

- PAC = probably approximately correct
- Introduced by Valiant [1984]
- Learner can do well on training set but badly on new samples
- Establish guarantees on accuracy of learner when generalizing from examples

- Input space X
- D distribution over X: unknown but fixed
- Learner receives a set S of m instances x_1, \ldots, x_m , independently sampled according to D
- Function class C of functions $h: X \to \{+, -\}$
- Assume target function $c_t \in C$
- Training examples $Z = \{(x_i, c_t(x_i))\}$

EXAMPLE: FACES

- $X = \mathbb{R}^n$
- Each $x \in X$ is a vector of colors, one per pixel
- $c_t(x) = + \text{ iff } x \text{ is a picture}$ of a face
- Training examples: Each is a picture labeled "face" or "not face"

EXAMPLE: RECTANGLE LEARNING

- $X = \mathbb{R}^2$
- C = axesaligned
 rectangles
- h(x) = + iff x iscontained in h

- The error of function h is $err(h) = \Pr_{x \sim D}[x: c_t(x) \neq h(x)]$
- Given accuracy parameter $\epsilon > 0$, would like to find function h with $err(h) \leq \epsilon$
- Given confidence parameter $\delta > 0$, would like to achieve $\Pr[\operatorname{err}(h) \leq \epsilon] \geq 1 \delta$

• A learning algorithm L is a function from training examples to C such that: for every $\epsilon, \delta > 0$ there exists $m_0(\epsilon, \delta)$ such that for every $m \geq m_0$ and every D, if m examples Z are drawn from D and L(Z) = h then $Pr[err(h) \leq \epsilon] \geq 1 - \delta$

• C is learnable if there is a learning algorithm for

C

$$m_0(\epsilon,\delta)$$
 is independent of $D!$

- Learning algorithm: given training set, return tightest fit for positive examples
- Theorem: axes-aligned rectangles are learnable with $m_0(\epsilon, \delta) \ge \frac{4}{\epsilon} \ln \frac{4}{\delta}$

• Proof:

- $_{\circ}$ Target rectangle R
- Recall: our learning algorithm returns the tightest-fitting R' around the positive examples
- For region E, let $w(E) = \Pr_{x \sim D}[x \in E]$
- $\operatorname{err}(R') = w(R \setminus R') \text{ (why?)}$

- Proof (cont.):
 - Divide $R \setminus R'$ into four strips T'_1, T'_2, T'_3, T'_4
 - $_{\circ}$ err $(R') \leq \sum_{i=1}^{4} w(T'_i)$
 - We will estimate $\Pr\left[w(T_i') \ge \frac{\epsilon}{4}\right]$

• Proof (cont.):

- \circ Focusing wlog on T_1' , define a T_1 strip T_1 such that $w(T_1) = \frac{\epsilon}{4}$
- $\circ \quad w(T_1') \ge \frac{\epsilon}{4} \Leftrightarrow T_1 \subseteq T_1'$
- $T_1 \subseteq T_1' \Leftrightarrow x_1, \dots, x_m \notin T_1$
- $w(T_1') \ge \frac{\epsilon}{4} \Leftrightarrow x_1, \dots, x_m \notin T_1$
- o $\Pr[x_1, ..., x_m \notin T_1] = \left(1 \frac{\epsilon}{4}\right)^m$

• Proof (cont.):

$$\Pr[w(R \setminus R') \ge \epsilon] \le 4\left(1 - \frac{\epsilon}{4}\right)^m$$

o So we want $4\left(1-\frac{\epsilon}{4}\right)^m \leq \delta$, and with a bit of algebra we get the desired bound

- We would like to obtain a more general result
- Let $S = \{x_1, ..., x_m\}$
- $\Pi_C(S) = \{ (h(x_1), ..., h(x_m)) \mid h \in C \}$

$$\Pi_{\mathcal{C}}(S) = \{(-,-,-), (-,+,-), (-,-,+), (+,-,-), (+,+,-), (-,+,+), (+,-,+), (+,+,+)\}$$

- X = real line
- C = intervals; points inside interval are labeled by +, outside by -
- Poll 1: what is $|\Pi_{\mathcal{C}}(S)|$ for S = ------
 - *1.* 1
 - *2.* **2**
 - *3.* 3
 - (4.) 4

- Poll 2: what is $|\Pi_{\mathcal{C}}(S)|$ for S =
 - *1.* 5
 - 2. 6

- S is shattered by C if $|\Pi_C(S)| = 2^{|S|}$
- The VC dimension of C is the cardinality of the largest set that is shattered by C

How do we prove upper and lower bounds?

EXAMPLE: RECTANGLES

- There is an example of four points that can be shattered
- For any choice of five points, one is "internal"
- A rectangle cannot label outer points by 1 and inner point by 0
- VC dimension is 4

- Poll 3: X = real line, C = intervals, what is VC-dim(C)?

 - 2 4. None of the above
- Poll 4: X = real line, C = unions ofintervals, what is VC-dim(C)?
 - 1. 2 3. 4
 - 2. 3 (4.) None of the above

SAMPLE COMPLEXITY

- Theorem: a function class C with VC- $\dim(C) = \infty$ is not PAC learnable
- Theorem: Let C with VC-dim(C) = d. Let L be an algorithm that produces an $h \in C$ that is consistent with the given samples S. Then L is a learning algorithm for C with $m_0 = O\left(\frac{1}{\epsilon}\log\frac{1}{\delta} + \frac{d}{\epsilon}\log\frac{1}{\epsilon}\right)$

SUMMARY

- Definitions
 - PAC model
 - Error, accuracy, confidence
 - Learning algorithm
 - \circ $\Pi_{\mathcal{C}}(S)$, shattering
 - VC-dimension
- Turing-award-winning ideas:
 - Learnability can be formalized

