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Bits of Wisdom on Solving Problems, 

Writing Proofs, and Enjoying the Process: 

How to Succeed in This Class 

No specific topic covered today,

but we’ll very briefly recap induction



What is a proof?

How do I find a proof?

How do I write a proof?

2.
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The “Aha!” Moment



Typical philosophy for working in math:

Small progress per day,

for many days.

251 HMWK version:  15% progress per day for 7 days.



Terence Tao 

2006 Fields Medalist, 

winner of 10+ international math

prizes worth over $5 million

I don't have any magical ability. I look at a problem, and it looks something like one 

I've done before; I think maybe the idea that worked before will work here.  When I 

was a kid, I had a romanticized notion of mathematics, that hard problems were 

solved in 'Eureka' moments of inspiration. [But] with me, it's always, 'Let's try this. 

That gets me part of the way, or that doesn't work. Now let's try this. Oh, there's a 

little shortcut here…. It's not about being smart or even fast. It's like climbing a cliff: 

If you're very strong and quick and have a lot of rope, it helps, but you need to 

devise a good route to get up there. Doing calculations quickly and knowing a lot 

of facts are like a rock climber with strength, quickness and good tools. You still 

need a plan — that's the hard part — and you have to see the bigger picture.



10 tips for finding proofs

1.  Read and understand the problem.

2.  Try small or special cases.

3.  Develop good notation.

4. Understand why the problem seems hard

(Put yourself in the mind of the adversary) 

5. Collaborate, bounce off ideas.



10 tips for finding proofs

6.  Use blocks of ≥ 1 hour, or at least 30 minutes.

7.  Take breaks.

8. Use plenty of paper (or whiteboard/tablet), 

and draw pictures if possible.

9. Clarify, abstract out, summarize pieces. 

Record partial progress.

10. A crisp write-up is important (both for scoring 

points, and checking that argument is airtight).



The kitchen for a cookie baking contest is arranged in an m by 

n grid of ovens. Each contestant is assigned an oven and told 

to make as many cookies as possible in three hours. Prizes are 

awarded in the following manner: in each row the p people who 

produced the most cookies receive a prize. Likewise, in each 

column the q people who produced the most cookies receive a 

prize. Assume p ≤ n, q ≤ m, and that no two people produced 

the same number of cookies. Prove that at least pq people 

received two prizes for their cookie-baking performance.

A 251 Homework Problem:







Solution write-up
Proof by induction on n+m.

P(k) = claim true when n+m=k for all (p,q)  {1,2..,n} x {1,2,…m}

P(2) is true (n=m=p=q=1)

Assume P(k) is true. Let’s prove P(k+1). Suppose n+m=k+1.

If everyone who wins a prize wins two prizes, we are done, since at 
least (mp+nq)/2 ≥ pq people win prizes.

So there is someone who receives just one prize. Among those, pick 
the person, say X, who made the most cookies. Either X is not 
among top p in her row or not among the top q in her column. 
Without loss of generality, assume the latter.   (Why’s this okay?)

Remove X’s column. By induction hypothesis, the remaining m x (n-
1) grid has at least (p-1)q people receiving two prizes (since every 
row has at least (p-1) prize winners in new grid). Add to this set 
the q winners in X’s column, who by choice of X, all win two prizes 
(otherwise X wouldn’t have been the largest single prize winner). 
This gives pq two-prize winners in all. QED.



If you just read the solution, it’s frustrating:

Writeup is short:  3 short paragraphs.

Seems to have some “aha!” moments (eg. choice of X)

Hides cognitive process behind discovery of “aha!”-like

step(s).

But you need to set yourself up for making such a step.

For the write-up, you can step back and try for the 

clearest possible explanation (which often is also succinct,

but some intuition is nice to include, especially in difficult proofs). 
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What is a proof?

In math, there are agreed-upon rigorous 

rules of deduction.  Proofs are right or wrong.

Nevertheless, what constitutes an acceptable

proof is a social construction.

(But computer science can help.)



Proofs — prehistory

Euclid’s Elements

(ca. 300 BCE)

Canonized the idea of giving

a rigorous, axiomatic deduction 

for all theorems.



Proofs — 19th century

True rigor developed.

Culminated in the understanding 

that math proofs can be formalized 

with First Order Logic.



