

November 10th, 2015

This week

Computational arithmetic (in particular, modular arithmetic)

╇

Cryptography (in particular, "public-key" cryptography)

Main goal of this lecture

Goal:

Understanding modular arithmetic: theory + algorithms

Why:

- I. When we do addition or multiplication, the universe is infinite (e.g. Z, Q, R.)
 Sometimes we prefer to restrict ourselves to a finite universe (e.g. the modular universe).
- 2. Some hard-to-do arithmetic operations in \mathbb{Z} or \mathbb{Q} is easy in the modular universe.
- Some easy-to-do arithmetic operations in Z or Q seem to be hard in the modular universe.
 And this is great for cryptography applications!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
 - > addition
 - > subtraction
 - > multiplication
 - > division
 - > exponentiation
 - > taking roots
 - > logarithm

theory + algorithms (efficient (?))

Start with algorithms on good old integers.

Then move to the modular universe.

Integers

Algorithms on numbers involve **<u>BIG</u>** numbers.

B = 5693030020523999993479642904621911725098567020556258102766251487234031094429

 $B \approx 5.7 \times 10^{75}$ (5.7 quattorvigintillion)

B is roughly the number of atoms in the universe or the age of the universe in Planck time units.

Definition:
$$len(B) = \#$$
 bits to write B
 $\approx log_2 B$

For B= 5693030020523999993479642904621911725098567020556258102766251487234031094429 $\mathrm{len}(B)=251$

(for crypto purposes, this is way too small)

Integers: Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing string-manipulation.

Think of adding two numbers up yourself. (the longer the numbers, the longer it will take)

36185027886661311069865932815214971104 + 65743021169260358536775932020762686101 101928049055921669606641864835977657205

The number of steps is measured with respect to the <u>length of the input numbers</u>.

Integers: Addition

- **36185027886661311069865932815214971104** *A*
- + 65743021169260358536775932020762686101 B
 - 101928049055921669606641864835977657205 *C*

Grade school addition is linear time:

if
$$len(A), len(B) \le n$$

number of steps to produce C is O(n)

Integers: Multiplication

2 | 465033672205046394665 | 358202698404452609868 | 37425504

steps: $O(\operatorname{len}(A) \cdot \operatorname{len}(B))$ = $O(n^2)$ if $\operatorname{len}(A), \operatorname{len}(B) \le n$

Integers: Division

steps: $O(\operatorname{len}(A) \cdot \operatorname{len}(B))$

Integers: Exponentiation

Given as input B, compute 2^B .

lf

B = 5693030020523999993479642904621911725098567020556258102766251487234031094429

 $\operatorname{len}(B) = 251$

but $len(2^B) \sim 5.7$ quattorvigintillion

(output length exceeds number of particles in the universe)

Integers: Factorization

A = 5693030020523999993479642904621911725098567020556258102766251487234031094429

<u>Goal</u>: find one (non-trivial) factor of A

for B = 2, 3, 4, 5, ...test if A mod B = 0.

It turns out:

A = 68452332409801603635385895997250919383 X

```
83 6780 8864529 7478 24266362673045 63
```

Each factor \approx age of the universe in Planck time.

worst case: \sqrt{A} iterations.

$$\sqrt{A} = \sqrt{2^{\log_2 A}} = \sqrt{2^{\ln(A)}} = 2^{\ln(A)/2}$$

exponential in input length

Integers: Factorization

Fastest known algorithm is exponential time!

That turns out to be a good thing:

If there is an efficient algorithm to solve the factoring problem

can break most cryptographic systems used on the internet

Your favorite function from 15-112

iterations: $\approx n$

$$n = 2^{\log_2 n} = 2^{\operatorname{len}(n)}$$

EXPONENTIAL IN input length

```
def fasterIsPrime(n):
    if (n < 2):
        return False
    if (n == 2):
        return True
    if (n % 2 == 0):
        return False
    maxFactor = round(n**0.5)
    for factor in range(3,maxFactor+1,2):
        if (n % factor == 0):
            return False
    return True
```

Exercise: Show that this is still exponential time.

Amazing result from 2002:

There is a poly-time algorithm for primality testing.

Agrawal, Kayal, Saxena

undergraduate students at the time

However, best known implementation is ~ $O(n^6)$ time. Not feasible when n = 2048.

So that's not what we use in practice.

Everyone uses the Miller-Rabin algorithm (1975).

CMU Professor

The running time is ~ $O(n^2)$.

