
November 19th, 2015

15-251
Great Theoretical Ideas in Computer Science

Lecture 24:
Communication Complexity

What are the limi at ons t what c m uters ca earn?

Do ertai m thematical theorems have shor proofs?

 an quantu mechanics be e ploited to spe d up o putation?

Is every proble whose sol tion is efficiently ver fiable als
effic entl solvable? i.e. P = NP?

C

o

m

m

u

n

i

c

a

t

i
o

n

c

o

m

p l

ex

i

t

y

What are the limi at ons t what c m uters ca earn?

Do ertai m thematical theorems have shor proofs?

 an quantu mechanics be e ploited to spe d up o putation?

Is every proble whose sol tion is efficiently ver fiable als
effic entl solvable? i.e. P = NP?

C

o

m

m

u

n

i

c

a

t

i
o

n

c

o

m

p l

ex

i

t

y

C o m mun i ca ti onc om pl ex i t y

Cool Things About Communication Complexity

Many useful applications:
machine learning, proof complexity, quantum computation,
pseudorandom generators, data structures, game theory,…

The setting is simple and neat.

combinatorics, algebra, analysis, information theory, …
Beautiful mathematics

Motivating Example 1: Checking Equality

How many bits need to be communicated?

What if we allow 0.00000000001% probability of error?

Naively: n

010010101110101 010010100110101=
?

 bits bitsn n

Naively: ⌦(n)

nActually:

O(log n)Actually:

Motivating Example 2: Auctions

$1000$100

Alice Bob

Defining the model a bit more formally

2 Player Model of Communication Complexity

Goal: Compute . (both players should know the value)F (x, y)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

F : {0, 1}n ⇥ {0, 1}n ! {0, 1}

x 2 {0, 1}n y 2 {0, 1}n

(Alice) (Bob)
known to

both players

(We assume players have unlimited computational power individually.)

Poll 1

PAR(x, y) = parity of the sum of all the bits.

(i.e. it’s 1 if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate?
Choose the tightest bound.

O(1)

O(log n)

O(log

2 n)

O(
p
n)

O(n)

O(n/ log n)

x, y 2 {0, 1}n ,

Poll 1 Answer

Once Bob knows the parity of , he can computex

PAR(x, y).

- Alice sends to Bob. PAR(x)

- Bob computes and sends it to Alice.PAR(x, y)

1 bit

1 bit

2 bits in total

How many bits do the players need to communicate?
Choose the tightest bound.

PAR(x, y) = parity of the sum of all the bits.

(i.e. it’s 1 if the parity is odd, 0 otherwise.)

x, y 2 {0, 1}n ,

2 Player Model of Communication Complexity

Goal: Compute . (both players should know the value)F (x, y)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

F : {0, 1}n ⇥ {0, 1}n ! {0, 1}

x 2 {0, 1}n y 2 {0, 1}n

(Alice) (Bob)
known to

both players

(we assume players have unlimited computational power individually.)

2 Player Model of Communication Complexity

Goal: Compute . (both players should know the value)F (x, y)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A protocol is the “strategy” players use to communicate.P

It determines what bits the players send in each round.

P (x, y) denotes the output of .P

2 Player Model of Communication Complexity

Goal: Compute . (both players should know the value)F (x, y)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A (deterministic) protocol computes ifP F

P (x, y) = F (x, y)

Analogous to: algorithm
(TM)

decision
problem

8(x, y) 2 {0, 1}n ⇥ {0, 1}n

8x 2 ⌃⇤
A(x) = F (x)

,

2 Player Model of Communication Complexity

Goal: Compute . (both players should know the value)F (x, y)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A randomized protocol computes with error ifP F

8(x, y) 2 {0, 1}n ⇥ {0, 1}n

✏

Pr[P (x, y) 6= F (x, y)] ✏,

Analogous to: Monte Carlo algorithms

2 Player Model of Communication Complexity

Goal: Compute . (both players should know the value)F (x, y)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

Randomized communication complexity
min cost of a randomized protocol computing
with error.

F
✏

R✏(F)=

Deterministic communication complexity
D(F) = min cost of a (deterministic) protocol computing .F

cost(P) = max

(x,y)
bits P communicates for (x, y)

if P is randomized, you take max
over the random choices it makes.

Randomized communication complexity
min cost of a randomized protocol computing
with error.

F
✏

R✏(F)=

2 Player Model of Communication Complexity

Goal: Compute . (both players should know the value)F (x, y)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

Deterministic communication complexity
D(F) = min cost of a (deterministic) protocol computing .F

cost(P) = max

(x,y)
bits P communicates for (x, y)

if P is randomized, you take max
over the random choices it makes.

if P is randomized, you take max
over the random choices it makes.

We usually fix to some constant.✏

✏ = 1/3e.g.