Bertrand Russell Alfred Whitehead

Principia Mathematica, ca. 1912

Developed set theory, number theory, 

some real analysis using formal logic.

page 379: “1+1=2”



It became generally agreed that

you could rigorously formalize

mathematical proofs.

But nobody wants to!  
(by hand, at least)

But are English-language proofs sufficient?



Four Color Theorem

Any 2-d map of regions can be colored 

with 4 colors so that no adjacent 

countries get the same color.

1852 conjecture:



Four Color Theorem

1879:  Proved by Kempe in Amer. J. of Math

1880:  Alternate proof by Tait in

Trans. Roy. Soc. Edinburgh

1890:  Heawood finds a bug in Kempe’s proof.

1891:  Petersen finds a bug in Tait’s proof.

Kempe’s “proof” was widely acclaimed. 



Four Color Theorem

Heesch showed that the theorem 

could in principle be reduced to 

checking a large number of cases.

1969:

Appel and Haken wrote a massive 

amount of code to compute and then 

check 1936 cases 

(1200 hours of computer time).

Claimed this constituted a proof.

1976:



More anecdotes

1993: Wiles announces proof of Fermat’s Last Thm.

Then a bug is found.

1994:  Bug fixed, 100-page paper.

1994: Gaoyong Zhang, Annals of Mathematics:

disproves “n=4 case of Busemann-Petty”.

1999: Gaoyong Zhang, Annals of Mathematics:

proves “n=4 case of Busemann-Petty”.



Kepler Conjecture

Kepler, 1611: As a New Year’s 

present (???) for his friend, 

wrote a paper with this conjecture:

The densest way to pack spheres is like this:



Kepler Conjecture

2005:  

Our neighbor Tom Hales:

120 page proof in 

Annals of Mathematics

Plus code to solve 100,000 distinct optimization 

problems, taking 2000 hours computer time.

Annals recruited a team of 20 referees.

They worked for 4 years. 

Some quit.  Some retired.  One died.

In the end, they gave up.  

But said they were “99% sure” it was a proof.



Kepler Conjecture

Hales:  “We will code up 

a completely formal 

axiomatic proof, 

checkable by computer.”

Open source “Project Flyspeck”:  

2004 --- August 10, 2014



Computer-assisted proof

Proof assistant software like 

HOL Light, Mizar, Coq, Isabelle,

does two things:  

1. Checks that a proof encoded

in an axiomatic system for

First Order Logic (or typed lambda calculus theory) is valid.

2.  Helps user code up such proofs.

Developing proof assistants is an 

active area of research, particularly at CMU!



Computer-formalized proofs

Fundamental Theorem of Calculus (Harrison)

Fundamental Theorem of Algebra (Milewski)

Prime Number Theorem (Avigad++ @ CMU)

Gӧdel’s Incompleteness Theorem (Shankar)

Jordan Curve Theorem (Hales)

Brouwer Fixed Point Theorem (Harrison)

Four Color Theorem (Gonthier)



Proofs in 251

For theorems we will prove in 251, we won’t 

need computer assistance. (Though you’re 

welcome to program small test cases if it helps in 

formulating hypotheses & solving HW problems.)

Higher-level, but precisely argued proofs. 

Appropriate level of detail in proof also depends on 

context and target audience:

• Your proofs need to convince TAs/instructors that 

you have a clearly articulated air-tight solution.



What is a proof?

How do I find a proof?

How do I write a proof?
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1.

3.

So as to get full points 

on the homework.



Your homework is not like 

the Four Color Theorem.

The TAs can correctly decide

if you have written a valid proof.



Here is the mindset you must have.

Pretend that your TA is going to 

code up a formalized proof of your solution

Your job is to write a complete 

English-language spec for your TA.



You must give a spec to your TA

that they could implement 

with no complaints or questions.

Equivalently, you must 

convince your TA that you know 

a complete, correct proof.



Alternate Perspective

You: must present an

airtight case.

Your TA



Possible complaints/points off from your TA:

• A does not logically follow from B.

• You missed a case.

• This statement is true, but you haven’t justified it.

But also:

• Your without loss of generality is with l.o.g.

• I don’t understand your proof.

• This explanation is unclear.

• Your proof is very hard to read.



Problem: Prove n2 ≥ n for all integers n.

Solution:

We prove Fn = “n2 ≥ n” by induction on n.

The base case is n = 0: indeed, 02 ≥ 0.

