

November 17th, 2015





9:00am  $f(x) = \sum_{S \subseteq [n]} \widehat{f}(S) \chi_S(x)$ 





















### And now

### Prepare 15-251 slides



#### Markov Model

#### Markov Model

Andrey Markov (1856 - 1922)

Russian mathematician.

Famous for his work on <u>random processes</u>.



 $(\Pr[X \ge c \cdot \mathbf{E}[X]] \le 1/c$  is Markov's Inequality.)

#### Markov Model

Andrey Markov (1856 - 1922) Russian mathematician.

Famous for his work on <u>random processes</u>.



 $(\Pr[X \ge c \cdot \mathbf{E}[X]] \le 1/c$  is Markov's Inequality.)

A model for the evolution of a random system. The future is independent of the past, given the present.

### Cool things about the Markov model

- It is a very general and natural model.
  - Extraordinary number of applications in many different disciplines:
    - computer science, mathematics, biology, physics, chemistry, economics, psychology, music, baseball,...

- The model is simple and neat.

- A beautiful mathematical theory behind it. Starts simple, goes deep.

# The plan

Motivating examples and applications

#### Basic mathematical representation and properties



The future is independent of the past, given the present.

#### Some Examples of Markov Models

### Example: Drunkard Walk



# **Example: Diffusion Process**



### **Example: Weather**

A very(!!) simplified model for the weather. S = sunnyProbabilities on a daily basis: R = rainyPr[sunny to rainy] = 0.1S R Pr[sunny to sunny] = 0.9 $\begin{array}{c|c} S & 0.9 & 0.1 \\ R & 0.5 & 0.5 \end{array}$ Pr[rainy to rainy] = 0.5Pr[rainy to sunny] = 0.5 0.5 0.1 Rainy Sunny 0.5 Encode more information about current state for a more accurate model.

### **Example: Life Insurance**

Goal of insurance company:

figure out how much to charge the clients.

Find a model for how long a client will live.

Probabilistic model of health on a monthly basis:

Pr[healthy to sick] = 0.3 Pr[sick to healthy] = 0.8 Pr[sick to death] = 0.1 Pr[healthy to death] = 0.01 Pr[healthy to healthy] = 0.69 Pr[sick to sick] = 0.1 Pr[death to death] = 1

### **Example: Life Insurance**

Goal of insurance company: figure out how much to charge the clients.

Find a model for how long a client will live.

Probabilistic model of health on a monthly basis:



#### Some Applications of Markov Models

# Application: Algorithmic Music Composition

### Nicholas Vasallo

# Megalithic Copier #2: Markov Chains (2011)

written in Pure Data

# **Application: Image Segmentation**



### **Application:** Automatic Text Generation

Random text generated by a computer (putting random words together):

"While at a conference a few weeks back, I spent an interesting evening with a grain of salt."

<u>Google</u>: Mark V Shaney

# Application: Speech Recognition

Speech recognition software programs use Markov models to listen to the sound of your voice and convert it into text.

#### 1997: Web search was horrible



Sorts webpages by number of occurrences of keyword(s).



Larry Page Sergey Brin

**\$20Billionaires** 



### Jon Kleinberg

Nevanlinna Prize

How does Google order the webpages displayed after a search?

### <u>2 important factors:</u>

- Relevance of the page.
- Reputation of the page.
  The number and reputation of links pointing to that page.

Reputation is measured using PageRank.

PageRank is calculated using a Markov Chain.



# The plan

Motivating examples and applications

#### Basic mathematical representation and properties



### The Setting

There is a system with *n* possible states/values.

At each time step, the state changes probabilistically.


## The Setting

There is a system with *n* possible states/values.

At each time step, the state changes probabilistically.





**Memoryless** 

The next state only depends on the current state.

Evolution of the system: random walk on the graph.

## The Setting

There is a system with *n* possible states/values.

At each time step, the state changes probabilistically.





**Memoryless** 

The next state only depends on the current state.

Evolution of the system: random walk on the graph.

