|5-25|
 Great Theoretical Ideas in Computer Science

Lecture 21:
 Computational Arithmetic

November IOth, 2015

This week

Computational arithmetic (in particular, modular arithmetic)

$+$

Cryptography

(in particular, "public-key" cryptography)

Main goal of this lecture

Goal:

Understanding modular arithmetic: theory + algorithms

Why:

I. When we do addition or multiplication, the universe is infinite (e.g. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.)
Sometimes we prefer to restrict ourselves to a finite universe (e.g. the modular universe).
2. Some hard-to-do arithmetic operations in \mathbb{Z} or \mathbb{Q} is easy in the modular universe.
3. Some easy-to-do arithmetic operations in \mathbb{Z} or \mathbb{Q} seem to be hard in the modular universe.
And this is great for cryptography applications!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
$>$ addition
$>$ subtraction
$>$ multiplication
$>$ division
> exponentiation
$>$ taking roots
> logarithm

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Integers

Algorithms on numbers involve BIG numbers.

36|8502788666|3I|0698659328|52|497II045574302I|69260358536775932020762686|0| 7237846234873269807IO2970I2887435602I48I96423285778229567I67502I393065473695 3943653222082II694I5878307696498263I05897I7739I8I525033220266350650989268038 3I9483927388I505432422077I79I2I83888828I 996|48408052302I96889866637200606252 650I3I0964926475205090003984I76I220587III6456794655904497I683604424076996342 718304654479802II682970|3490774|4009047634829067I82274396|203698|42307099664 3455I334I46376I6824423860I0788974IO58I3I27I3062262I420863600822465I5I096IOI8 97890068I50676649015942469667309276208447327I4004599013904409378I4I724958467 7228950143608277369974692883I956843I436I862929679227I6752485I3I6077587207648 784505836723I603I730798I747I4I75I905I35702967I99|I529635804I2838I8484I733782

Integers

$B=569303002052399999347964290462|9| 1725098567020556258102766251487234031094429$
$B \approx 5.7 \times 10^{75} \quad(5.7$ quattorvigintillion)
B is roughly the number of atoms in the universe or the age of the universe in Planck time units.

Definition: $\operatorname{len}(B)=\#$ bits to write B

$$
\approx \log _{2} B
$$

For $B=569303002052399999347964290462$ I91। 725098567020556258102766251487234031094429

$$
\operatorname{len}(B)=251
$$

(for crypto purposes, this is way too small)

Integers: Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing string-manipulation.

Think of adding two numbers up yourself.
(the longer the numbers, the longer it will take)

$$
\begin{array}{r}
36 I 8502788666 I 3 I I 0698659328 I 52 I 497 I I 04 \\
+\quad 6574302 I I 69260358536775932020762686 I 0 I \\
\hline I 0 I 92804905592 I 66960664 I 864835977657205
\end{array}
$$

The number of steps is measured with respect to the length of the input numbers.

Integers: Addition

$36 I 85027886661311069865932815214971104$
$+\quad 65743021169260358536775932020762686101$
101928049055921669606641864835977657205

Grade school addition is linear time:

$$
\text { if } \operatorname{len}(A), \operatorname{len}(B) \leq n
$$ number of steps to produce C is $O(n)$

Integers: Multiplication

$$
\begin{array}{rr}
36|8502788666| 3||0698659328| 52| 497|\mid 04 & A \\
5932020762686|0| & B
\end{array}
$$

$X X$
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2|465033672205046394665|358202698404452609868|37425504
\# steps: $O(\operatorname{len}(A) \cdot \operatorname{len}(B))$
$=O\left(n^{2}\right)$ if $\operatorname{len}(A), \operatorname{len}(B) \leq n$

Integers: Division

$6099949635084593037586 Q$
$B 5 9 3 2 0 2 0 7 6 2 6 8 6 1 0 1 \longdiv { 3 6 1 8 5 0 2 7 8 8 6 6 6 1 3 1 1 0 6 9 8 6 5 9 3 2 8 1 5 2 | 4 9 7 1 1 0 4 } A$
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
$$
A=Q \cdot B+R
$$ XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
$$
R=A \bmod B
$$