Assume Fn.  Then 

(n+1)2 = n2+2n+1 ≥ n2+1 ≥ n+1 (by Fn).

This is Fn+1, so the induction is complete.

Read the question carefully.



Some common induction mistakes

“The base case F0 is true because […].

For the induction step, assume Fk holds for all k.

We now show that Fk+1 holds…”

You just assumed what you’re trying to prove!

“The proof is by strong induction.  

The base case F0 is true because […]

For the induction, assume Fk holds for all k ≤ n.

We will now show Fk+1: […]”

What is k?  Where did n go?



Old homework problem:

How many ways to arrange c ≥ 0 ♣’s and 

d ≥ 0 ♦’s so that all ♣’s are consecutive?

Solution:

You can have any number between 0 and d ♦’s, then 

the string of ♣’s; then you must have the remainder of 

the ♦’s.  Hence there are d+1 possibilities.

Fallacious if c = 0: there is only 1 possibility.

Handle all edge cases!

Don’t have any missing parts in your spec.



Problem: Prove 2n > n for all integers n ≥ 1.

Solution:

Fn = “2n > n”

F1 = “2 > 1” ✔

Fn ⇒ Fn+1:  

2n+1 = 2∙2n > 2∙n (induction) ≥ n+1

because n ≥ 1

Therefore proved.

This is not written in English!

This is not a full sentence.



Another old homework question:

There is a circle of 15,251 chips, green on one

side, red on the other.  Initially all show the 

green side.  In one step you may take any four 

consecutive chips and flip them.  Is it possible 

to get all of the chips showing red?

Intended solution:

No.  If g of the 4 flipped chips are green,

then after flipping 4−g of them are green.  

Note that g and 4−g have the same parity;

hence the parity of the number of green

chips will always remain odd. 



Solution:

No it is not possible. Let’s assume for 

contradiction we converted all 15,251 chips to 

red.  But this means in the very last step there 

must be 4 consecutive green chips and the 

remaining 15,247 must be red.  Repeating this 

k times for 

1 ≤ k ≤ 3812, we get three consecutive red 

chips, with the rest green. But we started from 

all green, contradiction.

If asked to show something is impossible,

it does not suffice to show that one 

particular method does not work.



Spring ’11 homework 2, #3b:

There is a circle of 15,251 chips, green on one

side, red on the other.  Initially all show the 

green side.  In one step you may take any seven

consecutive chips and flip them.  Is it possible 

to get all of the chips showing red?

Intended solution:

Yes.  Number the chips 0…15,250.  Flip the

sequence [0,1,…,6], then [1,2,…,7], then 

[2,3, …,8], etc., up until [15,250,0,1, …,5].

Now each chip’s been flipped exactly 7 times,

an odd number.  Hence each chip is now red.



Solution:

At any given time, let g be the number of 

chips showing green and r the number of 

chips showing red. The possible remainders 

when a number is divided by 7 are 

0, 1, 2, 3, 4, 5, 6, 7.  A flip that involves 6 red 

and 1 green increments the current modular 

class of g by 5 while the move that involves 

1 red and 6 green decrements the current 

modular class of g by 5.  Originally, with the 

number 15,251, the modular class of g mod 7 

is 5.  Thus, it is possible to make all chips red.

In short: this proof does not make sense.

Do not just write a bunch of random facts.



Success in computer science requires:

 Content: An up to date grasp of 

fundamental concepts and problems

 Method: Principles and techniques to solve 

the vast array of unfamiliar problems that 

arise in a rapidly changing field 

251 will surely have lot of content, but its overarching 

aim is to use the topics as a vehicle to prepare you to 

(i) model/abstract the core features of a problem,

(ii) reason rigorously, without fooling yourself, 

towards a correct solution, and 

(iii) express your solution in a cogent, convincing manner



Quick review: 

Structural Induction



Induction Principle: 
If  F0 and k, Fk Fk+1

then n, Fn

Well Ordering Principle:
Every non-empty set of positive 

integers contains a least* element

*under the usual ordering “<” 



Inductive Proofs

To Prove k  , Sk

1. Establish “Base Case”:  S0

2. Establish that k, Sk  Sk+1

To prove

k, Sk  Sk+1

Assume hypothetically that 

Sk for any particular k; 

Conclude Sk+1



Theorem:
Every natural number n > 1 can 

be factored into primes

Sn = “n can be factored into primes”