## The Definition

A Markov Chain is a directed graph with  $V = \{1, 2, ..., n\}$  such that:

- Each edge is labeled with a value in (0, 1]self-loops allowed (a positive probability).
- At each vertex, the probabilities on outgoing edges sum to  $1\,.$
- (-We usually assume the graph is strongly connected. i.e. there is a path from *i* to *j* for any *i* and *j*.)

The vertices of the graph are called states.

- The edges are called transitions.
- The label of an edge is a transition probability.

### Example: Markov Chain for a Lecture



This is not strongly connected.

#### Given some Markov Chain with n states:

For each  $t = 0, 1, 2, 3, \ldots$  we have a random variable:  $X_t =$  the state we are in after t steps. 2  $\pi_t = [p_1 \ p_2 \ \cdots \ p_n]$ Define  $\pi_t |i| = \Pr[X_t = i]$ .  $\sum p_i = 1$  $\pi_t[i] =$  probability of being in state *i* after **t** steps. We write  $X_t \sim \pi_t$ . (X<sub>t</sub> has distribution  $\pi_t$ )

Note that someone has to provide  $\pi_0$ .

Once this is known, we get the distributions  $\pi_1, \pi_2, \ldots$ 

Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



 $X_0 = 1 \qquad X_0 \sim \pi_0$ 

Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



 $X_0 = 1 \qquad X_0 \sim \pi_0$  $X_1 = 4 \qquad X_1 \sim \pi_1$ 

Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



- $X_0 = 1 \qquad X_0 \sim \pi_0$  $X_1 = 4 \qquad X_1 \sim \pi_1$
- $X_2 = 3 \qquad X_2 \sim \pi_2$

Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



- $X_0 = 1 \qquad X_0 \sim \pi_0$  $X_1 = 4 \qquad X_1 \sim \pi_1$  $X_2 = 3 \qquad X_2 \sim \pi_2$
- $X_3 = 4 \qquad X_3 \sim \pi_3$

Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



 $X_0 = 1 \qquad X_0 \sim \pi_0$  $X_1 = 4 \qquad X_1 \sim \pi_1$  $X_2 = 3 \qquad X_2 \sim \pi_2$  $X_3 = 4 \qquad X_3 \sim \pi_3$  $X_4 = 2 \qquad X_4 \sim \pi_4$ 

Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



 $X_0 = 1 \qquad X_0 \sim \pi_0$   $X_1 = 4 \qquad X_1 \sim \pi_1$   $X_2 = 3 \qquad X_2 \sim \pi_2$   $X_3 = 4 \qquad X_3 \sim \pi_3$   $X_4 = 2 \qquad X_4 \sim \pi_4$   $X_5 = 3 \qquad X_5 \sim \pi_5$ 

Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



 $X_0 \sim \pi_0$  $X_0 = 1$  $X_1 = 4$  $X_1 \sim \pi_1$  $X_2 = 3$  $X_2 \sim \pi_2$  $X_3 \sim \pi_3$  $X_3 = 4$  $X_4 = 2$  $X_4 \sim \pi_4$  $X_5 \sim \pi_5$  $X_5 = 3$  $X_6 \sim \pi_6$  $X_6 = 4$ 

Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



Let's say we start at state I, i.e.,  $X_0 \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \pi_0$ 



- $\Pr[X_1 = 2 | X_0 = 1] = \frac{1}{2}$
- $\Pr[X_1 = 3 | X_0 = 1] = 0$
- $\Pr[X_1 = 4 | X_0 = 1] = \frac{1}{2}$
- $\Pr[X_1 = 1 | X_0 = 1] = 0$
- $t \quad \Pr[X_t = 2 | X_{t-1} = 4] = \frac{1}{4}$
- $\forall t \quad \Pr[X_t = 3 | X_{t-1} = 2] = 1$





**Transition Matrix** 

A Markov Chain with **n** states can be characterized by the **n** x **n** transition matrix K :

$$\forall i, j \in \{1, 2, \dots, n\}$$
  $K[i, j] = \Pr[X_t = j \mid X_{t-1} = i]$ 

 $= \Pr[i \to j \text{ in one step}]$ 

<u>Note</u>: rows of K sum to I.

