15-251: Great Theoretical Ideas In Computer Science

Recitation 2

Training Manual

- Deterministic Finite Automaton (DFA): A DFA M is a machine that reads a finite input one character at a time in one pass, transition from state to state, and ultimately accepts or rejects. Formally, M is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where Q is the finite set of states, Σ is the finite alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is the transition function, $q_{0} \in Q$ is the starting state, and $F \subseteq Q$ is the set of accepting states.
- Regular language: A language L is regular if $L=L(M)$ for some DFA M (M decides L).
- Turing Machine (TM): A TM M is a machine that can read and write to an infinite tape containing the input, transition from state to state, and ultimately accepts or rejects. Formally, M is a 7 -tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}\right)$, where:
- Q is the finite set of states,
$-\Sigma$ is the finite input alphabet with $\sqcup \notin \Sigma$,
- Γ is the finite tape alphabet with $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$,
$-\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function,
- $q_{0} \in Q$ is the starting state,
- $q_{a c c} \in Q$ is the accepting state,
- and $q_{r e j} \in Q$ is the rejecting state.
- Decider TM: A TM M is a decider if it halts on all inputs.
- Decidable language: A language L is decidable (or computable) if $L=L(M)$ for some decider TM M.

Odd Ones Out

Draw a DFA that decides the language

$$
L=\{x: x \text { has an even number of } 1 \mathrm{~s} \text { and an odd number of } 0 \mathrm{~s}\}
$$

over the alphabet $\Sigma=\{0,1\}$.

Ones Too Many

Show that the language $L=\left\{1^{n} \mid \log _{2}(n) \in \mathbb{N}\right\}$ over the alphabet $\Sigma=\{1\}$ is not regular.

Busy Intersection

(a) Prove that if L_{1} and L_{2} are regular, then $L_{1} \cap L_{2}$ is regular.
(b) Using (a), show that $L=\{w: w$ has the same number of 0 s and 1 s $\}$ over the alphabet $\Sigma=$ $\{0,1\}$ is not regular.

Balance in All Things

Construct a TM that decides the language $L=\{x$: the parentheses in x are balanced $\}$ over the alphabet $\Sigma=\{()$,$\} .$

Closure Ceremony

Suppose that L_{1} and L_{2} are decidable languages. Show that the three languages $L_{1} \cup L_{2}, L_{1} \cdot L_{2}$ and L_{1}^{*} are all decidable as well.

