|5-25|
 Great Theoretical Ideas in Computer Science

Lecture 10 :

Graphs II: Graph Algorithms

September 29th, 2016

Today's Menu

- Graph search: DFS
- Minimum spanning tree
- Maximum matching

Graph Search

Motivating question

Given a map, and two locations x and y, determine efficiently if it is possible to go from x to y.

How can we efficiently check if two vertices in a graph are connected or not?

Recursion

The basic idea:
To explore all the nodes you can reach from vertex x : explore all the nodes you can reach from the neighbors of x.

Depth-First Search

DFS: On input $G=(V, E), x \in V$
Mark x as "visited".
For each $z \in N(x)$:
If z is not marked "visited", run $\operatorname{DFS}(G, z)$.

। \ominus Recursion

Suppose $x=1$

The order in which vertices marked "visited":
I, 2, 3, 4, 5, 6, 7, 8, 9, I0, II, I2

Recursion

DFS: On input $G=(V, E), x \in V$
Mark x as "visited".
For each $z \in N(x)$:
If z is not marked "visited", run $\operatorname{DFS}(G, z)$.
The above visits every vertex connected to x.
To traverse every vertex in the graph:
DFS2: On input $G=(V, E)$
For each vertex v that is not marked "visited": run $\operatorname{DFS}(G, v)$.

Recursion

DFS: On input $G=(V, E), x \in V$
Mark x as "visited".
For each $z \in N(x)$:
If z is not marked "visited", run $\operatorname{DFS}(G, z)$.
Running time: $O(m)$ (exercise)
DFS2: On input $G=(V, E)$
For each vertex v that is not marked "visited": run $\operatorname{DFS}(G, v)$.

Running time: $O(n+m)$ (exercise)

Recursion

Can use DFS to solve:

- Check if there is a path between two given vertices.
- Decide if G is connected.
- Identify the connected components of G .
- (and other similar problems)

There are other graph traversing algorithms that you can use to solve above problems.

One famous one is Breadth-First Search (BFS).

Minimum Spanning Tree

Motivating question

Year: 1926
 Place: Brno, Moravia
 Our Hero: Otakar Boruvka

Boruvka's pal Jindrich Saxel was working for
Zapadomoravske elektrarny
(the West Moravian Power Plant company).

Saxel asked:
What is the least cost way to electrify southwest Moravia?

Remember the CS life lesson

If your problem has a graph, great. If not, try to make it have a graph!

Graph representation

weighted graph

Graph representation

weighted graph

Hustopece
Total weight/cost: 42

Minimum spanning tree problem

Input: A connected graph $G=(V, E)$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$.

Output: Subset of edges with minimum total cost such that all vertices are connected.

Observation:
The output must be a tree.

Recall

tree: connected, acyclic

If not (i.e. there is a cycle), you could delete an edge from the cycle to get a cheaper solution.

Minimum spanning tree problem

Convenient Assumption:

Edges have distinct costs.
Exercise: In this case the MST is unique.

A hint on why this is WLOG:
"Whether the distance from Brno to Breclav is 50 km or 50 km and Icm is a matter of conjecture."

Jarník-Prim Algorithm

$\mathrm{V}^{\prime}=$ vertices connected so far
$E^{\prime}=$ edges in the solution so far

Jarník-Prim Algorithm

$V^{\prime}=\{a\} \quad$ (start with an arbitrary node)
$E^{\prime}=\{ \}$

Jarník-Prim Algorithm

$$
\begin{aligned}
& V^{\prime}=\{a, b\} \\
& E^{\prime}=\{\{a, b\}\}
\end{aligned}
$$

Jarník-Prim Algorithm

$$
\begin{aligned}
& V^{\prime}=\{a, b, g\} \\
& E^{\prime}=\{\{a, b,,\{b, g\}\}
\end{aligned}
$$

Jarník-Prim Algorithm

$$
\begin{aligned}
& V^{\prime}=\{a, b, g, f\} \\
& E^{\prime}=\{\{a, b\},\{b, g\},\{g, f\}\}
\end{aligned}
$$

Jarník-Prim Algorithm

$V^{\prime}=\{a, b, g, f, e\}$
$E^{\prime}=\{\{a, b\},\{b, g\},\{g, f\},\{g, e\}\}$

Jarník-Prim Algorithm

$V^{\prime}=\{a, b, g, f, e, d\}$
$E^{\prime}=\{\{a, b\},\{b, g\},\{g, f\},\{g, e\},\{e, d\}\}$

Jarník-Prim Algorithm

$$
\begin{aligned}
& V^{\prime}=\{a, b, g, f, e, d, c\} \\
& E^{\prime}=\{\{a, b\},\{b, g\},\{g, f\},\{g, e\},\{e, d\},\{b, c\}\}
\end{aligned}
$$