It is a Monte Carlo algorithm with tiny error probability (say $1/2^{300}$)

Integers: Generating a random prime number

Suppose you need an n-bit long random prime number.

repeat: let A be a random n-bit number test if A is prime

Prime Number Theorem (informal):

About I/n fraction of n-bit numbers are prime.

 \implies expected # iterations of the above algorithm ~ $O(n^3)$.

No poly-time deterministic algorithm is known!!

Start with algorithms on good old integers.

Then move to the modular universe.

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
 - > addition
 - > subtraction
 - > multiplication
 - > division
 - > exponentiation
 - > taking roots
 - > logarithm

theory + algorithms (efficient (?)) Modular universe: How to view the elements

Hopefully everyone already knows:

Any integer can be reduced mod N.

 $A \mod N$ = remainder when you divide A by N

Example

N = 5

Modular universe: How to view the elements

We write
$$A \equiv B \mod N$$
 or $A \equiv_N B$
when $A \mod N = B \mod N$.
(In this case, we say A is congruent to B modulo N .)

Examples

- $5 \equiv_5 100$
- $13 \equiv_7 27$

Exercise

 $A \equiv_N B \iff N \text{ divides } A - B$

Modular universe: How to view the elements

2 Points of View

View I

The universe is $\ensuremath{\mathbb{Z}}$.

Every element has a "mod N" representation.

View 2

The universe is the finite set $\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\}$.

Modular universe: Addition

Addition plays nice mod N

○ + ☐ is always the same mod N

Modular universe: Addition

Addition table for \mathbb{Z}_5

0 is called the (additive) identity: $\mathbf{0} + A = A + \mathbf{0} = A$ for any A

Modular universe: Subtraction

How about subtraction in \mathbb{Z}_N ?

What does A - B mean? It is actually addition in disguise: A + (-B)Then what does -B mean?

Given any B, we define -B to be the number in \mathbb{Z}_N such that B + (-B) = 0.

Modular universe: Subtraction

Addition table for \mathbb{Z}_5

Modular universe: Subtraction

Addition table for \mathbb{Z}_5

Note:

For every $A \in \mathbb{Z}_N$, -A exists.

Why? -A = N - A

This implies:

A row contains distinct elements.

i.e. every row is a permutation of \mathbb{Z}_N .

Fix row A

$$\begin{array}{ccc} A+B=A+B' \implies B=B' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \mathsf{row} \ \mathsf{col} & \mathsf{row} \ \mathsf{col} & \mathsf{same \ col} \end{array}$$

Modular universe: Multiplication

Multiplication plays nice mod N

() is always the same mod N

Modular universe: Multiplication

Multiplication table for \mathbb{Z}_5

is called the (multiplicative) identity: $|\cdot A| = A \cdot | = A$ for any A

How about division in \mathbb{Z}_N ?

What does $A \div B$ mean? It is actually multiplication in disguise: $A \cdot \frac{1}{B} = A \cdot B^{-1}$ Then what does B^{-1} mean?

Given any B, we define B^{-1} to be the number in \mathbb{Z}_N such that $B \cdot B^{-1} = 1$.

Multiplication table for \mathbb{Z}_5

Multiplication table for \mathbb{Z}_6

•	0		2	3	4	5
0	0	0	0	0	0	0
	0	Ι	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	Ι

$$0^{-1} =$$
undefined
 $1^{-1} = 1$
 $2^{-1} =$ undefined
 $3^{-1} =$ undefined
 $4^{-1} =$ undefined
 $5^{-1} = 5$

WTF?

Multiplication table for \mathbb{Z}_7

Every number except 0 has a multiplicative inverse.

{1, 3, 5, 7} have inverses. Others don't.
Fact:
$$A^{-1} \in \mathbb{Z}_N$$
 exists if and only if $gcd(A, N) = 1$.

gcd(a, b) = greatest common divisor of a and b.

Examples:

$$gcd(12, 18) = 6$$
$$gcd(13, 9) = 1$$
$$gcd(1, a) = 1 \quad \forall a$$
$$gcd(0, a) = a \quad \forall a$$

If gcd(a, b) = 1, we say a and b are relatively prime.

Fact:
$$A^{-1} \in \mathbb{Z}_N$$
 exists if and only if $gcd(A, N) = 1$.Definition: $\mathbb{Z}_N^* = \{A \in \mathbb{Z}_N : gcd(A, N) = 1\}.$ Definition: $\varphi(N) = |\mathbb{Z}_N^*|$

Note that \mathbb{Z}_N^* is "closed" under multiplication, i.e., $A, B \in \mathbb{Z}_N^* \implies AB \in \mathbb{Z}_N^*$

(Why?)