## Some Fundamental and Natural Questions

What is the probability of being in state *i* after *t* steps (given some initial state)?

 $\pi_t[i] = ?$ 

What is the expected time of reaching state *i* when starting at state *j* ?

What is the expected time of having visited every state (given some initial state)?

•

How do you answer such questions?

Suppose we start at state | and let the system evolve.

How can we mathematically represent the evolution?



$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{4} & \frac{3}{4} & 0 \end{bmatrix}$$

#### Poll



3 4 2 Given  $\pi_1 = \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$ , what is  $\pi_2$ ?  $\frac{1}{4}$   $\frac{3}{4}$  0 $\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$  $\left[ 0 \right]$  $\frac{5}{8}$  $\frac{3}{8}$  $\frac{1}{2}$  0  $\frac{1}{2}$  $\left[ 0 \right]$  $\left[ 0 \right]$ 0 $\frac{1}{8}$   $\frac{7}{8}$  $\left[ 0 \right]$  $1 \quad 0$ |0| $\left[ 0 \right]$ 0





The probability of states after 1 step:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{4} & \frac{3}{4} & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$
$$\pi_{1}$$
the new state (probabilistic)



The probability of states after 2 steps:

$$\begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{4} & \frac{3}{4} & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{8} & \frac{7}{8} & 0 \end{bmatrix}$$
$$\begin{array}{c} \pi_{2} \\ \pi_{2} \\ \text{the new state} \\ \text{(probabilistic)} \end{array}$$



$$\pi_1 = \pi_0 \cdot K$$
$$\pi_2 = \pi_1 \cdot K$$
So 
$$\pi_2 = (\pi_0 \cdot K) \cdot$$

 $= \pi_0 \cdot K^2$ 

K

#### In general:

If the initial probabilistic state is  $\begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix} = \pi_0$ 

$$p_i = probability$$
 of being in state *i*,

 $p_1 + p_2 + \cdots + p_n = 1$ ,

after t steps, the probabilistic state is:

$$\begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix} \begin{bmatrix} \text{Transition} \\ \text{Matrix} \end{bmatrix}^t = \pi_t$$

#### What happens in the long run?

i.e., can we say anything about  $\pi_t$  for large t ?

Suppose the Markov chain is "aperiodic".

Then, as the system evolves, the probabilistic state <u>converges</u> to a limiting probabilistic state.

As 
$$t \to \infty$$
, for any  $\pi_0 = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$ :  
 $\begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$   $\begin{bmatrix} Transition \\ Matrix \end{bmatrix}$   $\xrightarrow{t} \pi$ 

In other words:

Note:





Stationary distribution is  $\begin{bmatrix} \frac{5}{6} & \frac{1}{6} \end{bmatrix}$ .

$$\begin{bmatrix} \frac{5}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix} = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} \end{bmatrix}$$

In the long run, it is sunny 5/6 of the time, it is rainy 1/6 of the time.

How did I find the stationary distribution?

$$\begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix}^2 = \begin{bmatrix} 0.86 & 0.14 \\ 0.7 & 0.3 \end{bmatrix}$$
$$\begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix}^4 = \begin{bmatrix} 0.8376 & 0.1624 \\ 0.812 & 0.188 \end{bmatrix}$$
$$\begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix}^8 = \begin{bmatrix} 0.833443 & 0.166557 \\ 0.832787 & 0.167213 \end{bmatrix}$$

**Exercise**: Why do the rows converge to  $\pi$  ?

We needed the Markov chain to be "aperiodic". What is a "periodic" Markov chain?



 $\pi_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}$   $\pi_1 = \begin{bmatrix} 0 & 1 \end{bmatrix}$   $\pi_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}$  $\pi_3 = \begin{bmatrix} 0 & 1 \end{bmatrix}$  There is still a stationary distribution.  $\pi = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$   $\begin{bmatrix} 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$ 

But it is not a *limiting* distribution.

