|5-25|
 Great Theoretical Ideas in Computer Science

Lecture 20 :
Randomized Algorithms

November 5th, 2015

November Sth, 2015

So far

Formalization of computation/algorithm
Computability / Uncomputability
Computational complexity
Graph theory and graph algorithms
NP-completeness. Identifying intractable problems.
Making use of intractable problems (in Social choice).
Dealing with intractable problems: Approximation algs.
Online algs.

Oct 26	Oct 27 Online algorithms	Oct 28 hw7 w.s.	Oct 29 Probability 1	Oct 30 Quiz 7
Nov2	Nov 3 Probability 2	Nov 4 hw8 w.s.	Nov 5 Randomized alg.	Nov 6 Quiz 8
Nov9	Nov 10 Basic number theory	Nov 11 hw9 w.s.	Nov 12 Cryptography	Nov 13 Quiz 9
Nov 16	Nov 17 Markov chains	Nov 18 Midterm 2	Nov 19 Communication comp.	Nov 20 Quiz 10
Nov 23	Nov 24 Quantum computation	Nov 25 THANKSGIVING	Nov 26 THANKSGIVING	Nov 27 THANKSGIVING
Nov 30	Dec 1 Game theory	Dec 2 hw10 w.s.	Dec 3 Learning theory	Dec 4 Quiz 11
Dec 7	Dec 8 Interactive proofs	$\text { Dec } 9$ hw11 w.s.	Dec 10 Epilogue	Dec 11

Randomness and the universe

Does the universe have true randomness?

Newtonian physics suggests that the universe evolves deterministically.

Quantum physics says otherwise.

Randomness and the universe

Does the universe have true randomness?

God does not play dice with the world.

- Albert Einstein

Einstein, don't tell God what to do.

- Niels Bohr

Randomness and the universe

Does the universe have true randomness?

Even if it doesn't, we can still model our uncertainty about things using probability.

Randomness is an essential tool in modeling and analyzing nature.

It also plays a key role in computer science.

Randomness in computer science

Randomized algorithms

Does randomness speed up computation?
Statistics via sampling
e.g. election polls

Nash equilibrium in Game Theory
Nash equilibrium always exists if players can have probabilistic strategies.

Cryptography
A secret is only as good as the entropy/uncertainty in it.

Randomness in computer science

Randomized models for deterministic objects
e.g. the www graph

Quantum computing
Randomness is inherent in quantum mechanics.
Machine learning theory
Data is generated by some probability distribution.
Coding Theory
Encode data to be able to deal with random noise.

Randomness and algorithms

How can randomness be used in computation?
Where can it come into the picture?

Given some algorithm that solves a problem...
What if the input is ehesen randemlit?
-What if the algorithm can make random choices?

Randomness and algorithms

How can randomness be used in computation?
Where can it come into the picture?

Given some algorithm that solves a problem...
What if the input is ehesen randemlit?
-What if the algorithm can make random choices?

Randomness and algorithms

What is a randomized algorithm?

A randomized algorithm is an algorithm that is allowed to flip a coin.
(it can make decisions based on the output of the coin flip.)

In |5-25|:
A randomized algorithm is an algorithm that is allowed to call:

- Randlnt(n)
- Bernoulli(p)
(we'll assume these take $O(1)$ time)

Randomness and algorithms

An Example

def $f(x)$:

$$
\begin{aligned}
& y=\text { Bernoulli }(0.5) \\
& \text { if }(y==0) \text { : } \\
& \quad \text { while }(x>0) \text { : } \\
& \quad \text { print }(" \text { What up?") } \\
& \quad x=x-1 \\
& \text { return } x+y
\end{aligned}
$$

For a fixed input (e.g. $x=3$)

- the output can vary
- the running time can vary

Randomness and algorithms

For a randomized algorithm, how should we:

- measure its correctness?
- measure its running time?

