15-251
Great Theoretical Ideas in Computer Science

Lecture 22:
Cryptography

November | 2th, 2015

public key private key
‘6@
)
e

encryption decryption
plaintext ciphertext plaintext

What is cryptography about!?

Adversary
Eavesdropper

“I will cut your throat”

“I will cut your throat”

What is cryptography about!?

“loru23n8uladjkfb!#@”

“I will cut your throat” “loru23n8uladjkfb!#@”
l encryption decryption

“loru23n8uladjkfb!#@” “I will cut your throat”

What is cryptography about!?

Study of protocols that avoid the bad affects of adversaries.
- Can we have secure online voting schemes?
- Can we use digital signatures.

- Can we do computation on encrypted data?

- Can | convince you that | have proved P=NP without giving
you any information about the proof!

Reasons to like cryptography

Can do pretty cool and unexpected things.

Has many important applications.

Is fundamentally related to computational complexity.
In fact, computational complexity revolutionized crypto.
Applications of computationally hard problems.

There is good math (e.g. number theory).

The plan

First, we will review modular arithmetic.

Then we’ll talk about private (secret) key cryptography.

Finally, we’ll talk about public key cryptography.

Review of Modular Arithmetic

[A mod N = remainder when you divide A by N]

SIS
0 123401 2340 1 2

Lis

Wewrite A=BmodN o A=n2DB
when A mod N = B mod N.

Can view the universeas Zy = {0,1,2,..., N — 1}.

> addition A+ B mod N
Do regular addition. Then take mod N.
> subtraction A— B =A+ (—B)mod N
-B = N-B. Then do addition.
> multiplication A - B mod N
Do regular multiplication. Then take mod N.
> division A/B=A-B 'mod N
Find B™. Then do multiplication.

> exponentiation A” mod N
Fast modular exponentiation: repeatedly square and mod.

> taking roots ~_
/

No known efficient algorithm exists.
> logarithm

> addition A+ B mod N

Do regular addition. Then take mod N.

> subtraction A— B =A+ (—B)mod N
-B = N-B. Then do addition.

> multiplication A - B mod N
Do regular mul

> division A/

[Find B A modification of Euclid’s Algorithm
> exponentiatio| gives you B~

Fast modular e

> taking roots ~_
/

B~ exists iff gcd(B,N) = 1.

No known efficient algorithm exists.

> logarithm

7.4 7

+ 0 | 2 3 - | 3 5 7
0101 [2]3 11 {315]7
11 112[3]0 3(3(1]7]5
202131011 SI517]1]3
3(310(11]2 7171531
Zn =1{0,1,2,...,N — 1} Zn ={A€Zy :gcd(A,N) =1}

behaves nicely behaves nicely
with respect to with respect to

addition multiplication

p(V) = IZN\

if P prime, (P)=
if P,() distinct primes, ¢(PQ) = (— 1)(Q —1)

O 41 12 13
7 19 1t 12 1
I
- | 2 3 4
0O ol o2 a3
1112134 ?iii
21214113
33111412 30 gl 32 33
41431211 | 3 4 2
40 41 42 43
5) =4
P (5) | 4 | 4

2 and 3 are called generators.

AW N — o

ADITWIN|—|—

—|IN|W|A[DN

Euler’s Theorem:
Forany AcZy, AW =1,

Fermat’s Little Theorem:
Let P beaprime. Forany Ac Z%, A1 =1.
1
1
1 1 1 1
APAY) APAN)+1 APAN)+2 coe A2P(N)—1

[[l [[l
A20(N) A20(N)+1 420(N) 42 ces A3p(N)-1

IMPORTANT

When exponentiating elements A € Z};,

can think of the exponent living in the universe Z,n).

