15-251: Great Theoretical Ideas In Computer Science

Recitation 11

Definitions

- Euler's Totient Function: $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$, where $\mathbb{Z}_{N}^{*}=\left\{A \in \mathbb{Z}_{N}: \operatorname{gcd}(A, N)=1\right\}$
- Group: A group is an ordered pair consisting of a set G, and a binary operation $\circ: G \times G \rightarrow G$ that satisfies the following properties: G contains an identity element, every element in G has an inverse, and \circ is associative.
Abuse of notation: Instead of saying (G, \circ) is a group, we often say G is a group under \circ, or just G is a group (especially if the operation is unimportant or obvious from context)
- Subgroup: Let G be a group. H is a subgroup of $G(H \leq G)$ if $H \subseteq G$ and H is a group. H is a proper subgroup of G if $H \subsetneq G$.
- Cyclic subgroup: Let G be a group, and let $a \in G .\left\{a^{k}: k \in \mathbb{Z}\right\}$ is called the cyclic subgroup generated by a
- Group Isomorphism: Two groups (G, \circ) and (H, \star) are isomorphic if there exists a bijection $\psi: G \rightarrow H$ satisfying $\psi(a \circ b)=\psi(a) \star \psi(b)$ for all $a, b \in G$.

fastPow Redux!

Design an efficient algorithm to compute $A^{E} \bmod N$ (modular exponentiation) where A, E, N each have at most n bits, and analyze its time complexity.

All Miixed Up

(a) Let $A, B, C \in \mathbb{N}$. Show that if C is a miix of A and B then C is a multiple of $\operatorname{gcd}(A, B)$.
(b) Show how to modify Euclid's Algorithm so that it outputs k and l such that $\operatorname{gcd}(A, B)=k A+l B$. Conclude that C is a miix of A and B if and only if C is a multiple of $\operatorname{gcd}(A, B)$.
(c) Given A and N such that $A \in Z_{N}^{*}$, explain how we can compute A^{-1} in polynomial time.

Group Theory Warm-Up

Which of the following are groups?
(a) \mathbb{Q} under :
(b) $\left\{3^{k}: k \in \mathbb{Z}\right\}$ under multiplication
(c) \mathbb{Q} under $x \star y=x y+x+y$

Prime Time

Let G be a group of prime order p. Prove that G has no non-trivial subgroups. Additionally prove that $\left(Z_{p},+\right)$ is the unique group, up to isomorphism, of order p for prime p.

Abelian dollar question

Let e be the identity of a group G. Prove that if $a^{2}=e$ for every $a \in G$, then G is abelian.