If we require it to be

- always correct, and
- always runs in time $O(T(n))$
then we have a deterministic alg. with time compl. $O(T(n))$.
(Why?)

Randomness and algorithms

So for a randomized algorithm to be interesting:

- it is not correct all the time, or
- it doesn't always run in time $O(T(n))$,
(It either gambles with correctness or running time.)

Types of randomized algorithms

Given an array with n elements (n even). A[I ... n]. Half of the array contains 0 s , the other half contains Is. Goal: Find an index that contains a I.
repeat:

$$
\begin{aligned}
& \mathrm{k}=\operatorname{RandInt}(\mathrm{n}) \\
& \text { if } \mathrm{A}[\mathrm{k}]=1 \text {, return } \mathrm{k}
\end{aligned}
$$

repeat 300 times:

$\mathrm{k}=\operatorname{RandInt(n)}$
if $\mathrm{A}[\mathrm{k}]=1$, return k return "Failed"

Doesn't gamble with correctness
Gambles with run-time

Gambles with correctness
Doesn't gamble with run-time

Types of randomized algorithms

repeat 300 times:
$\mathrm{k}=\operatorname{RandInt}(\mathrm{n})$
if $\mathrm{A}[\mathrm{k}]=1$, return k
return "Failed"

$$
\operatorname{Pr}[\text { failure }]=\frac{1}{2^{300}}
$$

Worst-case running time: $O(1)$
This is called a Monte Carlo algorithm. (gambles with correctness but not time)

Types of randomized algorithms

repeat:

$$
\begin{aligned}
& \mathrm{k}=\operatorname{RandInt}(\mathrm{n}) \\
& \text { if } \mathrm{A}[\mathrm{k}]=1 \text {, return } \mathrm{k}
\end{aligned}
$$

$$
\operatorname{Pr}[\text { failure }]=0
$$

Worst-case running time: can't bound (could get super unlucky)

Expected running time: $O(1)$
(2 iterations)
This is called a Las Vegas algorithm. (gambles with time but not correctness)

Given an array with n elements (n even). A[I ... n]. Half of the array contains 0 s , the other half contains Is. Goal: Find an index that contains a I.

Correctness Run-time

Deterministic	always	$\Omega(n)$
Monte Carlo	w.h.p.	$O(1)$
Las Vegas	always	$O(1)$ w.h.p.

w.h.p. $=$ with high probability

Formal definition: Monte Carlo algorithm

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem.

Suppose A is a randomized algorithm such that:

$$
\begin{array}{ll}
\hline \forall x \in \Sigma^{*}, & \operatorname{Pr}[A(x) \neq f(x)] \leq \epsilon \\
\hline \forall x \in \Sigma^{*}, & \begin{array}{l}
\# \text { steps } A(x) \text { takes is } \leq T(|x|) \\
\\
\\
\text { (no matter what the random choices are) }
\end{array} .
\end{array}
$$

Then we say A is a $T(n)$-time Monte Carlo algorithm for f with ϵ probability of error.

Formal definition: Las Vegas algorithm

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem.

Suppose A is a randomized algorithm such that:

$$
\begin{array}{ll}
\forall x \in \Sigma^{*}, & A(x)=f(x) \\
\forall x \in \Sigma^{*}, & \mathbf{E}[\# \text { steps } A(x) \text { takes }] \leq T(|x|)
\end{array}
$$

Then we say A is a $T(n)$-time Las Vegas algorithm for f.

NEXT ONTHE MENU

Example of a Monte Carlo Algorithm: Min Cut

Example of a Las Vegas Algorithm: Quicksort

Example of a Monte Carlo Algorithm: Min Cut

Gambles with correctness.

Doesn't gamble with running time.

Cut Problems

Max Cut Problem (Ryan O'Donnell's favorite problem): Given a graph $G=(V, E)$, color the vertices red and blue so that the number of edges with two colors $(e=\{u, v\})$ is maximized.