In Z

(B,E) —{ EXP }—>p” hard

Two inverse functions:

(B”,E) —{ ROOT |+ B easy
(B”,B)—{ LOGp | P casy

In Z

(B”,E) —{ ROOT |+ B easy

(1881676371789154860897069,3) —> 123456789

(can do binary search)

(B”,B)—{ LOGp | P casy

(48519278097689642681155855396759336072749841943521979872827, 3)
— 123

(keep dividing by B)

X
In Zy

(B,E,N)—{ EXP }>B” mod N easy

Two inverse functions:

B seems
(B¥,E,N)—{ ROOTp }—+ B ce

> seems
(B vaN)_{ LOGg]_' 1 hard

Exercise: Convince yourself that the algorithms

in the setting of Z do not work in Z,.

X
In Zy

(B,E,N)—{

EXP)—>BE mod N easy

Two inverse functions:

B seems
(B¥,E,N)—{ ROOTp }—+ B cerm

(B”,B,N)—{

seems
LOGpB '—> E hard

One-way function: easy to compute, hard to invert.

EXP seems to be one-way.

Private Key Cryptography

Private key cryptography

Parties must agree on a key pair beforehand.

Private key cryptography

there must be a secure way of
exchanging the key

Private key cryptography

FPHZLRF AXYUSDIKZLDKRNSHGNFIVY

VTTMZF PR WGDKZXT JODIG KUHUA UERCAR

M (plaintext)

sl by el b, S

M, K4 Enc should be “one-way”. :

Try to ensure it using
the secrecy of the key.

EMUFPHZLRFAXYUSDIKZLDKRNSHGNFIVY

%
T NGEUNA
iz

SZETI
HHDDDUVA
VLDKFEZ]

OGIPUFXHHDRKF []

FHANTGPUAECNUVPDIMQCLQUMUNEDFQ
ELZZVRRGKFFVOEEXBDMYVPNFQXEZLG RE
DNQFMPNZGLFLPMRJ GYALMGNUVEDXVKE
DQUMEBEDMHDA FM) GZNUPLGEWJILLAETG
ENDY AHR OHNLSRHEO CPTEOIBIDYSHNALA
CHTNREYULDSLLSLLNOHSN OSMRW XMNE
TPRNGATIHNRARPESLNNELEBLPITACAE
WMT! nE oE
TPOLSEDT:
EIFTBRSPAM

VTTMZF PR WGDKZXT JODIG KUHUA UERCAR

A note about security

Better to consider worst-case conditions.

Assume the adversary knows everything

except the key(s) and the message:

Completely sees cipher text C.

Completely knows the algorithms

Enc

and

Dec |

Caesar shift

Example: shift by 3

abcdefghijklmnopgrstuvwxyz

HHHHHHHHHHHHH

defghijklmnopgrstuvwxyzabc

(similarly for capital letters)

“Dear Math, please grow up and solve your own problems.”

|

“Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq sureohpv.”

@% : the shift number Easy to break.

Substitution cipher
abcdefghijklmnopgrstuvwxyz
N R RN T.
Jjkbdelmcfgnoxyrsvwzatupghi

@% : permutation of the alphabet

Easy to break by looking at letter frequencies.

Enigma

A much more complex cipher.

One-time pad

M = message K = key C = encrypted message
(everything in binary)

Encryption:
M= OI0OIIOIOIT1OI0100000I I

@ K= [100110001010111100010]
C= 1001011010IT11011000010

C=M®K (bit-wise XOR)

Foralli: C[i] = M[i] + K[i] (mod 2)

One-time pad

M = message K = key C = encrypted message
(everything in binary)

Decryption:

C= 10010110I0ITT1011000010
@ K= 11001100010101111000101

M= 0I0OIIOIOIT1010100000II |

Encryption:. C=M®K
Decryption: COK = (MOK)DK =MD KDK)=M
(because KK = 0)

One-time pad

M= 0I1011010111010100000I |1
@ K= [100110001010111100010]

C= l100loll0lOITITOIT000010

One-time pad is perfectly secure:

For any M, if K is chosen uniformly at random,
then C is uniformly at random.

So adversary learns nothing about M by seeing C.

But you need to share a key that is as long as the message!

Could we reuse the key?

One-time pad

M= 0I1011010111010100000I |1
@ K= [100110001010111100010]

C= l100loll0lOITITOIT000010

Could we reuse the key?