 $\varphi(5) = 4$

•		2	3	4	
1	Ι	2	3	4	
2	2	4		3	
3	3	Ι	4	2	
4	4	3	2	Ι	

 $\varphi(5) = 4$

•		2	3	4	
I	Ι	2	3	4	
2	2	4		3	
3	3	Ι	4	2	
4	4	3	2		

For P prime, $\varphi(P) = P - 1$.

= 4(8)

 $\varphi(15) = 8$

Exercise: For P, Q distinct primes, $\varphi(PQ) = (P-1)(Q-1)$.

 $\varphi(8) = 4$

For every $A \in \mathbb{Z}_N^*$, A^{-1} exists.

This implies:

A row contains distinct elements.

i.e. every row is a permutation of \mathbb{Z}_N^* .

$$A \cdot B = A \cdot B' \implies B = B'$$

Summary

 \mathbb{Z}_4

behaves nicely with respect to <u>addition</u>

 \mathbb{Z}_8^*

behaves nicely with respect to <u>multiplication</u>

Given
$$A, B, N$$
, $len(A), len(B), len(N) \le n$
Compute $A^B \mod N$.

We saw for integers, no hope for a poly-time algorithm.

In the modular universe, length of output not an issue.

In fact, we can compute this efficiently!

Example

Compute $2337^{32} \mod 100$.

Naïve strategy:

2337 x 2337 = 5461569 2337 x 5461569 = 12763686753 2337 x 12763686753 = ...

: (30 more multiplications later)

Example

Compute $2337^{32} \mod 100$.

2 improvements:

- Reduce mod 100 after every step.
- Don't multiply 32 times. Square 5 times.

 $2337 \longrightarrow 2337^2 \longrightarrow 2337^4 \longrightarrow 2337^8 \longrightarrow 2337^{16} \longrightarrow 2337^{32}$

(what if the exponent was 53?)

Example

Compute $2337^{53} \mod 100$.

(what if the exponent was 53?)

Multiply powers 32, 16, 4, 1. (53 = 32 + 16 + 4 + 1)

$$2337^{53} = 2337^{32} \cdot 2337^{16} \cdot 2337^4 \cdot 2337^1$$

53 in binary = 110101

Given
$$A, B, N$$
, $len(A), len(B), len(N) \le n$
Compute $A^B \mod N$.

<u>Algorithm</u>:

- Repeatedly square A, always mod N. Do this n times.
- Multiply together the powers of A corresponding to the binary digits of B (again, always mod N).

Running time: a bit more than $O(n^2 \log n)$.

Given
$$A, B, N$$
, $len(A), len(B), len(N) \le n$
Compute $A^B \mod N$.

Anything interesting we can do in the special case of gcd(A, N) = 1? i.e. $A \in \mathbb{Z}_N^*$

Euler's Theorem:

For any $A \in \mathbb{Z}_N^*$, $A^{\varphi(N)} = 1$.

Equivalently, for A and ~N with $~\gcd(A,N)=1$, $A^{\varphi(N)}\equiv 1 \bmod N$

When N is a prime, this is known as:

Fermat's Little Theorem:

Let P be a prime. For any $A \in \mathbb{Z}_P^*$, $A^{P-1} = 1$. Equivalently, for any A not divisible by P,

 $A^{P-1} \equiv 1 \bmod P$

Example

	\mathbb{Z}_8^*			
•	I	3	5	7
		3	5	7
3	3		7	5
5	5	7		3
7	7	5	3	

 $\varphi(8) = 4$

1	1^2	1^3	1^4	1^5	1^{6}	1^7	1^{8}
I.	I.	Т	1	I.	I.	Т	Т
3	3^2	3^3	3^4	3^5	3^6	3^7	3^8
3	1	3	Т	3	I.	3	Т
5	5^2	5^3	5^4	5^5	5^6	5^7	5^8
5	1	5	Т	5	I.	5	Т
7	7^2	7^3	7^4	7^5	7^6	7^7	7^8
7	I.	7	Т	7	I.	7	Т

2 and 3 are called generators.

Poll

What is $213^{248} \mod 7$?

- 0
- |
- 2
- 3
- 4
- 5
- 6
- Beats me.

Poll Answer

Euler's Theorem:

For any $A \in \mathbb{Z}_N^*$, $A^{\varphi(N)} = 1$.

In other words, the exponent can be reduced $\mod \varphi(N)$.

$$213^{248} \equiv_7 3^{248}$$

$$3^{248} \equiv_7 3^2 = 2$$

Poll Answer

can think of the exponent living in the universe $\mathbb{Z}_{\varphi(N)}$.