We can always boost the success
probability if we want.

What is considered hard or easy?

R✏
2(F) D2(F)0 n+ 1

c n� �n
log

c
(n)

F : {0, 1}n ⇥ {0, 1}n ! {0, 1}

Example

Equality: EQ(x, y) =

⇢
1 if x = y,

0 otherwise.

D(EQ) = n+ 1. R1/3
(EQ) = O(log n).

Poll 2

1 iff majority of all the bits in and
are set to 1.

MAJ(x, y) =
x y

What is Choose the tightest bound.

O(1)

O(log n)

O(log

2 n)

O(
p
n)

O(n)

O(n/ log n)

D(MAJ)?

Poll 2 Answer

1 iff majority of all the bits in and
are set to 1.

What is Choose the tightest bound.

MAJ(x, y) =
x y

D(MAJ)?

X

i2{1,2,...,n}

xi +
X

i2{1,2,...,n}

yi

The result can be computed from

- Alice sends to Bob.
P

i xi

- Bob computes and sends it to Alice.MAJ(x, y)

~ log n bits

1 bit

in totalO(log n)

Another example

hard

Disjointness: DISJ(x, y) =

(
0 if 9i : xi = yi = 1

1 otherwise

R1/3(DISJ) = ⌦(n).

The plan

1. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. How to prove lower bounds.

Efficient randomized communication protocol
for checking equality

- Bob outputs 1 iff .x mod pi = y mod pi

The Power of Randomization

The Protocol:

R1/3
(EQ) = O(log n).

- Alice picks a random . i 2 {1, 2, . . . , n2}

- Alice sends Bob: i, x mod pi

Alice gets , Bob gets .x 2 {0, 1}n y 2 {0, 1}n

We treat and as numbers: .x y 0 x, y 2n � 1

- Let be the ’th smallest prime number. pi i

p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . .

()x ⌘pi y

The Power of Randomization

Correctness:

R1/3
(EQ) = O(log n).

Want to show: For all inputs , probability of error is (x, y) 1/3.

Pr[error] = Pr
i
[x 6⌘pi y] = 0.

For all with : (x, y)
x = y

For all with : (x, y) x 6= y

Pr[error] = Pr
i
[x ⌘pi y] = Pr

i
[pi divides x� y]

Claim: has at most distinct prime factors.x� y n

Pr[error] = Pr[pi is a prime factor of x� y]

 n

n2
=

1

n
.

The Power of Randomization

Cost:

R1/3
(EQ) = O(log n).

The only communication is:

- Alice sends Bob: i, x mod pi

The first number is such thati i n2.

Can represent it using bits.⇠ log2 n
2
= 2 log2 n = O(log n)

The second number is at most x mod pi pn2 .

By the Prime Number Theorem: pn2 ⇠ n2
log n2

Can represent using at most bits.pn2 log(2n3
) = O(log n)

 2n3

The plan

1. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. How to prove lower bounds.

An application of communication complexity

Applications of Communication Complexity

- circuit complexity
- time/space tradeoffs for
Turing Machines
- VLSI chips
- machine learning
- game theory
- data structures
- proof complexity

- pseudorandom generators
- pseudorandomness
- branching programs
- data streaming algorithms
- quantum computation
- lower bounds for polytopes
representing NP-complete
problems

communication
complexity

Applications of Communication Complexity

- circuit complexity
- time/space tradeoffs for
Turing Machines
- VLSI chips
- machine learning
- game theory
- data structures
- proof complexity

- pseudorandom generators
- pseudorandomness
- branching programs
- data streaming algorithms
- quantum computation
- lower bounds for polytopes
representing NP-complete
problems

communication
complexity

How Communication Complexity Comes In

Setting: Solve some task while minimizing some resource.

e.g. find a fast algorithm, design a small circuit,
 find a short proof of a theorem, …

Many optimization problems contain an implicit

Goal: Prove lower bounds on the resource needed.

Sometimes:
efficient solution to our problem

efficient communication protocol for a certain function.

i.e. no efficient protocol for the function

 no efficient solution to our problem.

Time/space tradeoffs for TMs

Recall Turing Machines

finite state machine

0 0 0 0 1 1 1 1

t t …t t t t t t t t1 0 0

input

work

T (n) time: # steps the machine takes

S(n) space: # work tape cells the machine uses

(read only)

tape

tape

(memory)

An observation

What information do I need to continue
the computation from where you left it?

1. current state

2. positions of
tape heads

3. contents of
work tape

You start running .

You pause after a certain number of steps.

M(w)

Suppose we both know the TM and the input .wM

An observation

What information do I need to continue
the computation from where you left it?

1. current state

2. positions of
tape heads

3. contents of
work tape

You start running .

You pause after a certain number of steps.

