15-251: Great Theoretical Ideas In Computer Science

Recitation 12

Definitions and Review

- Field. A field is a set F equipped with two operations,$+ \times$ such that S forms an abelian (commutative) group under + , and $F \backslash\{0\}$ forms an abelian group under \times where ' 0 ' is the identity of + (a.k.a the additive identity). Also, multiplication should distribute over addition : $\forall x, y, z \in F, x \times(y+z)=x \times y+x \times z$
- Polynomial. Given a field F, we can construct the set of polynomials over F, denoted by $F[x]$. This is simply the set of expressions of the form $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where the $a_{i} \mathrm{~s}$ are elements of the field F.
- RSA Crash Course. Let's say I want to send my credit card number c to Amazon. Amazon creates an asymmetric pair of keys as follows :
(1) Pick two random, distinct large primes p and q.
(2) Let $N=p q$. Compute $\phi(N)$ using the formula $\phi(p q)=(p-1)(q-1)$.
(3) Pick a random element from $\mathbb{Z}_{\phi(N)}^{*}$, call it e.
(4) Publish (N, e) on the internet. This is the public key.
(5) Compute the inverse of e modulo $\mathbb{Z}_{\phi(N)}^{*}$, and call it d. d is Amazon's private key ${ }^{1}$.

Given this setup, I can send $M=c^{e} \bmod N$ to Amazon, and Amazon can recover c using this equality: $M^{d} \equiv_{N} c^{e d} \equiv_{N} c^{1}$

RSA Fundamentals

(a) In step (3), why did we pick e from $\mathbb{Z}_{\phi(N)}^{*}$?
(b) What prevents an attacker from computing the inverse of e in $\mathbb{Z}_{\phi(N)}^{*}$ themselves?
(c) Do we know for sure that $c \in Z_{N}^{*}$? What if it's not?

Inverting RSA

Suppose I'm communicating with an untrusted server that claims to be Amazon. I want the server to prove that it is indeed Amazon. Come up with a 'digital signature' scheme (based on RSA) that will let me verify Amazon's identity. Note that the underlying assumption is that I trust Amazon's public key indeed belongs to Amazon and not some imposter.

[^0]
Interpolation

Find the unique degree- 2 polynomial f over \mathbb{Z}_{7} that satisfies the following :

$$
f(1)=5, f(2)=3, f(4)=1
$$

Fields are Meta

Let F be \mathbb{Z}_{7} - this is the unique field of size 7 , up to isomorphism. Let S be the set of polynomials over F with degree at most 2 .
(a) What is the size of S ?
(b) Verify that S is a field under addition and multiplication modulo $x^{3}-2$.

\#Hashing

A length-compressing hashing function is a function $f\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, where $m<n$. Note that a such a function cannot be injective (by the pigeonhole principle), so it has collisions (i.e. $\exists x, y \in\{0,1\}^{n}$ such that $f(x)=f(y))$.
Let p be an n-bit prime and let $g \in \mathbb{Z}_{p}^{*}$ be a generator of this group. Fix some $y \in \mathbb{Z}_{p}^{*}$. Consider the following hashing function $h:\{0,1\}^{n+1} \rightarrow\{0,1\}^{n}$, given by $h_{p, g, y}(x, b)=y^{b} g^{x} \bmod p$. Note that $x \in\{0,1\}^{n}$ and $b \in\{0,1\}$, and we interpret x as a number (an element of Z_{p}^{*}).

Prove that the problem of efficiently finding collisions for this hash function is at least as hard as the discrete log problem ${ }^{2}$.

[^1]
[^0]: ${ }^{1}$ To see a real world private key, run cat $\sim /$. ssh/id_rsa on a Unix system

[^1]: ${ }^{2}$ If we can find collisions in $h_{p, g, y}$ for arbitrary p, g, y, then we can find the discrete log (base g) of arbitrary elements of \mathbb{Z}_{p}^{*}