Cut Problems

Max Cut Problem (Ryan O'Donnell's favorite problem):
Given a graph $G=(V, E)$, find a non-empty subset $S \subset V$ such that number of edges from S to $V-S$ is maximized.

size of the cut $=\#$ edges from S to $V-S$.

Cut Problems

Min Cut Problem (my favorite problem):
Given a graph $G=(V, E)$, find a non-empty subset $S \subset V$ such that number of edges from S to $V-S$ is minimized.

size of the cut $=$ \# edges from S to $V-S$.

Contraction algorithm for min cut

Let's see a super simple randomized algorithm Min-Cut.

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Green edge selected.
Contract that edge.

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Green edge selected.
Contract that edge.
(delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Purple edge selected.
Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Purple edge selected.
Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Blue edge selected.
Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Blue edge selected.
Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Blue edge selected.
Contract that edge. (delete self loops)
When two vertices remain, you have your cut:
$\{a, b, c, d\}$
$\{e\}$
size: 2

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Green edge selected.
Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Green edge selected.
Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2

Yellow edge selected.

Contract that edge.
(delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2

Yellow edge selected.

Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Red edge selected.
Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:
Size of min-cut: 2
Red edge selected.
Contract that edge. (delete self loops)

Contraction algorithm for min cut

Select an edge randomly:

Size of min-cut: 2

Red edge selected.
Contract that edge. (delete self loops)
When two vertices remain, you have your cut:

$$
\{a\} \quad\{b, c, d, e\} \quad \text { size: } 3
$$

$n-2$ iterations

Observation:

For any i : A cut in G_{i} of size k corresponds exactly to a cut in G of size k.

Poll

Let k be the size of a minimum cut.
Which of the following are true (can select more than one):

For $G=G_{0}, \quad k \leq \min _{v} \operatorname{deg}_{G}(v)$
For every $G_{i}, \quad k \leq \min _{v} \operatorname{deg}_{G_{i}}(v)$
For every $G_{i}, \quad k \geq \min _{v} \operatorname{deg}_{G_{i}}(v)$
For $G=G_{0}, \quad k \geq \min _{v} \operatorname{deg}_{G}(v)$

Poll

For every $G_{i}, \quad k \leq \min _{v} \operatorname{deg}_{G_{i}}(v)$
i.e., for every G_{i} and every $v \in G_{i}, \quad k \leq \operatorname{deg}_{G_{i}}(v)$

Why?
A single vertex v forms a cut of size $\operatorname{deg}(v)$.

This cut has size $\operatorname{deg}(a)=3$.
Same cut exists in original graph.
So $k \leq 3$.

Contraction algorithm for min cut

Theorem:

Let $G=(V, E)$ be a graph with n vertices.
The probability that the contraction algorithm will output a min-cut is $\geq 1 / n^{2}$.

Should we be impressed?

- The algorithm runs in polynomial time.
-There are exponentially many cuts. ($\approx 2^{n}$)
- There is a way to boost the probability of success to

$$
1-\frac{1}{e^{n}} \quad \text { (and still remain in polynomial time) }
$$

Proof of theorem

Fix some minimum cut.

$$
\begin{aligned}
& |F|=k \\
& |V|=n \\
& |E|=m
\end{aligned}
$$

Will show $\operatorname{Pr}[$ algorithm outputs $F] \geq 1 / n^{2}$
(Note $\operatorname{Pr}[$ success $] \geq \operatorname{Pr}[$ algorithm outputs $F]$)

Proof of theorem

Fix some minimum cut.

$$
\begin{aligned}
& |F|=k \\
& |V|=n \\
& |E|=m
\end{aligned}
$$

When does the algorithm output F ?
What if it never picks an edge in F to contract?
Then it will output F.
What if the algorithm picks an edge in F to contract?
Then it cannot output F.