M(w)

Suppose we both know the TM and the input .wM

O(1)

O(log n) +O(logS(n))

O(S(n))

Time/space tradeoff for a simple language

000###000 2 L

1010####1010 2 L

001###000 62 L

000##000 62 L

L = {x#|x|
x : x 2 {0, 1}⇤}Let

Theorem:
If a TM M decides in time and space
on inputs of size , then .

L T (n) S(n)
T (n) · S(n) = ⌦(n2)3n

Time/space tradeoff for a simple language

L = {x#|x|
x : x 2 {0, 1}⇤}Let

Theorem:
If a TM M decides in time and space
on inputs of size , then .

L T (n) S(n)
T (n) · S(n) = ⌦(n2)3n

Strategy:

for of cost for some constant .
Using M, we design a communication protocol

EQ c T (n)S(n)/n c

We know requires bits of communication.EQ � n

c T (n)S(n)/n � n=) c T (n)S(n) � n2=)

Time/space tradeoff for a simple language

Given input to Alice, and to Bob. x 2 {0, 1}n y 2 {0, 1}n

L = {x#|x|
x : x 2 {0, 1}⇤}Let . M decides .

Protocol for :EQ

They want to decide if .x = y They will make use of M.

L

Let w = x#n
y.

They simulate M().w

If M() accepts, they output .

If M() rejects, they output .

w

w

1

0 A correct protocol.

Time/space tradeoff for a simple language

Given input to Alice, and to Bob. x 2 {0, 1}n y 2 {0, 1}n

L = {x#|x|
x : x 2 {0, 1}⇤}Let . M decides .

Protocol for :EQ

They want to decide if .x = y They will make use of M.

L

Let w = x#n
y.

They simulate M().w

If M() accepts, they output .

If M() rejects, they output .

w

w

1

0

How do they simulate M?

What is the cost?

A correct protocol.

Time/space tradeoff for a simple language

L = {x#|x|
x : x 2 {0, 1}⇤}Let . M decides .

Protocol for :EQ

L

They simulate M().

Alice starts the simulation.

x#n
y

When input tape head reaches symbol,y

she sends 1. current state
 2. position of work tape head
 3. contents of work tape

Time/space tradeoff for a simple language

L = {x#|x|
x : x 2 {0, 1}⇤}Let . M decides .

Protocol for :EQ

L

They simulate M().

Bob continues the simulation.

x#n
y

 he sends 1. current state
 2. position of work tape head
 3. contents of work tape

When input tape head reaches symbol,x

This continues until M halts.

Time/space tradeoff for a simple language
Analysis:
It is clear the protocol is correct. What is the cost?

In each transmission, players send
 1. current state
 2. position of work tape head
 3. contents of work tape

O(1)
O(logS(n))
O(S(n))+
O(S(n))

What is the number of transmissions?
For each transmission, M takes steps. � n

So . T (n) � (# transmissions) · n
=) # transmissions T (n)/n.

Total cost: .O(S(n)T (n)/n)

The plan

1. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. How to prove lower bounds.

Lower bounds for
deterministic communication complexity

The function matrix

F : {0, 1}n ⇥ {0, 1}n ! {0, 1}

MF [x, y] = F (x, y)

011010111010111111001010010101000
010101010110101001010100101111100
010100001010111010101010111101011
000101110101111010101100101010101
001010101010101010110100010101011
010111010111010010110101011110100
010101110101010101000101000101101
010101010111010101101101101110101
111010101011010101010101011111100
111011101010101010101010101001111
110101101010101000101010101000101
011110000111110000000001110101111
011010111010111111001010010101000
001010101010100101010101111110000
101010101000001110101011101011000

x

y

MF =

2n by 2n

matrix

The function matrix

Equality:
EQ(x, y) =

⇢
1 if x = y,

0 otherwise.

2n by 2n

matrix

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

n = 3

x

y

MEQ =

The function matrix

011010111010111111001010010101000
010101010110101001010100101111100
010100001010111010101010111101011
000101110101111010101100101010101
001010101010101010110100010101011
010111010111010010110101011110100
010101110101010101000101000101101
010101010111010101101101101110101
111010101011010101010101011111100
111011101010101010101010101001111
110101101010101000101010101000101
011110000111110000000001110101111
011010111010111111001010010101000
001010101010100101010101111110000
101010101000001110101011101011000

x

y

How do you prove lower bounds on
communication complexity?

You study this matrix!

Partition number Covering number

Discrepancy

Rank
Sign Rank

Norm
Approximate Norm

Information Theory

MF [x, y] = F (x, y)

A protocol partitions function matrix into monochromatic rectangles.

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

0 1 0 1 0 1 0 1

1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 1

0 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

A rectangle is of the form for S ⇥ T S, T ✓ {0, 1}n

IMPORTANT(!) property of communication protocols:

What is a rectangle?