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

3960087002178918 R

Integers: Exponentiation

Given as input B, compute 2^{B}.
If
$B=569303002052399999347964290462|9| 1725098567020556258102766251487234031094429$
$\operatorname{len}(B)=251$
but $\operatorname{len}\left(2^{B}\right) \sim 5.7$ quattorvigintillion
(output length exceeds number of particles in the universe)

exponential in input length

Integers: Factorization

$A=569303002052399999347964290462|9| 172509856702055625810276625 \mid 487234031094429$
Goal: find one (non-trivial) factor of A

$$
\begin{aligned}
& \text { for } B=2,3,4,5, \ldots \\
& \text { test if } A \bmod B=0
\end{aligned}
$$

It turns out:

$$
\begin{gathered}
A=68452332409801603635385895997250919383 \times \\
83167801886452917478124266362673045163
\end{gathered}
$$

Each factor \approx age of the universe in Planck time.
worst case: \sqrt{A} iterations.

$\sqrt{A}=\sqrt{2^{\log _{2} A}}=\sqrt{2^{\operatorname{len}(A)}}=2^{\operatorname{len}(A) / 2}$ input length

Integers: Factorization

Fastest known algorithm is exponential time!

That turns out to be a good thing:
If there is an efficient algorithm to solve the factoring problem
\downarrow
can break most cryptographic systems used on the internet

Integers: Primality testing

Your favorite function from $|5-| | 2$

```
def isPrime(n):
    if (n< 2):
    return False
    for factor in range(2,n):
        if (n % factor == 0):
                            return False
    return True
```

\# iterations: $\approx n$

$$
n=2^{\log _{2} n}=2^{\operatorname{len}(n)}
$$

Integers: Primality testing

```
def fasterIsPrime(n):
if (n < 2):
    return False
if (n == 2):
    return True
if (n % 2 == 0):
    return False
maxFactor = round(n**0.5)
for factor in range(3,maxFactor+1,2):
        if (n % factor == 0):
        return False
    return True
```

Exercise: Show that this is still exponential time.

Integers: Primality testing

Amazing result from 2002:

There is a poly-time algorithm for primality testing.

undergraduate students at the time However, best known implementation is $\sim O\left(n^{6}\right)$ time.
Not feasible when $n=2048$.

Integers: Primality testing

So that's not what we use in practice.

Everyone uses the Miller-Rabin algorithm (1975).

The running time is $\sim O\left(n^{2}\right)$.
It is a Monte Carlo algorithm with tiny error probability
(say $1 / 2^{300}$)

Integers: Generating a random prime number

Suppose you need an n-bit long random prime number.

repeat:

let A be a random n-bit number test if A is prime

Prime Number Theorem (informal):

About I/n fraction of n-bit numbers are prime.
\Longrightarrow expected \# iterations of the above algorithm $\sim O\left(n^{3}\right)$.
No poly-time deterministic algorithm is known!!

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
$>$ addition
> subtraction
> multiplication
$>$ division
> exponentiation
$>$ taking roots
> logarithm

Modular universe: How to view the elements

Hopefully everyone already knows:
Any integer can be reduced mod N.
$A \bmod N=$ remainder when you divide A by N
Example

$$
N=5
$$

$\begin{array}{lllll::cccc:cccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \downarrow & \downarrow \\ & \downarrow \\ 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2\end{array} \cdots$

Modular universe: How to view the elements

We write $\quad A \equiv B \bmod N \quad$ or $\quad A \equiv{ }_{N} B$
when $A \bmod N=B \bmod N$.
(In this case, we say A is congruent to B modulo N.)

Examples
$5 \equiv_{5} 100$
$13 \equiv{ }_{7} 27$

Exercise

$$
A \equiv_{N} B \Longleftrightarrow N \text { divides } A-B
$$

Modular universe: How to view the elements

2 Points of View

View I

The universe is \mathbb{Z}.
Every element has a "mod N" representation.
View 2
The universe is the finite set $\mathbb{Z}_{N}=\{0,1,2, \ldots, N-1\}$.

Modular universe: Addition

Addition plays nice $\bmod \mathbf{N}$

$$
\begin{aligned}
& A \equiv_{N} \sqrt[B]{ } \\
&\left.A^{\prime}\right) \equiv_{N} B^{\prime} \\
& \Rightarrow A+A^{\prime} \equiv_{N} B+B^{\prime}
\end{aligned}
$$

$$
\begin{array}{lllll:lllll:llll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { (11) } & 12 & \cdots \\
1 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & l & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \bmod 5 \\
0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & \cdots
\end{array}
$$

$\bigcirc+\square$ is always the same $\bmod N$

Modular universe: Addition

Addition table for \mathbb{Z}_{5}

	$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$				
0	0	-	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

0 is called the (additive) identity: $0+A=A+0=A$ for any A

Modular universe: Subtraction

How about subtraction in \mathbb{Z}_{N} ?