Jarník-Prim Algorithm

On input a weighted \& connected graph $G=(V, E)$:
$V^{\prime}=\{w\} \quad$ (for an arbitrary w in V)
$E^{\prime}=\varnothing$
While $\mathrm{V}^{\prime} \neq \mathrm{V}$:

- Let $\{u, v\}$ be the min cost edge such that u is in V^{\prime}, v is not in V^{\prime}.
$-E^{\prime}=E^{\prime}+\{u, v\}$
$-V^{\prime}=V^{\prime}+v$
Output E'

Jarník-Prim Algorithm

This is usually known as Prim's algorithm. (due to a 1957 publication by Robert Prim)

Actually, first discovered by Vojtech Jarník, who described it in a letter to Boruvka, and later published it in 1930.

Boruvka himself had published a different algorithm in 1926.

Jarník-Prim Algorithm

How do we know the algorithm is correct?

Lemma: (MST Cut Property)

Let $G=(V, E)$ be a graph with distinct edge costs.
Let $V^{\prime} \subset V \quad\left(V^{\prime} \neq \emptyset, V^{\prime} \neq V\right)$.
Let $e=\{u, v\}$ be the cheapest edge with $u \in V^{\prime}, v \notin V^{\prime}$.
Then the MST must contain this edge e.

MST Cut Property

Proof idea:

Proof by contradiction.
Let T be the MST.
Suppose $e=\{u, v\}$ is not in T.
$e^{\prime}=\left\{u^{\prime}, v^{\prime}\right\}$ is in T. (e' chosen carefully)
$c\left(e^{\prime}\right)>c(e)$

T-e' +e is a spanning tree with smaller cost. Contradicton

- clearly has smaller cost
- clearly has n-I edges
- argue it must be connected $\}$
it is a spanning tree

Runtime race for MST: An amusing story

A naïve implementation of Jarník-Prim runs in time $O\left(m^{2}\right)$.

A better implementation runs in time $O(m \log m)$.

In practice, this is pretty good!

But a good algorithm designer always thinks:
Can we do better?

Runtime race for MST: An amusing story

1984: Fredman \& Tarjan invent the "Fibonacci heap" data structure.

Running time improved from

$$
\begin{aligned}
& O(m \log m) \text { to } \\
& O\left(m \log ^{*} m\right)
\end{aligned}
$$

also not Fredman
not Fredman

Runtime race for MST: An amusing story

1986: Gabow, Galil,T. Spencer, Tarjan improved the alg.

Running time improved from
$O\left(m \log ^{*} m\right)$ to
$O\left(m \log \left(\log ^{*} m\right)\right)$

Gabow

Galil

Tarjan \& Not-Spencer

Runtime race for MST: An amusing story

1997: Chazelle invents "soft heap" data structure.

Running time improved from $O\left(m \log \left(\log ^{*} m\right)\right)$ to

$$
O(m \alpha(m) \log \alpha(m))
$$

What is $\alpha(m)$?

Bernard Chazelle

Damien Chazelle (writer \& director)

Runtime race for MST: An amusing story

What is $\alpha(m)$?
It is known as the Inverse-Ackermann function.
$\log ^{*}(m) \quad$ \# times you do \log to go down to 2 .
$\log ^{* *}(m) \quad$ \# times you do $\log ^{*}$ to go down to 2.
$\log ^{* * *}(m) \quad$ \# times you do $\log ^{* *}$ to go down to 2 .

$$
\alpha(m) \quad \# * \text { 's you need so that } \log ^{* * * \ldots * * *}(m) \leq 2
$$

Incomprehensibly small!

Runtime race for MST: An amusing story

2002: Pettie \& Ramachandran gave a new algorithm.
They proved its runnin time is O (optimal).
Would you like to know its running time?
So would we! It is unknown.
All we know is: whatever it is, it's optimal.

Pettie

Ramachandran

Maximum matching problem
 (in bipartite graphs)

Some motivating real-world examples

matching machines and jobs

Job I

Job 2

Job n

Some motivating real-world examples

matching professors and courses

$15-1 \mid 0$
|5-||2
15-122
15-|50
|5-25|

Some motivating real-world examples

matching students and internships

Remember the CS life lesson

If your problem has a graph, great. If not, try to make it have a graph!

Bipartite Graphs

$G=(V, E)$ is bipartite if:

- there exists a bipartition of V into X and Y
- each edge connects a vertex in X to a vertex in Y

Given a graph $G=(V, E)$, we could ask, is it bipartite?

Bipartite Graphs

Given a graph $G=(V, E)$, we could ask, is it bipartite?

Poll

Is this graph bipartite?