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

0 1 0 1 0 1 0 1

1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 1

0 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

T

S

A rectangle is of the form for S ⇥ T S, T ✓ {0, 1}n

A protocol partitions function matrix into monochromatic rectangles.

IMPORTANT(!) property of communication protocols:

What is a rectangle?

cSuppose we have a deterministic protocol of cost that
computes a function .F : {0, 1}n ⇥ {0, 1}n ! {0, 1}

This protocol partitions
into at most monochromatic rectangles.2c

MF

IMPORTANT(!) property of communication protocols:

You will prove this in the homework.

PAR(x, y) =

nX

i=1

xi + yi (mod 2)

Protocol:

Alice sends the parity of her input bits.

Bob sends the output of the function.

The cost of the protocol is 2 bits.

Example

This protocol partitions the function matrix into
at most 4 monochromatic rectangles.

000 011 110 101 111 100 010 001

000

011

110

101

111

100

010

001

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

PAR(x, y) =

nX

i=1

xi + yi (mod 2)

Example

000 011 110 101 111 100 010 001

000

011

110

101

111

100

010

001

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

PAR(x, y) =

nX

i=1

xi + yi (mod 2)

0

1

Example

000 011 110 101 111 100 010 001

000

011

110

101

111

100

010

001

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

PAR(x, y) =

nX

i=1

xi + yi (mod 2)

0

1

Example

000 011 110 101 111 100 010 001

000

011

110

101

111

100

010

001

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

PAR(x, y) =

nX

i=1

xi + yi (mod 2)

00 01

1

Example

000 011 110 101 111 100 010 001

000

011

110

101

111

100

010

001

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

PAR(x, y) =

nX

i=1

xi + yi (mod 2)

00 01

1

Example

000 011 110 101 111 100 010 001

000

011

110

101

111

100

010

001

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

PAR(x, y) =

nX

i=1

xi + yi (mod 2)

1011

00 01

Example

Lower bound for Equality function

A protocol for of cost partitions
into at most monochromatic rectangles.2c

c MEQEQ

00 01 10 11

00

01

10

11

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Any protocol computing
must cover the 1’s with
monochromatic rectangles.

Observe:

EQ

Lower bound for Equality function

00 01 10 11

00

01

10

11

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Claim: No two 1’s can be in the same
 monochromatic rectangle

Suppose two 1’s are in the same rectangle.

Any protocol computing
must cover the 1’s with
monochromatic rectangles.

Observe:

Proof:

A protocol for of cost partitions
into at most monochromatic rectangles.2c

c MEQEQ

EQ

Lower bound for Equality function

00 01 10 11

00

01

10

11

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Claim: No two 1’s can be in the same
 monochromatic rectangle

Suppose two 1’s are in the same rectangle.

Any protocol computing
must cover the 1’s with
monochromatic rectangles.

Observe:

Proof:

A protocol for of cost partitions
into at most monochromatic rectangles.2c

c MEQEQ

EQ

Lower bound for Equality function

00 01 10 11

00

01

10

11

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Claim: No two 1’s can be in the same
 monochromatic rectangle

Suppose two 1’s are in the same rectangle.
Then there must also be 0’s in the rectangle. Contradiction.

Any protocol computing
must cover the 1’s with
monochromatic rectangles.

Observe:

Proof:

A protocol for of cost partitions
into at most monochromatic rectangles.2c

c MEQEQ

EQ

Lower bound for Equality function

00 01 10 11

00

01

10

11

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Claim: No two 1’s can be in the same
 monochromatic rectangle

Conclusion: We need a separate rectangle for each 1.
 We need at least rectangles to cover the 1s. 2n=)

Any protocol computing
must cover the 1’s with
monochromatic rectangles.

Observe:

A protocol for of cost partitions
into at most monochromatic rectangles.2c

c MEQEQ

EQ

Lower bound for Equality function

In particular, it is true for the most efficient protocol.

We also need at least one rectangle to cover the 0s.

2c � 2n + 1

D(EQ) � n+ 1.

c � n+ 1=)

A protocol for of cost partitions
into at most monochromatic rectangles.2c

c MEQEQ

This is true for any protocol computing .EQ

Conclusion: We need a separate rectangle for each 1.
 We need at least rectangles to cover the 1s. 2n=)

Summary of the lower bound technique

F : {0, 1}n ⇥ {0, 1}n ! {0, 1}Let .

A lower bound on # monochromatic rectangles
needed to partition MF

A lower bound on . D(F)

Interesting corollary (not hard to prove):

D(F) � log2 rank(MF)

The plan

1. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. How to prove lower bounds.

Take-Home Message

Communication complexity studies natural distributed tasks.

Communication complexity (lower bounds) has many
interesting applications.

Lower bounds can be proved using a variety of tools:
combinatorial, algebraic, analytic, information theoretic,…