## Summary so far

Markov Chains can be characterized by the transition matrix K.

$$K[i, j] = \Pr[X_t = j \mid X_{t-1} = i]$$
$$= \Pr[i \to j \text{ in one step}]$$

What is the probability of being in state *i* after *t* steps?

$$\pi_t = \pi_0 \cdot K^t \qquad \qquad \pi_t[i] = (\pi_0 \cdot K^t)[i]$$

There is a unique invariant distribution  $\pi$ :  $\pi = \pi \cdot K$ For aperiodic Markov Chains:  $\pi_t \to \pi$  as  $t \to \infty$ .

# The plan

Motivating examples and applications

#### Basic mathematical representation and properties



## How are Markov Chains applied ?

#### 2 common types of applications:

I. Build a Markov chain as a statistical model of a real-world process.

Use the Markov chain to simulate the process.

e.g. text generation, music composition.

- 2. Use a measure associated with a Markov chain to approximate a quantity of interest.
  - e.g. Google PageRank, image segmentation

## How are Markov Chains applied ?

#### 2 common types of applications:

I. Build a Markov chain as a statistical model of a real-world process.

Use the Markov chain to simulate the process.

e.g. text generation, music composition.

- 2. Use a measure associated with a Markov chain to approximate a quantity of interest.
  - e.g. Google PageRank, image segmentation

Generate a superficially real-looking text given a sample document.

#### Idea:

From the sample document, create a Markov chain. Use a random walk on the Markov chain to generate text.

#### Example:

Collect speeches of Obama, create a Markov chain. Use a random walk to generate new speeches.

#### The Markov Chain:

- I. For each word in the document, create a node/state.
- 2. Put an edge word1 ---> word2 if there is a sentence in which word2 comes after word1.
- **3**. Edge probabilities reflect frequency of the pair of words.



"I jumped up. I don't know what's going on so I am coming down with a road to opportunity. I believe we can agree on or do about the major challenges facing our country."

#### Another use:

Build a Markov chain based on speeches of Obama. Build a Markov chain based on speeches of Bush.

Given a new quote, can predict if it is by Obama or Bush.

(by testing which Markov model the quote fits best)
# Image Segmentation

### **Simple version**

Given an image that contains an object, figure out: which pixels correspond to the object, which pixels correspond to the background.

*i.e.,* label each pixel "object" or "background"

(user labels a small number of pixels with known labels)

# Image Segmentation

### The Markov Chain:

- I. Each pixel is a node/state.
- 2. There is an edge between adjacent pixels.
- 3. Edge probabilities reflect similarity between pixels.



Which one is more likely:

random walker first visits

"background" or

"object"?

# Image Segmentation



PageRank is a measure of reputation:

The number and reputation of links pointing to you.

### The Markov Chain:



PageRank is a measure of reputation: The number and reputation of links pointing to you.

### The Markov Chain:

- I. Every webpage is a node/state.
- Each hyperlink is an edge:
  if webpage A has a link to webpage B, A ---> B
- **3a.** If A has *m* outgoing edges, each gets label 1/*m*.

**3b**. If **A** has no outgoing edges, put edge **A** ---> **B**  $\forall$  **B** (jump to a random page)

#### <u>A little tweak:</u>

Random surfer jumps to a random page with 15% prob.

### Stationary distribution: probability of being in state A in the long run

PageRank of webpage A

#### =

The stationary probability of A



Google PageRank

### Google:

"PageRank continues to be the heart of our software."

# How are Markov Chains applied ?

### 2 common types of applications:

I. Build a Markov chain as a statistical model of a real-world process.

Use the Markov chain to simulate the process.

e.g. text generation, music composition.

- 2. Use a measure associated with a Markov chain to approximate a quantity of interest.
  - e.g. Google PageRank, image segmentation

# The plan

Motivating examples and applications

#### Basic mathematical representation and properties

