15-251 Great Theoretical Ideas in Computer Science Lecture 25: Quantum Computation: A very gentle introduction

November 24th, 2015

<u>NOTE</u>

This lecture is completely for fun. It contains very little technical content.

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

Quantum computers (practical, scientific, and philosophical perspectives)

Classical computers and classical theory of computation

What is a computer?

A device that manipulates/processes data (information) Usually Input \longrightarrow Device \longrightarrow Output

Examples:

How is data stored and processed ?

Data can be represented using a sequence of switches.

A sequence of bits (0s and 1s)

Circuits implement basic operations / instructions.

Everything follows classical laws of physics.

We want to solve (efficiently) computational problems:

Examples:

Sorting Sort a list of numbers.

Traveling Salesman Problem

Given a list of cities and distances between each pair, find the shortest route that travels each city once.

Factoring

Given an integer, find its prime factors.

Computability

Is the computational problem computable?

Complexity

How complex is the computational problem (with respect to *time* and *space/memory* required)

Factor

203703597633448608626844568840937816105146839366593625063614044935438129976333670618339

Which computer are we using ? (MacBook Pro, MacBook Air, Dell, Samsung, Sony?)

To study computability and complexity rigorously: need a universal mathematical model of a computer.

Turing Machines ~ Boolean Circuits

Turing Machines

Boolean Circuits

Complexity:

How many <u>local</u> operations do we need to do in order to compute the problem/function? ~ how much time do we need to compute it?

(Physical) Church-Turing Thesis

Turing Machines ~ (Uniform) Boolean Circuits universally capture all of computation.

(Physical) Church Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Strong version

Any computational problem that can be solved efficiently by a physical device, can be solved efficiently by a Turing Machine.

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

Quantum computers (practical, scientific, and philosophical perspectives)

Quantum physics (what the fuss is all about)

One slide course on physics

Classical Physics

General Theory of Relativity

Quantum Physics

One slide course on physics

String Theory (?)

Video: Double slit experiment

http://www.youtube.com/watch?v=DfPeprQ7oGc

Keep in mind:

Nature has no obligation to conform to your intuitions.

Video: Double slit experiment

Two interesting aspects of quantum physics

Having multiple states simultaneously

Example: electrons can have states spin "up" or spin "down". $|up\rangle$ or $|down\rangle$ In reality, they can be in both states at the same time. A superposition of two states.

Measurement

Quantum property is very sensitive/fragile ! If it interacts with the outside world, magic is gone. So you'll never see $|up\rangle$ and $|down\rangle$ simultaneously.

It must be just our ignorance

-There is no way that in reality, the electron has two states simultaneously.

- We don't know its state, so we say it is in superposition.
- In reality, it is always in one of the two states.
- This is why when we measure/observe the state, we find it in one state.

God does not play dice with the world.

- Albert Einstein

Einstein, don't tell God what to do.

- Niels Bohr

How should we fix our intuitions to put it in line with experimental results ?

Removing physics from quantum physics

mathematics underlying quantum physics

generalization/extension of probability theory (allow "negative probabilities")

Suppose an object can have n possible states: $|1
angle, |2
angle, \cdots, |n
angle$

At each time step, the state can change.

```
What happens if we start at state \left|1\right\rangle and evolve?
```

Initial state:

Suppose an object can have n possible states: $|1
angle, |2
angle, \cdots, |n
angle$

At each time step, the state can change.

What happens if we start at state $\left|1\right\rangle$ and evolve?

After one time step:

Transition
Matrix $\begin{vmatrix} 1 \\ |2 \rangle & 0 \\ |3 \rangle & 0 \\ \vdots \\ |n \rangle & 0 \end{bmatrix}$ = $\begin{bmatrix} 0 \\ 1/2 \\ 0 \\ \vdots \\ 1/2 \end{bmatrix}$

A general probabilistic state:

$$\begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} \quad \begin{array}{l} p_i = \text{ the probability of being in state } i \\ p_1 + p_2 + \dots + p_n = 1 \\ (\ell_1 \text{ norm is } 1) \end{array}$$

A general probabilistic state:

$$\begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} = p_1 |1\rangle + p_2 |2\rangle + \dots + p_n |n\rangle$$

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Evolution of probabilistic states

Transition Matrix

It can be any matrix that maps probabilistic states to probabilistic states.