What does $A-B$ mean?
It is actually addition in disguise: $A+(-B)$
Then what does $-B$ mean?

Given any B, we define $-B$ to be the number in \mathbb{Z}_{N} such that $B+(-B)=0$.

Modular universe: Subtraction

Addition table for \mathbb{Z}_{5}

+	0	I	2	3	4	
0	0	1	2	3	4	$-0=0$
1	1	2	3	4	0	$-1=4$
2	2	3	4	0	2	$-2=3$
3	3	4	0	1	2	$-3=2$
4	4	0	I	2	3	$-4=1$

Modular universe: Subtraction

Addition table for \mathbb{Z}_{5}

Fix row A

Note:

For every $A \in \mathbb{Z}_{N}$, $-A$ exists.
Why? $-A=N-A$
This implies:
A row contains distinct elements. i.e. every row is a permutation of \mathbb{Z}_{N}.

Modular universe: Multiplication

Multiplication plays nice $\bmod \mathbf{N}$

$$
\begin{aligned}
A & \equiv_{N} B \\
A^{\prime} & \equiv_{N} B^{\prime} \\
A \cdot A^{\prime} & \equiv_{N} B \cdot\left(B^{\prime}\right)
\end{aligned}
$$

$$
\begin{array}{lllll:llllll:llll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { (11) } & 12 & \cdots \\
\downarrow & \bmod 5 \\
0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & \cdots
\end{array}
$$

$\square \cdot \bigcirc$ is always the same $\bmod N$

Modular universe: Multiplication

Multiplication table for \mathbb{Z}_{5}

	$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$				
0	0	0	0	0	0
	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
	0	4	3	2	

I is called the (multiplicative) identity: $I \cdot A=A \cdot I=A$ for any A

Modular universe: Division

How about division in \mathbb{Z}_{N} ?

What does $A \div B$ mean?
It is actually multiplication in disguise: $A \cdot \frac{1}{B}=A \cdot B^{-1}$ Then what does B^{-1} mean?

Given any B, we define B^{-1} to be the number in \mathbb{Z}_{N} such that $B \cdot B^{-1}=1$.

Modular universe: Division

Multiplication table for \mathbb{Z}_{5}

	0	1	2	3	4	$0^{-1}=$ undefined
0	0	0	0	0	0	
1	0	1	2	3	4	$1^{-1}=1$
2	0	2	4	I	3	$2^{-1}=3$
3	0	3	I	4	2	$3^{-1}=2$
4	0	4	3	2	1	$4^{-1}=4$

Modular universe: Division

Multiplication table for \mathbb{Z}_{6}

	0	I	2	3	4	5	$\begin{aligned} & 0^{-1}=\text { undefined } \\ & 1^{-1}=1 \end{aligned}$
0	0	0	0	0	0	0	
1	0	1	2	3	4	5	
2	0	2	4	0	2	4	$2^{-1}=$ undefined
3	0	3	0	3	0	3	$3^{-1}=$ undefined
4	0	4	2	0	4	2	$4^{-1}=$ undefined
5	0	5	4	3	2	I	$5^{-1}=5$

Modular universe: Division

Multiplication table for \mathbb{Z}_{7}

0 1 203456							
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
	0	6	5	4	3	2	

Every number except 0 has a multiplicative inverse.

Modular universe: Division

Multiplication table for \mathbb{Z}_{8}

		0	0	0	0	0	0	
	0	1	2	3	4	5	6	
		2	4	6	0	2	4	
	0	3	6	1	4	7	2	5
	-	4	0	4	0	4	0	
		5	2	7	4	1	6	
	0	6	4	2	0	6	4	2
	0			5		3		

$\{1,3,5,7\}$ have inverses. Others don't.

Modular universe: Division

Fact: $\quad A^{-1} \in \mathbb{Z}_{N}$ exists if and only if $\operatorname{gcd}(A, N)=1$. $\operatorname{gcd}(a, b)=$ greatest common divisor of a and b.

Examples:

$$
\begin{aligned}
& \operatorname{gcd}(12,18)=6 \\
& \operatorname{gcd}(13,9)=1 \\
& \operatorname{gcd}(1, a)=1 \quad \forall a \\
& \operatorname{gcd}(0, a)=a \quad \forall a
\end{aligned}
$$

If $\operatorname{gcd}(a, b)=1$, we say a and b are relatively prime.

