15-251: Great Theoretical Ideas In Computer Science

Recitation 10: Markov Chains and Random Walks

Definitions and Theorems

Review on Markov chains:

- A Markov chain is a directed graph where each directed edge is labeled with a non-zero probability, and the sum of the probabilities over outgoing edges from any vertex is 1 . We call the vertices in a Markov chain states and the edges transitions.
- A Markov chain with n states can be described by an n by n transition matrix K, where each entry $\mathrm{K}[i, j$] corresponds to the probability for transition (i, j). The rows of K sum to 1 .
- Given a Markov chain and a row vector π_{0} for the initial probability distribution over the states,

$$
\pi_{t}=\pi_{0} K^{t}
$$

where π_{t} represents the probability distribution after t steps. If the chain is strongly connected, then there exists a unique distribution π, called the invariant distribution, for which $\pi=\pi K$.

- We define random variable $T_{i j}$ as the number of steps it takes to reach state j from state i.
- Suppose a given Markov chain is strongly connected. Then, for all i,

$$
\mathbf{E}\left[T_{i i}\right]=\frac{1}{\pi[i]}
$$

A new definition:

- We can turn any connected undirected graph into a Markov chain as follows. First, let the vertices represent the states. Then, from any vertex i, choose a transition by selecting a neighbor of i randomly. Traversing a graph in this way is known as a random walk.

A Cake-Walk

(a) Describe the transition matrix K for a random walk on a connected undirected graph.
(b) Show that

$$
\pi=\left[\frac{d_{1}}{2 m}, \frac{d_{2}}{2 m}, \ldots, \frac{d_{n}}{2 m}\right]
$$

is the invariant distribution for the random walk, where d_{i} is the degree of vertex i.
(c) What is $\mathbf{E}\left[T_{i i}\right]$, the expected number of steps it takes to return to vertex i starting from i ?

So Close, Yet So Far

Let $G=(V, E)$ be a connected undirected graph.
(a) Let $(i, j) \in \mathrm{E}$ be an edge in G . Show that for a random walk on $\mathrm{G}, \mathrm{E}\left[T_{i j}\right] \leq 2 m$. (Hint: Use the law of total expectation on $\mathbf{E}\left[T_{j j}\right]$.)
(b) Use the above result to show that for any $s, t \in \mathrm{~V}, \mathbf{E}\left[T_{s t}\right] \leq n^{3}$. (Hint: Use linearity of expectation.)

RFS

The undirected connectivity decision problem takes as input an undirected graph $G=(\mathrm{V}, \mathrm{E})$ and two vertices $i, j \in \mathrm{~V}$. The output is "yes" if there is a path from i to j, and "no" otherwise.

You are trying to solve an instance of the undirected connectivity problem. Unfortunately, there is a worldwide shortage of memory, so you can only afford $O(\log n)$ bits of space. This means that your trusty BFS and DFS algorithms won't work, since you can't even keep track of your visited nodes! Show that there is nevertheless a polynomial-time randomized Monte Carlo algorithm which will solve the problem with probability of error less than $\frac{1}{1000}$.

