15-251: Great Theoretical Ideas In Computer Science

Recitation 6 : Circuits and Matching

Recap

- A matching for a bipartite graph is called stable if it doesn't contain any rogue couples, i.e. a man and a woman who would prefer each other over their matched partners.
- Given a list of men and women along with their preference lists, the Traditional Matching Algorithm (TMA) produces a stable matching in polynomial time. The algorithm is optimal for the gender that proposes (if men are proposing, each man will get his best possible partner).
- A circuit family is an infinite sequence of circuits $\left\langle C_{i}\right\rangle$, where C_{i} is a circuit with i input bits. We say that a circuit family $\left\langle C_{i}\right\rangle$ decides a language $L \subseteq \Sigma^{*}$ if the set of strings accepted by C_{i} is exactly $\{s: s \in L$ and $|s|=i\}$

Gates has 3 floors

Show that any boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (i.e. a function that takes in n input bits and outputs 1 bit) can be computed by a circuit of depth at most 3 (This means that the longest path from any input bit to the output should have at most 3 gates). Your gates may have any number of inputs.
What is the size (in big- O) of such a circuit in the worst case?

Bounds on Circuit Size

Let $x_{1}, x_{2}, \ldots, x_{n}$ be input bits ($n \geq 2$). We use the convention that truth assignments are either 0 or 1 . We are interested in computing the following Boolean function:

$$
H\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if at least } 2 \text { of the } x_{i} \text { 's are assigned } 1, \\ 0 & \text { if fewer than } 2 \text { of the } x_{i} \text { 's are assigned } 1 .\end{cases}
$$

Prove there is a circuit computing H that uses at most $C \cdot n$ gates. Here C should be some fixed positive number, like 3 or 4 or 10 . (Your C should work for every choice of n.) Your circuit can use any type of gate with fan-in at most 2 (though perhaps you will only need AND and OR gates?). If it helps you, you may assume that n is a power of 2 .
[(Bonus. Lower bounds are hard. Prove that any circuit computing H must have at least $2 n-3$ gates]

It's All the Same to Me

(a) Suppose that, in a stable marriage scenario, a man was the last choice for every women, and a woman was the last choice for every man. Is it necessary that in a stable matching, the man and women are paired together?
(b) Give a polynomial time algorithm to decide if a given instance of the stable matching problem has a unique solution.

I Couldn't Find a Suitable Marriage Pun

Hall's Marriage Theorem states that a bipartite graph $G(X, Y, E)$ has a perfect matching iff $|X|=|Y|$ and for every $S \subseteq X,|N(S)| \geq|S|$. Prove this properly.