In general we won't restrict ourselves to just one transition matrix.

$$\pi_0 \xrightarrow{K_1} \pi_1 \xrightarrow{K_2} \pi_2 \xrightarrow{K_3} \cdots$$

p_i 's can be negative.

Quantum states

Unitary Matrix $\begin{vmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_2 \end{vmatrix} = \begin{vmatrix} \beta_1 \\ \beta_2 \\ \beta_2 \\ \vdots \\ \beta_1 + \beta_2^2 + \dots + \beta_n^2 = 1$

any matrix that preserves the "quantumness"

Evolution of quantum states

Unitary Matrix

It can be any matrix that maps quantum states to quantum states.

In general we won't restrict ourselves to just one unitary matrix.

$$\psi_0 \xrightarrow{U_1} \psi_1 \xrightarrow{U_2} \psi_2 \xrightarrow{U_3} \cdots$$

Measuring quantum states

When you measure the state, you will see state i with probability α_i^2 .

Suppose we have just 2 possible states: $|0\rangle$ and $|1\rangle$ $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 1/2 \\ 1/2 \end{vmatrix}$ randomize a random state \longrightarrow random state $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$ $|0\rangle \rightarrow \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle$ $\frac{1}{2}\left(\frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle\right) \qquad \frac{1}{2}\left(\frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle\right)$

 $\frac{1}{4}|0\rangle + \frac{1}{4}|1\rangle + \frac{1}{4}|0\rangle + \frac{1}{4}|1\rangle$

Suppose we have just 2 possible states: $|0\rangle$ and $|1\rangle$ $\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ $\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ $|0\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$ $\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) = \frac{1}{\sqrt{2}}\left(-\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right)$ $\frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle + -\frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle = |1\rangle$

To find the probability of an event:

add the probabilities of every possible way it can happen

Quantum

To find the probability of an event:

add the amplitudes of every possible way it can happen square to get a positive probability value

one way has positive amplitude other way has negative amplitude

event never happens!

A final remark

Quantum states are an <u>upgrade</u> to:

2-norm (Euclidean norm) and algebraically closed fields.

Nature seems to be choosing the mathematically more elegant option.

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

Quantum computers (practical, scientific, and philosophical perspectives)

The plan

Quantum computers (practical, scientific, and philosophical perspectives)

Two beautiful theories

Theory of computation

Quantum physics

Quantum Computation:

Information processing using laws of quantum physics.

It would be super nice to be able to simulate quantum systems.

With a classical computer this is extremely inefficient.

complexity exponential in **n**

Why not view the quantum particles as a computer simulating themselves?

Why not do computation using quantum particles (quantum physics)?

Richard Feynman (1918 - 1988)

Representing data

Recall: electrons can have states spin "up" or spin "down". $|up\rangle$ or $|down\rangle$ ~ $|0\rangle$ or $|1\rangle$ A quantum bit: $\alpha_0|0\rangle + \alpha_1|1\rangle$, $\alpha_0^2 + \alpha_1^2 = 1$ (qubit) \downarrow A superposition of $|0\rangle$ and $|1\rangle$.

Representing data

<u>**Recall</u>: electrons can have states spin "up" or spin "down".** $|up\rangle$ or $|down\rangle$ ~ $|0\rangle$ or $|1\rangle$ </u>

A quantum bit: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$, $\alpha_0^2 + \alpha_1^2 = 1$ (qubit)

Two qubits:

 $\alpha_{00}|0\rangle|0\rangle + \alpha_{01}|0\rangle|1\rangle + \alpha_{10}|1\rangle|0\rangle + \alpha_{11}|1\rangle|1\rangle$

we actually write it as:

 $\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$

$$\alpha_{00}^2 + \alpha_{01}^2 + \alpha_{10}^2 + \alpha_{11}^2 = 1$$

Representing data

<u>**Recall</u>: electrons can have states spin "up" or spin "down".** $|up\rangle$ or $|down\rangle$ ~ $|0\rangle$ or $|1\rangle$ </u>

A quantum bit: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$, $\alpha_0^2 + \alpha_1^2 = 1$ (qubit)

Three qubits:

 $\begin{aligned} \alpha_{000} |000\rangle + \alpha_{001} |001\rangle + \alpha_{010} |010\rangle + \alpha_{011} |011\rangle + \\ \alpha_{100} |100\rangle + \alpha_{101} |101\rangle + \alpha_{110} |110\rangle + \alpha_{111} |111\rangle \end{aligned}$

$$\alpha_{000}^2 + \alpha_{001}^2 + \alpha_{010}^2 + \alpha_{011}^2 + \alpha_{100}^2 + \alpha_{101}^2 + \alpha_{110}^2 + \alpha_{111}^2 = 1$$

Processing data

What will be our model?