One-time only:
Suppose you encrypt two messages M; and My with K.
Ci=M®K
Cy= My®K

Then C\®Cy=M®M,

Shannon’s Theorem

s it possible to have a secure system like one-time pad
with a smaller key size?

Shannon proved “no”.

If K is shorter than M:

An adversary with unlimited computational power
could learn some information about M.

Question

What if we relax the assumption that the adversary is
computationally unbounded?

We can find a way to share a random secret key.
(over an insecure channel)

We can get rid of the secret key sharing part.
(public key cryptography)

Secret Key Sharing

Secret Key Sharing

Diffie-Hellman key exchange

1976

Whitfield Diffie Martin Hellman

Diffie-Hellman key exchange

X
In Zy

(B, E,N)—{

EXP)—>BE mod N easy

> seems
(B anN)_’(LOGg]_' 1 hard

Want to make sure for the inputs we pick, LOG is hard.
e.g. we don'twant B' B! B? B° B* ...

1 B1 B 1

Much better to have a generator B.

Diffie-Hellman key exchange

X
In Zy

(B, E,N)—{

EXP)—>BE mod N easy

> seems
(B vaN)_’(LOGg]_' 1 hard

We'll pick N = P a prime number.

(This ensures there is a generator in Zp.)

We'll pick B € Zp so that it is a generator.
{307 317 B27 BS, o BP—Q} _ Z*P

Pic
Pic

Diffie-Hellman key exchange

< prime P
< generator B € Zp

Pick random E; € Z,(p)
Eq
BB, pp BE
Pick random £y € Z,(p)
BE2 < B>
Compute Compute

(BE2)E1 — | B k2 (BEl)Ez —| g1 E2

Pick prime P This is what the adversary sees.
Pick generator B € Z7} ! Ifhe can compute LOGp
Pick random FEy € Z,(p) we are screwed!
Eq
LB\ P, B. BE:
Pick random £y € Z,(p)
BEz B2
Compute Compute
(BE2)E1 — | B k2 (BEl)Ez —| g1 E2

Diffie-Hellman key exchange

Secure!
Adversary sees: P, B, Bt B%2

Hopefully he can’t compute E; from B**.
(our hope that LOGpg is hard)

Good news: No one knows how to compute LOGp
efficiently.

Bad news: Proving that it cannot be computed efficiently
is at least as hard as the P vs NP problem.

Diffie-Hellman assumption:
Computing B2 from P, B, B®*, B®2 is hard.

Decisional Diffie-Hellman assumption:
You actually learn no information about ptikz

One could use:

Diffie-Hellman
(to share a secret key)

=t

One-time Pad

Note
This is only as secure as its weakest link, i.e. Diffie-Hellman.

Question

What if we relax the assumption that the adversary is
computationally unbounded?

We can find a way to share a random secret key.
(over an insecure channel)

- VWe can get rid of the secret key sharing part.
(public key cryptography)

Public Key Cryptography

Public Key Cryptography

public

private

Public Key Cryptography

rivate
Can be used to lock. P

But can’t be used to unlock.

Public key cryptography

EMUFPHZLRFAXYUSDIKZLDKRNSHGNFIVI
ai YQTMEYRDMFD

HH EWEN ATAMATEGY EERLE
EFOASFIOTUETUAEOTOARMAEERTNRTT
SEDDNIAAHTTMSTE WPTEROA GRIEWFED
EGTDD; AOSDDRY DL

K
VTTMZP PR WGDKZXT JODIG KUHUA UEKCAR

prub

Enc should be “one-way”.

(Enc Try to ensure it using [Dec
computational complexity.

RSA crypto system

In

LN

(B,E,N)—{ EXP }>B” mod N easy

. seems
(B”,E,N)—{ ROOTy }— B oo

What if we encode using |

Public key can be (E, N) .