Modular universe: Taking logarithms

Given
$$A, B, P$$
 such that:

- P is prime
- $A \in \mathbb{Z}_P^*$
- $B \in \mathbb{Z}_P^*$ is a generator.

Find X such that
$$B^X \equiv_P A$$
.

It is like we want to compute
$$\log_B A$$
 .

Poll

Find X such that $B^X \equiv_P A$.

What do you think of this algorithm:

DiscreteLog(A, B, P): for X = 0, 1, 2, ..., P-2compute B^X (use fast modular exponentiation) check whether P divides $B^X - A$

- simple and efficient. love it.
- simple but not efficient.
- loop should go up to X = P-I
- I don't understand why we are checking if P divides B^X A.
- I don't understand what is going on right now.

Modular universe: Taking logarithms

Given
$$A, B, P$$
 such that:

- P is prime
- $A \in \mathbb{Z}_P^*$
- $B \in \mathbb{Z}_P^*$ is a generator.
- Find X such that $B^X \equiv_P A$.

We don't know how to compute this efficiently!

Modular universe: Taking roots

As an example, let's consider taking cube roots

Given A, N such that $A \in \mathbb{Z}_N^*$. Find B such that $B^3 \equiv_N A$.

We don't know how to compute this efficiently!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
 - > addition
 - > subtraction
 - > multiplication
 - > division
 - > exponentiation
 - > taking roots
 - > logarithm

theory + algorithms (efficient (?))

Back to division in the modular universe

(i.e. things you will prove in the homework)

2 Questions remain

How do you prove:

$$A^{-1} \in \mathbb{Z}_N$$
 exists if and only if $gcd(A, N) = 1$.

How do you compute: $A \cdot B^{-1} \mod N$ i.e., how do you compute B^{-1} ?

How to compute the multiplicative inverse

How do you compute: $A \cdot B^{-1} \mod N$ i.e., how do you compute B^{-1} ?

To determine if B has an inverse, we need to compute $\gcd(B,N)$

Euclid's Algorithm finds gcd in polynomial time. Arguably the first ever algorithm. ~ 300 BC

How to compute the multiplicative inverse

Euclid's Algorithm

```
gcd(A, B):

if B == 0, return A

return gcd(B, A mod B)
```

Homework

Why does it work? Why is it polynomial time?

Major open problem in Computer Science

Is gcd computation efficiently parallelizable?

i.e., is there a circuit family of
poly(n) size
polylog(n) depth
that computes gcd?

How to compute the multiplicative inverse

Ok, Euclid's Algorithm tells us whether an element has an inverse. How do you find it if it exists?

Examples:

2 is a mix of 14 and 10: $2 = (-2) \cdot 14 + 3 \cdot 10$

Any multiple of 2 is a mix of 14 and 10.

7 is not a miix of 55 and 40: any miix would be divisible by 5.

How to compute the multiplicative inverse

Fact: C is a mix of A and B if and only if
C is a multiple of
$$gcd(A, B)$$
.

So
$$gcd(A,B) = k \cdot A + \ell \cdot B$$

The coefficients k and ℓ can be found by slightly modifying Euclid's Algorithm.

Finding B^{-1} :

If $\gcd(B,N)=1\,\text{, we can find } k,\ell\in\mathbb{Z}\,$ such that

$$1 = k \cdot B + \ell \cdot N$$
||
Fherefore found B^{-1}

2 Questions remain

How do you prove:

$$A^{-1} \in \mathbb{Z}_N$$
 exists if and only if $gcd(A, N) = 1$.

How do you compute: $A \cdot B^{-1} \mod N$ i.e., how do you compute B^{-1} ?
When does the inverse exist

How do you prove: $A^{-1} \in \mathbb{Z}_N$ exists if and only if gcd(A, N) = 1. A^{-1} exists N divides $k \cdot A - 1$ **Proof**: $\iff \exists k \quad \text{such that} \quad k \cdot A \equiv_N 1$ $\iff \exists k, q \quad \text{such that} \quad k \cdot A - 1 = q \cdot N$ $\iff \exists k, q \quad \text{such that} \quad 1 = k \cdot A + (-q) \cdot N$ \iff 1 is a mix of A and N $\iff \gcd(A, N) = 1$

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
 - > addition
 - > subtraction
 - > multiplication
 - > division
 - > exponentiation
 - > taking roots
 - > logarithm

theory + algorithms (efficient (?))

Next Time Cryptography