In the classical setting, we had:

Turing Machines

Boolean circuits

In the quantum setting, it is more convenient to use the circuit model.

A qubit:
$$\alpha_0 |0\rangle + \alpha_1 |1\rangle, \qquad \alpha_0^2 + \alpha_1^2 = 1$$

The only non-trivial gate for a single classical bit is

There are many non-trivial quantum gates for a single qubit. <u>One famous example:</u> Hadamard gate

$$|0\rangle \rightarrow H \rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
$$|1\rangle \rightarrow H \rightarrow \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

Can figure out how it transforms an arbitrary qubit $\alpha_0|0
angle+lpha_1|1
angle$

A qubit:
$$\alpha_0 |0\rangle + \alpha_1 |1\rangle, \qquad \alpha_0^2 + \alpha_1^2 = 1$$

The only non-trivial gate for a single classical bit is

There are many non-trivial quantum gates for a single qubit. <u>One famous example:</u> Hadamard gate

$$|0\rangle \rightarrow H \rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
The "transition" matrix:

$$|1\rangle \rightarrow H \rightarrow \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

An example of a classical gate on <u>two</u> classical bits:

A famous example of a quantum gate on 2 qubits:

 $|x\rangle$

 $-|x \oplus y\rangle$

AND

Input: 2 qubits Output: 2 qubits

Fact: quantum operations must be "reversible". (gates)

|x
angle —

For

 $x, y \in \{0, 1\}$

AND

An example of a classical gate on <u>two</u> classical bits:

A famous example of a quantum gate on 2 qubits:

A classical circuit

INPUT

OUTPUT

A quantum circuit

quantum gates

A quantum circuit

How do we get classical information out of the circuit? We measure the output qubit(s). I.e., we measure: $\alpha_{000000}|000000\rangle + \alpha_{000001}|000001\rangle + \cdots + \alpha_{11111}|11111\rangle$ Or we can measure the first qubit.

A quantum circuit

Which quantum gates can we use?

The choice doesn't matter as long as they are "universal". (and they act on a small number of qubits.)

Any unitary operation can be reduced to a finite sequence of the gates.

A quantum circuit

Complexity?

- How many local operations do we need to compute the problem. i.e. number of gates.
- ~ how much time we need to compute it.

Quantum computers: practical perspective

What useful things can we do with a quantum computer? **Factoring:** Given an integer, find its prime factors. We can factor large numbers efficiently !

203703597633448608626844568840937816105146839366593625063614044935438129976333670618339

So what?

Can break cryptographic systems !!!

Can we solve every problem efficiently?

No !

Quantum computers: practical perspective

What useful things can we do with a quantum computer?

Can simulate quantum systems efficiently !

Areas where you need to understand the quantum behavior of atoms and molecules :

- nanotechnology
- microbiology

. . .

- pharmaceuticals
- superconductors.

Quantum computers: scientific perspective

(Physical) Church Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Strong version

Any computational problem that can be solved efficiently by a physical device, can be solved efficiently by a Turing Machine.

Strong version doesn't seem to be true.

Quantum computers: scientific perspective

One of the great scientific advances of our time.

To know the limits of efficient computation:

Incorporate actual facts about physics.

Quantum computers: philosophical perspective

Is the universe deterministic ?

How does nature keep track of all the numbers ? 1000 qubits $\rightarrow 2^{1000}$ amplitudes

Does quantum physics have anything to say about the human mind and consciousness ?

Can quantum physics say anything about free will ?

Quantum AI ?

Where are we at building quantum computers?

When can I expect a quantum computer on my desk ?

Two points of view:

- After about 20 years and 1 billion dollars of funding : Can factor 21 into 3×7 . (with high probability)

- We already have a quantum computer: D-Wave. In the near future, we'll all have one.

Challenge: Interference with the outside world.

A whole new exciting world of computation.

Potential to fundamentally change how we view computers and computation.