Proof of theorem

Fix some minimum cut.

$$
\begin{aligned}
& |F|=k \\
& |V|=n \\
& |E|=m
\end{aligned}
$$

$\operatorname{Pr}[$ algorithm outputs $F]=$
$\operatorname{Pr}[$ algorithm never contracts an edge in $F]=$
$\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right]$
$E_{i}=$ an edge in F is contracted in iteration i.

Proof of theorem

Let $\quad E_{i}=$ an edge in F is contracted in iteration i.
Goal: $\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right] \geq 1 / n^{2}$.

$$
\operatorname{Pr}\left[\overline{E_{1}}\right]=1-\operatorname{Pr}\left[E_{1}\right]=1-\frac{\# \text { edges in } F}{\text { total } \# \text { edges }}=1-\frac{k}{\bar{m}}
$$

want to write in terms of k and n

$$
\begin{aligned}
& \operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right] \\
& \text { chain } \\
& \stackrel{\text { rule }}{=} \operatorname{Pr}\left[\overline{E_{1}}\right] \cdot \operatorname{Pr}\left[\overline{E_{2}} \mid \overline{E_{1}}\right] \cdot \operatorname{Pr}\left[\overline{E_{3}} \mid \overline{E_{1}} \cap \overline{E_{2}}\right] \cdots \\
& \operatorname{Pr}\left[\overline{E_{n-2}} \mid \overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-3}}\right]
\end{aligned}
$$

Proof of theorem

Let $\quad E_{i}=$ an edge in F is contracted in iteration i.
Goal: $\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right] \geq 1 / n^{2}$.

Observation: $\forall v \in V: k \leq \operatorname{deg}(v)$

Recall: | $\sum_{v \in V} \operatorname{deg}(v)$ | |
| :---: | :--- |
| $-\cdots n$ | |
| $m \geq 2 m$ | $\Longrightarrow m \geq \frac{k n}{2}$ |

$$
\operatorname{Pr}\left[\overline{E_{1}}\right]=1-\frac{k}{m} \geq 1-\frac{k}{k n / 2}=\left(1-\frac{2}{n}\right)
$$

Proof of theorem

Let $\quad E_{i}=$ an edge in F is contracted in iteration i.
Goal: $\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right] \geq 1 / n^{2}$.

$$
\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right]
$$

$$
\geq\left(1-\frac{2}{n}\right) \cdot \operatorname{Pr}\left[\overline{E_{2}} \mid \overline{E_{1}}\right] \cdot \operatorname{Pr}\left[\overline{E_{3}} \mid \overline{E_{1}} \cap \overline{E_{2}}\right] \cdots
$$

$$
\operatorname{Pr}\left[\overline{E_{n-2}} \mid \overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-3}}\right]
$$

$$
\operatorname{Pr}\left[\overline{E_{2}} \mid \overline{E_{1}}\right]=1-\operatorname{Pr}\left[E_{2} \mid \overline{E_{1}}\right]=1-\frac{k}{\text { \# remaining edges }}
$$

Proof of theorem

Let $\quad E_{i}=$ an edge in F is contracted in iteration i.
Goal: $\quad \operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right] \geq 1 / n^{2}$.
Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the graph after iteration I.
Observation: $\quad \forall v \in V^{\prime}: k \leq \operatorname{deg}_{G^{\prime}}(v)$

$$
\begin{aligned}
& \sum_{v \in V^{\prime}} \operatorname{deg}_{G^{\prime}}(v) \\
& \quad \geq k(n-1) \\
& \operatorname{Pr}\left[\overline{E_{2}} \mid \overline{E_{1}}\right]=1-\frac{k}{\left|E^{\prime}\right|} \geq 1-\frac{E^{\prime} \mid}{k(n-1) / 2}=\left(1-\frac{2}{n-1}\right)
\end{aligned}
$$

Proof of theorem

Let $\quad E_{i}=$ an edge in F is contracted in iteration i.
Goal: $\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right] \geq 1 / n^{2}$.