EXP? (M = B)

(M,Kpub):(M,E,N)—{ Enc j—>MEmodN
= C

RSA crypto system

X
In Zy

(B,E,N)—{ EXP }>B” mod N easy

o seems
(B*,E,N) —{ROOTE]# B hard

What if we encode using |

Public key can be (F, N) .

assume
IXP? | (M =B) € 7%,
So b € Zgo(N)

(M,Kpub):(M,E,N)—{ Enc]—>MEmodN
= C

RSA crypto system

EMUFPHZLRFAXYUSDIKZLDKRNSHGNFIVI
ai YQTMEYRDMFD

LSRHEO CPTEOIBIDYSHN ALA
SLLNOHSN OSMRW XMNE
£ S LNNELERLEITACAE

HCTENEUDRETNHAEOE

£}
TFOLSEDTIWE!
IFTBRSP AMHH EWEN ATAMATEGY EERLE

E
TEEFOASFIOTUETUAEOTOARMAEE RTNRTI
BSEDDNIAAHTTMETE WPIEROA G

D 20:

K
VTTMZP PR WGDKZXT JODIG KUHUA UEKCAR

Wone

N, E

(V)

Private key should allow

us to invert EXP.
[EXP | [Dec
i.e. compute ROOTE

C=M¥Y mod N

RSA crypto system
(M,E,N) M eZY

’ E e Zgo(N)

EXP
E3
C = MY mod N

\

(Cv [fpri)

(Dec)
v

RSA crypto system

(M, E,N) M e Zy
Ly € LN

o

:EXP]
v
C=MY mod N

Ca Kpri)

RSA crypto system

(M, E,N) M e Zy
L€ L)
[EXP |
v
C=M* mod N
E —1 \
(M*™,E~",N) (C, Kpyi)
! !
(EXP] (Dec) E livesin Z,(n).
' . ! We want F' to have an
MEE " mod N M inverse.
— So we choose F € Z:;(N)

RSA crypto system

EMUFPHZLRFAXYUSDIKZLDKRNSHONFIVI
YATQUXQBAVYOVLLTREVIYQTMRYRD
VPPIUDEEHZWETZY

EN DY AHR OHNLSRHE
GHT: SLLSLL
AR

0CPTEOIBIDYSHN ALA
NOHSNOSMRW XMNE

SLNNELEBLPIIAGAE
NEUDR

T
VITMZF PK WGDKZXT JODIG KUHUA UEKCAR

N, E

RSA crypto system

EMUFPHZLRFAXYUSDIKZLDKRNSHONFIVI
YOTQUXARGYYUVLLTREV Y QTME TR DT
VFPIUDEEHY VOWHKKAETOraING
GRS DM B & 7D QMM IAG T XH AR L

T
VITMZF PK WGDKZXT JODIG KUHUA UEKCAR

N, E

Why is N = PQ
M, E, N product of distinct primes)?

[EXP) What if,say, N = P ? _

]

<

av
____/

Secure!?

—1 *
If the adversary can compute L™ € Z, (),
we are screwed!

Computing E~ ! € Z:;(N) is easy

if you know (V).

Adversary sees (N, E).

Can he compute ¢p(N) ?

We believe this is computationally hard.

How does Margaery compute ©(N)?
She knows P and Q,so ¢(PQ)=(P—-1)(Q—1). (EXP)

If the adversary can factor IV efficiently, v
he can also compute @ (V). M =C*

Secure!?

The advantage Margaery has over the adversary

is that she can compute ¢(N).

—1 N — PQ
(and therefore £) ﬂ e 7
© Lp(N)
gF B!
If the adversar N i : _
y can factor [V efficiently, (C,E 17 N)
he can also compute (V). |
(and therefore £~ ') (EXP)
v

RSA crypto system

1977

Ron Rivest Adi Shamir Leonard Adleman

RSA crypto system

AN h
Clifford Cocks

Discovered RSA system 3 years before them.
Remained secret until 1997. (was classified information)

Concluding remarks
A variant of this is widely used in practice.

From N, if we can efficiently compute ¢(N),
we can crack RSA.

If we can factor NV, we can compute ¢(N).

Quantum computers
can factor efficiently.

s this the only way to crack RSA!?
We don’t know!

So we are really hoping it is secure.