Modular universe: Division

Fact: $\quad A^{-1} \in \mathbb{Z}_{N}$ exists if and only if $\operatorname{gcd}(A, N)=1$.

Definition: $\mathbb{Z}_{N}^{*}=\left\{A \in \mathbb{Z}_{N}: \operatorname{gcd}(A, N)=1\right\}$.

Definition: $\varphi(N)=\left|\mathbb{Z}_{N}^{*}\right|$

Note that \mathbb{Z}_{N}^{*} is "closed" under multiplication, i.e., $A, B \in \mathbb{Z}_{N}^{*} \Longrightarrow A B \in \mathbb{Z}_{N}^{*}$
(Why?)

Modular universe: Division

$$
\mathbb{Z}_{5}^{*}
$$

$$
\varphi(5)=4
$$

Modular universe: Division

$$
\mathbb{Z}_{5}^{*}
$$

$$
\varphi(5)=4
$$

Modular universe: Division

$$
\mathbb{Z}_{5}^{*}
$$

For P prime, $\varphi(P)=P-1$.

Modular universe: Division

Modular universe: Division

$$
\varphi(8)=4
$$

Modular universe: Division

	\mathbb{Z}_{15}^{*}							
i	1							
	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	13	7
11	11	7	14	2	13	13	8	4
13	13	11	7	1	14	8	4	2
		13	11	8	7	4	2	1
				15)	$=$			

Modular universe: Division

\mathbb{Z}_{15}^{*}								
I								
	1	2	4	7	8	11	113	314
2	2	4	8	14	1	7	711	113
4	4	8	1	13	2	14	47	11
7	7	14	13	4	11	12	2	8
8	8	1	2	11	4	13	314	4
	11	7	14	2	13	3	18	4
13	13	11	7	1	14	48	8	2
			11	8	7	4	42	

Exercise: For P, Q distinct primes, $\varphi(P Q)=(P-1)(Q-1)$.

Modular universe: Division

\mathbb{Z}_{8}^{*}

$\varphi(8)=4$

For every $A \in \mathbb{Z}_{N}^{*}, \quad A^{-1}$ exists.
This implies:
A row contains distinct elements. i.e. every row is a permutation of \mathbb{Z}_{N}^{*}.

$$
A \cdot B=A \cdot B^{\prime} \Longrightarrow B=B^{\prime}
$$

Summary

\mathbb{Z}_{4}
behaves nicely
with respect to addition

\mathbb{Z}_{8}^{*}
behaves nicely with respect to multiplication

Modular universe: Exponentiation

Given $A, B, N, \quad \operatorname{len}(A), \operatorname{len}(B), \operatorname{len}(N) \leq n$
Compute $A^{B} \bmod N$.

We saw for integers, no hope for a poly-time algorithm.

In the modular universe, length of output not an issue.

In fact, we can compute this efficiently!

Modular universe: Exponentiation

Example

Compute $2337^{32} \bmod 100$.
Naïve strategy:
$2337 \times 2337=5461569$
$2337 \times 5461569=12763686753$
$2337 \times 12763686753=\ldots$
: (30 more multiplications later)

Modular universe: Exponentiation

Example

Compute $2337^{32} \bmod 100$.
$\underline{2}$ improvements:

- Reduce mod 100 after every step.
- Don't multiply 32 times. Square 5 times.

$$
2337 \longrightarrow 2337^{2} \longrightarrow 2337^{4} \longrightarrow 2337^{8} \longrightarrow 2337^{16} \longrightarrow 2337^{32}
$$

(what if the exponent was 53?)

Modular universe: Exponentiation

Example

Compute $2337^{53} \bmod 100$.
(what if the exponent was 53?)

Multiply powers 32, $16,4, \mathrm{I} . \quad(53=32+16+4+1)$

$$
\begin{aligned}
2337^{53}= & 2337^{32} \cdot 2337^{16} \cdot 2337^{4} \cdot 2337^{1} \\
& 53 \text { in binary }=110101
\end{aligned}
$$

Modular universe: Exponentiation

Given $A, B, N, \quad \operatorname{len}(A), \operatorname{len}(B), \operatorname{len}(N) \leq n$
Compute $A^{B} \bmod N$.