- Yes
- No
- Beats me

Bipartite Graphs

Often we write the bipartition explicitly:

$$
G=(X, Y, E)
$$

Bipartite Graphs

Great for modeling relations between two classes of objects.

Examples:

$X=$ machines, $Y=$ jobs
An edge $\{x, y\}$ means x is capable of doing y.
$X=$ professors, $Y=$ courses
An edge $\{x, y\}$ means x can teach y.
$X=$ students, $\quad Y=$ internship jobs
An edge $\{x, y\}$ means x and y are interested in each other.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

A matching:
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
matching

A matching:
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
matching

A matching:
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
not a matching

A matching:
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
maximum matching

Maximum matching: a matching with largest number of edges (among all possible matchings).

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

Cannot add more edges.
"local optimum"

Maximal matching: a matching which cannot contain any more edges.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
perfect matching

a necessary
condition for
perfect matching:

$$
|X|=|Y|
$$

Perfect matching: a matching that covers all vertices.

Important Note

We can define matchings for non-bipartite graphs as well.

Important Note

We can define matchings for non-bipartite graphs as well.

Maximum matching problem

The problem we want to solve is:

Maximum matching problem
Input: A graph $G=(V, E)$.
Output: A maximum matching in G.

Bipartite maximum matching problem

Actually, we want to solve the following restriction:

Bipartite maximum matching problem
Input: A bipartite graph $G=(X, Y, E)$.
Output: A maximum matching in G.

Bipartite maximum matching problem

A good first attempt:
What if we picked edges greedily?

Bipartite maximum matching problem

A good first attempt:
What if we picked edges greedily?

Bipartite maximum matching problem

A good first attempt:
What if we picked edges greedily?

Bipartite maximum matching problem

A good first attempt: What if we picked edges greedily?

maximal matching
but not maximum

Is there a way to get out of this local optimum?

Bipartite maximum matching problem

A good first attempt: What if we picked edges greedily?

maximal matching
but not maximum

Consider the following path:

Bipartite maximum matching problem

A good first attempt: What if we picked edges greedily?

now maximum

Consider the following path:

Augmenting paths

Let M be some matching.
An augmenting path with respect to M is a path in \mathbf{G} such that:

- the edges in the path alternate between being in M and not being in M
- the first and last vertices are not matched by M

matching $=$ red edges
Augmenting path:

$$
4-8-2-5-1-7
$$

Augmenting paths

matching $=$ red edges

Augmenting path:

$$
4-8-2-5-\mid-7
$$

augmenting path \Longrightarrow can obtain a bigger matching.

Augmenting paths

matching $=$ red edges
Augmenting path:
2-5-I-7

An augmenting path need not contain all the edges of the matching.
augmenting path \Longrightarrow can obtain a bigger matching.

Augmenting paths

matching $=$ red edges

Augmenting path:

$$
4-8
$$

An augmenting path
need not contain
any of the edges of the matching.
48
augmenting path \Longrightarrow can obtain a bigger matching.

Augmenting paths and maximum matchings

augmenting path \Longrightarrow can obtain a bigger matching. In fact, it turns out:
no augmenting path \Longrightarrow maximum matching.

Theorem:

A matching M is maximum if and only if there is no augmenting path with respect to M.

Augmenting paths and maximum matchings

Proof:

If there is an augmenting path with respect to M, we saw that M is not maximum.

Want to show:

If M is not maximum, then there is an augmenting path.
Let M^{*} be a maximum matching. $\quad\left|M^{*}\right|>|M|$.

Let \mathbf{S} be the set of edges
contained in M^{*} or M
but not both.

$$
S=\left(M^{*} \cup M\right)-\left(M \cap M^{*}\right)
$$

Augmenting paths and maximum matchings

Proof:

Let \mathbf{S} be the set of edges contained in M^{*} or M but not both.

$$
S=\left(M^{*} \cup M\right)-\left(M \cap M^{*}\right)
$$

(will find an augmenting path in S)
What does S look like?
Each vertex has degree at most 2. (why?)
So \mathbf{S} is a collection of cycles and paths. (exercise)
The edges alternate red and blue.

Augmenting paths and maximum matchings

Proof:

Let \mathbf{S} be the set of edges contained in M^{*} or M but not both.

$$
S=\left(M^{*} \cup M\right)-\left(M \cap M^{*}\right)
$$

So \mathbf{S} is a collection of cycles and paths. (exercise) The edges alternate red and blue.

> \# red $>$ \# blue in S \# red $=$ \# blue in cycles

So \exists a path with \# red > \# blue.
This is an augmenting path with respect to M.

Algorithm to find maximum matching

Theorem:

A matching M is maximum if and only if there is no augmenting path with respect to M.

Algorithm:

- Start with a single edge as your matching M.
- