most one outgoing edge!
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SELECTING A SUBSET *

e Each tribe member votes for at most one
member

e One member must be eliminated

* Impartial rule cannot have property: if unique
member received votes he is not eliminated
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SELECTING A SUBSET *

* The random partition algorithm: ;g

o Assign vertices uniformly at
random to 2 subsets

k
o For each subset, select ~ .

vertices with highest indegrees
based on edges from the other
subset

* This mechanism is clearly
impartial
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SELECTING A SUBSET *

* Theorem [Alon et al. 2011|: Random

Partition is a %—approximation algorithm

* Proof:

o Assume for ease of exposition: k is even

o Let K be the optimal set

o A partition T = (1, m,) divides K into two
subsets K{' = KNm; and K} = K N,

0 T={(uw,v) € Elu€m,,veK}, d¥ defined
analogously

o E[d] +d¥] = % by linearity of expectation

dl+d¥

o We get at least
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WHAT WE HAVE LEARNED

* Definitions / facts
o Random variables
o HExpectation

o Conditional expectation
o Geometric RVs

* Principles / problem solving

o Using the linearity of expectation by o=

writing RVs as sums of simple RVs " (' >
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