$$
\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right]
$$

$$
\begin{aligned}
& \geq\left(1-\frac{2}{n}\right) \cdot\left(1-\frac{2}{n-1}\right) \cdot \operatorname{Pr}\left[\overline{E_{3}} \mid \overline{E_{1}} \cap \overline{E_{2}}\right] \cdots \\
& \operatorname{Pr}\left[\overline{E_{n-2}} \mid \overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-3}}\right]
\end{aligned}
$$

Proof of theorem

Let $\quad E_{i}=$ an edge in F is contracted in iteration i.
Goal: $\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right] \geq 1 / n^{2}$.
$\operatorname{Pr}\left[\overline{E_{1}} \cap \overline{E_{2}} \cap \cdots \cap \overline{E_{n-2}}\right]$
$\geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-(n-4)}\right)\left(1-\frac{2}{n-(n-3)}\right)$
$=\left(\frac{\pi-2}{n}\right)\left(\frac{\pi-3}{n-1}\right)\left(\frac{\pi-1}{\pi-2}\right)\left(\frac{\pi-5}{\pi-3}\right) \cdots\left(\frac{2}{4}\right)\left(\frac{1}{9}\right)$
$=\frac{2}{n(n-1)} \geq \frac{1}{n^{2}}$

Contraction algorithm for min cut

Theorem:

Let $G=(V, E)$ be a graph with n vertices.
The probability that the contraction algorithm will output a min-cut is $\geq 1 / n^{2}$.

Should we be impressed?

- The algorithm runs in polynomial time.
-There are exponentially many cuts. ($\approx 2^{n}$)
- There is a way to boost the probability of success to

$$
1-\frac{1}{e^{n}} \quad \text { (and still remain in polynomial time) }
$$

Contraction algorithm for min cut

Theorem:

Let $G=(V, E)$ be a graph with n vertices.
The probability that the contraction algorithm will output a min-cut is $\geq 1 / n^{2}$.

Should we be impressed?

- The algorithm runs in polynomial time.
- There are exponentially many cuts. ($\approx 2^{n}$)
- There is a way to boost the probability of success to $1-\frac{1}{e^{n}} \quad$ (and still remain in polynomial time)

Boosting phase

Run the algorithm t times using fresh random bits. Output the smallest cut among the ones you find.
G

F_{1}

G

F_{2}
G

F_{3}
... G
F_{i} 's.
larger $t \Longrightarrow$ better success probability
What is the relation between t and success probability?

Boosting phase

What is the relation between t and success probability?

Let $A_{i}=$ in the i'th repetition, we don't find a min cut.
$\operatorname{Pr}[$ error $]=\operatorname{Pr}[$ don't find a min cut $]$

$$
\begin{aligned}
& \quad=\operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{t}\right] \\
& \text { ind. } \\
& \stackrel{\text { events }}{=} \operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right] \cdots \operatorname{Pr}\left[A_{t}\right] \\
& =\operatorname{Pr}\left[A_{1}\right]^{t} \leq\left(1-\frac{1}{n^{2}}\right)^{t}
\end{aligned}
$$

Boosting phase

$\operatorname{Pr}[$ error $] \leq\left(1-\frac{1}{n^{2}}\right)^{t}$
Extremely useful inequality: $\forall x \in \mathbb{R}: 1+x \leq e^{x}$

$\begin{aligned} & f(x)=e^{\wedge} x \\ & g(x)=1+x \end{aligned}$						y						\square
						${ }^{3}$						
-4	-3		-2	-1			1	1	2		3	4

