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THE PAC MODEL

« PAC = probably
approximately correct

* Introduced by Valiant [1984]

* Learner can do well on
training set but badly on new
samples

* Establish guarantees on o
accuracy of learner when R
generalizing from examples
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THE PAC MODEL
* Input space X

e D distribution over X: unknown but fixed

e [Learner receives a set S of m instances
Xy, -, X, iIndependently sampled according

to D
* Function class C of functions h: X — {+, —}

* Assume target function ¢; € C

* Training examples Z = {(xl-, Ct (xl))}
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EXAMPLE: FACES
e X = R"

e Fach x € X is a vector of
colors, one per pixel

e ¢;(x) =+ iff x is a picture
of a face

* Training examples: Each is
a picture labeled “tace” or
“not face”
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EXAMPLE: RECTANGLE LEARNING

. ¥ = R2
X=R @ N
e ( = axes-
. S
aligned o
rectangles
o h(x) = + iff x is o ©

contained in h
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THE PAC MODEL

e The error of function h is

err(h) = xgrz‘) [x:c;(x) # h(x)]

* Given accuracy parameter
e > 0, would like to find
function h with err(h) < €

* (Given confidence parameter o
0 > 0, would like to achieve ,§
_ £ )
Prlerr(h) <e]=1-9§ “"i
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THE PAC MODEL

* A learning algorithm L is a function from
training examples to € such that: for every
€,0 > 0 there exists my(€,0) such that for every

m = m, and every D, if m examples Z are drawn
from D and L(Z) = h then

Prlerr(h) <e]=1-9§

* ( is learnable if there is a learning algorithm for

my(€,0) is
independent of D!
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RECTANGLES ARE LEARNABLE

* Learning algorithm: given training set,
return tightest fit for positive examples

* Theorem: axes-aligned rectangles are

learnable with my(e€, ) = ielng
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RECTANGLES ARE LEARNABLE?®*

* Proof: S
o Target rectangle R

o Recall: our learning algorithm
returns the tightest-fitting R’

around the positive examples @ @
o For region E, let ® R’ o
w(E) = Pr[x € E] -
o err(R') =w(R\R") (why?) © ©
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RECTANGLES ARE LEARNABLE?®*

. T, T,
* Proof (cont.): iy © &
o Divide R \ R’ into four strips |
LTy |
- err(R") <Y, w(T) - ®,
. . / €
o We will estimate Pr [W(Ti) > Z] @ R’ Hp
2
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RECTANGLES ARE LEARNABLE?®*

* Proof (cont.): ©
o Focusing wlog on Ty, define a T, { \
strip Ty such that w(Ty) = Z """""""""""" Ty
o w(T)=; T CT T® |
o T1C€T{ © xq,.., Xy €T () R o
o w(Ty) ZE@xl,...,xm ¢ T, R
S S

o Pr[xq, .., x, & T{] = (1 — Z)m
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RECTANGLES ARE LEARNABLE?®*

* Proof (cont.): ©
/ __ € m T.
o Pr[w(R\R)ZE]S4(1 4) 1 { ________________________ b
€ m
o 9o we want 4 (1 — Z) <0,and |_ @ B
with a bit of algebra we get the : ,@
desired bound = D R @
R
S S
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VC DIMENSION

* We would like to obtain a more general
result

¢ Let S ={x, ..., x,.}
e Ic(S) = {(h(x1), ..., h(xp)) | h € C}
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VC DIMENSION

________________________________________________________________________________________________________________________

________________________________________________________________________________________________________________________

HC(S) — {(_; ) _), (_; +, _); (_» ) +)' (+r ) _);
(++-),(—=++),(+—+),(+ + 1)}
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VC DIMENSION

e X — real line

 C = intervals; points inside interval are
labeled by +, outside by —

* Poll 1: what is |I1.(S)| for S =

O
O

N
=W N e
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VC DIMENSION

O
O
O

* Poll 2: what is |I1.(S)| for S =

1

QO 3 O U

©
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VC DIMENSION

+ S is shattered by C if |T1.(S)| = 2!S!

* The VC dimension of C is the cardinality
of the largest set that is shattered by C

How do we
prove upper and
lower bounds?

/



EXAMPLE: RECTANGLES

 There is an example of four
points that can be shattered

——————————————————————————————

- O
* For any choice of five points, Q O
one is “internal” O

——————————————————————————————

* A rectangle cannot label outer ®
points by 1 and inner point ® O ®
by 0 i @ |

e VC dimension is 4
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VC DIMENSION

* Poll 3: X = real line, C = intervals, what is
VC-dim(C)?
L1 3. 3
Q) 2 1. Nomne of the above

 Poll 4: X = real line, C = unions of
intervals, what is VC-dim(C)?
L2 3. 4
2. 3 None of the above
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SAMPLE COMPLEXITY

e Theorem: a function class C with VC-
dim(C)= oo is not PAC learnable

* Theorem: Let C with VC-dim(C)= d. Let
L be an algorithm that produces an h € C
that is consistent with the given samples
S. Then L is a learning algorithm for C

with mg =0( log5 —log )
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SUMMARY

* Definitions
o PAC model
o Error, accuracy, confidence
o Learning algorithm
o I-(S), shattering

o V(C-dimension

* Turing-award-winning ideas:

o Learnability can be formalized
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