Recitation 12

Definitions and Review

- Field. A field is a set F equipped with two operations +, × such that S forms an abelian (commutative) group under +, and F \ {0} forms an abelian group under × where '0' is the identity of + (a.k.a the additive identity). Also, multiplication should distribute over addition : ∀x, y, z ∈ F, x × (y + z) = x × y + x × z
- **Polynomial.** Given a field F, we can construct the set of polynomials over F, denoted by F[x]. This is simply the set of expressions of the form $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, where the a_i s are elements of the field F.
- **RSA Crash Course.** Let's say I want to send my credit card number *c* to Amazon. Amazon creates an asymmetric pair of keys as follows :
 - (1) Pick two random, distinct large primes p and q.
 - (2) Let N = pq. Compute $\phi(N)$ using the formula $\phi(pq) = (p-1)(q-1)$.
 - (3) Pick a random element from $\mathbb{Z}^*_{\phi(N)}$, call it e.
 - (4) Publish (N, e) on the internet. This is the **public key**.
 - (5) Compute the inverse of e modulo $\mathbb{Z}^*_{\phi(N)}$, and call it d. d is Amazon's **private key** ¹.

Given this setup, I can send $M = c^e \mod N$ to Amazon, and Amazon can recover c using this equality : $M^d \equiv_N c^{ed} \equiv_N c^1$

RSA Fundamentals

- (a) In step (3), why did we pick e from $\mathbb{Z}^*_{\phi(N)}$?
- (b) What prevents an attacker from computing the inverse of e in $\mathbb{Z}_{\phi(N)}^*$ themselves?
- (c) Do we know for sure that $c \in Z_N^*$? What if it's not?

Inverting RSA

Suppose I'm communicating with an untrusted server that claims to be Amazon. I want the server to prove that it is indeed Amazon. Come up with a 'digital signature' scheme (based on RSA) that will let me verify Amazon's identity. Note that the underlying assumption is that I trust Amazon's public key indeed belongs to Amazon and not some imposter.

 $^{^1\}text{To}$ see a real world private key, run cat ~/.ssh/id_rsa on a Unix system

Interpolation

Find the unique degree-2 polynomial f over \mathbb{Z}_7 that satisfies the following :

$$f(1) = 5, f(2) = 3, f(4) = 1$$

Fields are Meta

Let F be \mathbb{Z}_7 - this is the unique field of size 7, up to isomorphism. Let S be the set of polynomials over F with degree at most 2.

- (a) What is the size of S?
- (b) Verify that S is a field under addition and multiplication modulo $x^3 2$.

#Hashing

A length-compressing hashing function is a function $f \{0,1\}^n \to \{0,1\}^m$, where m < n. Note that a such a function cannot be injective (by the pigeonhole principle), so it has collisions (i.e. $\exists x, y \in \{0,1\}^n$ such that f(x) = f(y)).

Let p be an n-bit prime and let $g \in \mathbb{Z}_p^*$ be a generator of this group. Fix some $y \in \mathbb{Z}_p^*$. Consider the following hashing function $h : \{0,1\}^{n+1} \to \{0,1\}^n$, given by $h_{p,g,y}(x,b) = y^b g^x \mod p$. Note that $x \in \{0,1\}^n$ and $b \in \{0,1\}$, and we interpret x as a number (an element of \mathbb{Z}_p^*).

Prove that the problem of efficiently finding collisions for this hash function is at least as hard as the discrete log problem².

²If we can find collisions in $h_{p,g,y}$ for arbitrary p, g, y, then we can find the discrete log (base g) of arbitrary elements of \mathbb{Z}_p^*