Boosting phase

$$
\operatorname{Pr}[\text { error }] \leq\left(1-\frac{1}{n^{2}}\right)^{t}
$$

Extremely useful inequality: $\forall x \in \mathbb{R}: 1+x \leq e^{x}$
Let $x=-1 / n^{2}$

$$
\operatorname{Pr}[\text { error }] \leq(1+x)^{t} \leq\left(e^{x}\right)^{t}=e^{x t}=e^{-t / n^{2}}
$$

$$
t=n^{3} \Longrightarrow \operatorname{Pr}[\text { error }] \leq e^{-n^{3} / n^{2}}=1 / e^{n} \Longrightarrow
$$

$$
\operatorname{Pr}[\text { success }] \geq 1-\frac{1}{e^{n}}
$$

Conclusion for min cut

We have a polynomial time algorithm that solves the min cut problem with probability $1-1 / e^{n}$.

$$
\downarrow
$$

Theoretically, not equal to I. Practically, equal to I.

Important Note

Boosting is not specific to Min-cut algorithm.

We can boost the success probability of Monte Carlo algorithms via repeated trials.

Example of a Las Vegas Algorithm: Quicksort

Doesn't gamble with correctness. Gambles with running time.

Quicksort Algorithm

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S

Quicksort Algorithm

4	8	2	7	99	5	0

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S
- Pick uniformly at random a "pivot" x_{m}

Quicksort Algorithm

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S
- Pick uniformly at random a "pivot" x_{m}

Quicksort Algorithm

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S
- Pick uniformly at random a "pivot" x_{m}
- Compare x_{m} to all other x 's
- Let $S_{1}=\left\{x_{i}: x_{i}<x_{m}\right\}, S_{2}=\left\{x_{i}: x_{i}>x_{m}\right\}$

Quicksort Algorithm

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S
- Pick uniformly at random a "pivot" x_{m}
- Compare x_{m} to all other x 's
- Let $S_{1}=\left\{x_{i}: x_{i}<x_{m}\right\}, S_{2}=\left\{x_{i}: x_{i}>x_{m}\right\}$

Quicksort Algorithm

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S
- Pick uniformly at random a "pivot" x_{m}
- Compare x_{m} to all other x 's
- Let $S_{1}=\left\{x_{i}: x_{i}<x_{m}\right\}, S_{2}=\left\{x_{i}: x_{i}>x_{m}\right\}$

Quicksort Algorithm

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S
- Pick uniformly at random a "pivot" x_{m}
- Compare x_{m} to all other x 's
- Let $S_{1}=\left\{x_{i}: x_{i}<x_{m}\right\}, S_{2}=\left\{x_{i}: x_{i}>x_{m}\right\}$
- Recursively sort S_{1} and S_{2}.

Quicksort Algorithm

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S
- Pick uniformly at random a "pivot" x_{m}
- Compare x_{m} to all other x 's
- Let $S_{1}=\left\{x_{i}: x_{i}<x_{m}\right\}, S_{2}=\left\{x_{i}: x_{i}>x_{m}\right\}$
- Recursively sort S_{1} and S_{2}.

Quicksort Algorithm

On input $S=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- If $n \leq 1$, return S
- Pick uniformly at random a "pivot" x_{m}
- Compare x_{m} to all other x 's
- Let $S_{1}=\left\{x_{i}: x_{i}<x_{m}\right\}, S_{2}=\left\{x_{i}: x_{i}>x_{m}\right\}$
- Recursively sort S_{1} and S_{2}.
- Return $\left[S_{1}, x_{m}, S_{2}\right]$

Quicksort Algorithm

This is a Las Vegas algorithm:

- always gives the correct answer
- running time can vary depending on our luck

It is not too difficult to show that the expected run-time is

$$
\leq 2 n \ln n=O(n \log n)
$$

In practice, it is basically the fastest sorting algorithm!

Final remarks

Randomness adds an interesting dimension to computation.

Randomized algorithms can be faster and much more elegant than their deterministic counterparts.

There are some interesting problems for which:

- there is a poly-time randomized algorithm,
- we can't find a poly-time deterministic algorithm.

Another (morally) million dollar question:
Does every efficient randomized algorithm have an efficient deterministic counterpart?

$$
\text { Is } P=B P P ?
$$

