15-251: Great Theoretical Ideas In Computer Science Recitation 11

Definitions

- Euler's Totient Function: $\phi(N) = |\mathbb{Z}_N^*|$, where $\mathbb{Z}_N^* = \{A \in \mathbb{Z}_N : \gcd(A, N) = 1\}$
- Group: A group is an ordered pair consisting of a set G, and a binary operation : G × G → G that satisfies the following properties: G contains an identity element, every element in G has an inverse, and ○ is associative.

Abuse of notation: Instead of saying (G, \circ) is a group, we often say G is a group under \circ , or just G is a group (especially if the operation is unimportant or obvious from context)

- Subgroup: Let G be a group. H is a subgroup of G (H ≤ G) if H ⊆ G and H is a group. H is a proper subgroup of G if H ⊊ G.
- Cyclic subgroup: Let G be a group, and let $a \in G$. $\{a^k : k \in \mathbb{Z}\}$ is called the cyclic subgroup generated by a
- Group Isomorphism: Two groups (G, \circ) and (H, \star) are *isomorphic* if there exists a bijection $\psi: G \to H$ satisfying $\psi(a \circ b) = \psi(a) \star \psi(b)$ for all $a, b \in G$.

fastPow Redux!

Design an *efficient* algorithm to compute $A^E \mod N$ (modular exponentiation) where A, E, N each have at most n bits, and analyze its time complexity.

All Miixed Up

- (a) Let $A, B, C \in \mathbb{N}$. Show that if C is a mix of A and B then C is a multiple of gcd(A, B).
- (b) Show how to modify Euclid's Algorithm so that it outputs k and l such that gcd(A, B) = kA + lB. Conclude that C is a mix of A and B if and only if C is a multiple of gcd(A, B).
- (c) Given A and N such that $A \in \mathbb{Z}_N^*$, explain how we can compute A^{-1} in polynomial time.

Group Theory Warm-Up

Which of the following are groups?

- (a) \mathbb{Q} under \div
- (b) $\{3^k : k \in \mathbb{Z}\}$ under multiplication
- (c) \mathbb{Q} under $x \star y = xy + x + y$

Prime Time

Let G be a group of prime order p. Prove that G has no non-trivial subgroups. Additionally prove that $(Z_p, +)$ is the unique group, up to isomorphism, of order p for prime p.

Abelian dollar question

Let e be the identity of a group G. Prove that if $a^2 = e$ for every $a \in G$, then G is abelian.