Algorithm:

- Repeatedly square A, always mod N. Do this n times.
- Multiply together the powers of A corresponding to the binary digits of B (again, always mod N).

Running time: a bit more than $O\left(n^{2} \log n\right)$.

Modular universe: Exponentiation

Given $A, B, N, \quad \operatorname{len}(A), \operatorname{len}(B), \operatorname{len}(N) \leq n$
Compute $A^{B} \bmod N$.

Anything interesting we can do in the special case of

$$
\operatorname{gcd}(A, N)=1 ? \quad \text { i.e. } A \in \mathbb{Z}_{N}^{*}
$$

Modular universe: Exponentiation

Euler's Theorem:

For any $A \in \mathbb{Z}_{N}^{*}, \quad A^{\varphi(N)}=1$.
Equivalently, for A and N with $\operatorname{gcd}(A, N)=1$,

$$
A^{\varphi(N)} \equiv 1 \bmod N
$$

When N is a prime, this is known as:

Fermat's Little Theorem:

Let P be a prime. For any $A \in \mathbb{Z}_{P}^{*}, \quad A^{P-1}=1$.
Equivalently, for any A not divisible by P,

$$
A^{P-1} \equiv 1 \bmod P
$$

Modular universe: Exponentiation

Example

	\mathbb{Z}_{8}^{*}					1^{2}	1^{3}	14	1	1^{6}	1^{7}	1^{8}
	I	3	5	7	I	I	I	I	I	I	I	I
1	1	3	5	7	3	3^{2}	3^{3}	3^{4}	3	3^{6}	3^{7}	3^{8}
3	3	1	7	5	3	I	3	I	3	I	3	1
5	5	7	1	3	5	5^{2}	5^{3}	5^{4}	5	5^{6}	5^{7}	5^{8}
7	7	5	3	1	5	1	5	I	5	I	5	I
$\varphi(8)=4$					7	7^{2}	7^{3}	7^{4}		7^{6}	7^{7}	7^{8}
					7		7	1	7	I	7	1

Modular universe: Exponentiation

Example

	\mathbb{Z}_{5}^{*}						1^{3}	1^{4}	1	1^{6}	1^{7}		1^{8}
						I	1	1	I	1	1		I
	1	2	3	4		2^{2}	2^{3}	2^{4}		2^{6}	2^{7}		2^{8}
1	1	2	3	4					2	4	3		
2	2	4	I	3		4		1	2	4	3		1
3	3	1	4	2		3^{2}	3^{3}	3^{4}		3^{6}	3^{7}		3^{8}
4	4	3	2	1		4	2	1	3	4	2		1
$\varphi(8)=4$								4^{4}		4^{6}	4^{7}		4^{8}
						I	4	1		I	4		

2 and 3 are called generators.

Poll

What is $213^{248} \bmod 7$?

- 0
- I
- 2
- 3
- 4
- 5
- 6
- Beats me.

Poll Answer

Euler's Theorem:

For any $A \in \mathbb{Z}_{N}^{*}, \quad A^{\varphi(N)}=1$.

A^{0}	A^{1}	A^{2}	\cdots	$A^{\varphi(N)}$	$A^{\varphi(N)+1}$	\cdots			
$\\|$	$\\|$	$A^{2 \varphi(N)}$	$A^{2 \varphi(N)+1}$						
1	$\\|$		$\\|$	$\\|$					
1		A^{0}	A^{1}	\cdots	A^{0}	A^{1}			

In other words, the exponent can be reduced $\bmod \varphi(N)$.

$$
\begin{aligned}
213^{248} & \equiv_{7} 3^{248} \\
3^{248} & \equiv_{7} 3^{2}
\end{aligned}
$$

$$
=2
$$

Poll Answer

When exponentiating elements $A \in \mathbb{Z}_{N}^{*}$

can think of the exponent living in the universe $\mathbb{Z}_{\varphi(N)}$.

Modular universe: Taking logarithms

Given A, B, P such that:

- P is prime
- $A \in \mathbb{Z}_{P}^{*}$
- $B \in \mathbb{Z}_{P}^{*}$ is a generator.

Find X such that $B^{X} \equiv{ }_{P} A$.

It is like we want to compute $\log _{B} A$.

Find X such that $B^{X} \equiv_{P} A$.
What do you think of this algorithm:
DiscreteLog(A, B, P):

$$
\text { for } X=0,1,2, \ldots, P-2
$$

compute $\mathrm{B}^{\mathrm{X}} \quad$ (use fast modular exponentiation)
check whether P divides $\mathrm{B}^{\mathrm{X}}-\mathrm{A}$

- simple and efficient. love it.
- simple but not efficient.
- loop should go up to $X=P-I$
$-I$ don't understand why we are checking if P divides $B^{X}-A$.
- I don't understand what is going on right now.

Modular universe: Taking logarithms

Given A, B, P such that:

- P is prime
- $A \in \mathbb{Z}_{P}^{*}$
- $B \in \mathbb{Z}_{P}^{*}$ is a generator.

Find X such that $B^{X} \equiv{ }_{P} A$.

We don't know how to compute this efficiently!

Modular universe: Taking roots

As an example, let's consider taking cube roots

Given A, N such that $A \in \mathbb{Z}_{N}^{*}$.
Find B such that $B^{3} \equiv_{N} A$.

We don't know how to compute this efficiently!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
$>$ addition
> subtraction
$>$ multiplication
> division
> exponentiation
$>$ taking roots
> logarithm

Back to division in the modular universe

(i.e. things you will prove in the homework)

2 Questions remain

How do you prove:

$$
A^{-1} \in \mathbb{Z}_{N} \text { exists if and only if } \operatorname{gcd}(A, N)=1
$$

How do you compute: $A \cdot B^{-1} \bmod N$
i.e., how do you compute B^{-1} ?

How to compute the multiplicative inverse

How do you compute: $A \cdot B^{-1} \bmod N$ i.e., how do you compute B^{-1} ?

To determine if B has an inverse, we need to compute

$$
\operatorname{gcd}(B, N)
$$

Euclid's Algorithm finds gcd in polynomial time.
Arguably the first ever algorithm. $\sim 300 \mathrm{BC}$

How to compute the multiplicative inverse

Euclid's Algorithm

```
gcd(A, B):
        if B == 0, return A
        return gcd(B,A mod B)
```

Homework
Why does it work?
Why is it polynomial time?

Major open problem in Computer Science Is gcd computation efficiently parallelizable?
i.e., is there a circuit family of

- poly(n) size
- polylog(n) depth
that computes gcd?

How to compute the multiplicative inverse

Ok, Euclid's Algorithm tells us whether an element has an inverse. How do you find it if it exists?

Definition: We say that C is a miix of A and B if

$$
C=k \cdot A+\ell \cdot B
$$

for some $k, \ell \in \mathbb{Z}$.

Examples:

2 is a miix of 14 and $10: \quad 2=(-2) \cdot 14+3 \cdot 10$
Any multiple of 2 is a miix of 14 and 10 .
7 is not a miix of 55 and 40: any miix would be divisible by 5 .

How to compute the multiplicative inverse

Fact: C is a mix of A and B if and only if C is a multiple of $\operatorname{gcd}(A, B)$.

$$
\text { So } \quad \operatorname{gcd}(A, B)=k \cdot A+\ell \cdot B
$$

The coefficients k and ℓ can be found by slightly modifying Euclid's Algorithm.

Finding B^{-1} :
If $\operatorname{gcd}(B, N)=1$, we can find $k, \ell \in \mathbb{Z}$ such that

$$
1=k \cdot \beta+\ell \cdot N
$$

Therefore found
B^{-1}

2 Questions remain

How do you prove:

$$
A^{-1} \in \mathbb{Z}_{N} \text { exists if and only if } \operatorname{gcd}(A, N)=1
$$

How do you compute: $A \cdot B^{-1} \bmod N$
i.e., how do you compute B^{-1} ?

When does the inverse exist

How do you prove:

$A^{-1} \in \mathbb{Z}_{N}$ exists if and only if $\operatorname{gcd}(A, N)=1$.

Proof: $\quad A^{-1}$ exists
N divides $k \cdot A-1$
$\Longleftrightarrow \exists k \quad$ such that $\quad k \cdot A \equiv_{N} 1$
$\Longleftrightarrow \exists k, q \quad$ such that $\quad k \cdot A-1=q \cdot N$
$\Longleftrightarrow \exists k, q \quad$ such that $\quad 1=k \cdot A+(-q) \cdot N$
$\Longleftrightarrow 1$ is a minx of A and N
$\Longleftrightarrow \operatorname{gcd}(A, N)=1$

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
$>$ addition
> subtraction
> multiplication
$>$ division
> exponentiation
$>$ taking roots
> logarithm

Next Time

Cryptography