Base case:
2 is prime  S2 is true

Sk-1 = “k-1 can be factored into primes”

How do we use the fact:

Sk = “k can be factored into primes”

to prove that:



Use 
“all previous induction”

a.k.a. strong induction



A different approach:

Assume 2,3,…,k-1 all can be factored into 

primes

Then show that k can be factored into 

primes

Theorem:
Every natural number > 1 can be 

factored into primes



Strong Induction

To Prove k, Sk

Establish Base Case:  S0

Inductive step:

For k > 0, assume  j<k, Sj

use that to derive Sk



Invariant (n): 

1. Not varying; constant. 

2. Mathematics. Unaffected by 

a designated operation, as a 

transformation of 

coordinates.

3. Programming.

A rule, such as the ordering of an 

ordered list, that applies throughout the 

life of a data structure or procedure. 

Each change to the data structure 

maintains the correctness of the 

invariant



Invariant Induction
Suppose we have a time varying 

world state: W0, W1, W2, …

Argue that S is true of the initial world  W0

Show that if S is true of some world –

then S remains true after one permissible 

operation is performed

Each state change is assumed to come 

from a list of permissible operations. We 

seek to prove that statement S is true of 

all future worlds



Odd/Even Handshaking Theorem 

At any party at any point in time define a 

person’s parity as ODD/EVEN according to the 

number of hands they have shaken

Statement: 

The number of people of odd parity must be 

even



If 2 people of the same parity shake, they both 

change and hence the odd parity count changes 

by 2 – and remains even

Statement: The number of people of odd 

parity must be even

Initial case: Zero hands have been shaken at 

the start of a party, so zero people have odd 

parity

Invariant Argument:

If 2 people of different parities shake, then they 

both swap parities and the odd parity count is 

unchanged



Bored? Here’s a “chessboard” puzzle

An infection spreads among the squares of an n x n

chessboard in the following manner. If a square has 

two or more infected neighbors, then it becomes infected

itself. (Neighbors are orthogonal only, so a square has at most 4 neighbors)

What’s the minimum number of infected squares needed 

at the beginning to infect the whole board?



Structural Induction

Induction can also be used to define or construct

objects of various kinds (sets, sequences, formulas, trees,…)

Structural induction is a convenient form to prove

results about recursively-defined objects 

Let’s illustrate with a simple example.

Consider a set S defined by:

Base step: 3 ∈ 𝑆
Recursive step: If 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, then 𝑥 + 𝑦 ∈ 𝑆

What’s the set S? All positive multiples of 3



Proof that 𝑆 = { 3𝑛 ∣ 𝑛 is a positive integer}

Two directions:

1. 𝑇 ⊆ 𝑆: Proof by induction on 𝑛
2. 𝑆 ⊆ 𝑇: Structural induction 

Denote T  = { 3𝑛 ∣ 𝑛 is a positive integer}

• Base step: Check the claimed property for the

base cases of the definition.

• Recursive step: Prove the claim holds for new objects created

by the recursive combination rule, assuming that it is true for 

the old objects used in the recursive step.

In our example:

Base case: 3 ∈ 𝑇
Recursive step: If 𝑥, 𝑦 are multiples of 3, then so is 𝑥 + 𝑦



Why is structural induction valid?

It follows from strong induction on the number 

of applications of the recursive rule to create a 

particular object 

It is just a convenient packaging so we don’t have

to repeat saying “Let’s induct on n,

the number of applications of recursive rule …” 



(Rooted) Binary tree

Base step: A single node 𝑟 is a binary tree 

with root 𝑟

Recursive step: If 𝑇1 and 𝑇2 are binary trees 

with roots 𝑟1 and 𝑟2, then 𝑇 which has a node 

𝑟 adjacent to 𝑟1 and 𝑟2 is a binary tree with 

root 𝑟 (and 𝑟1, 𝑟2 are called children of 𝑟)

𝑟

A leaf of a binary tree is a node with no children.

Rest of nodes are called internal

Claim: In every binary tree, the number of leaves 

is one more than the number of internal nodes.

Easy exercise: Prove above by structural induction



Solving problems:

Understand problem

Try small cases

Use enough time & paper

put yourself in the
mind of adversary

Writing proofs:

like designing a 

complete, correct spec
put yourself in the

TA’s shoes

use good English!

Study Guide


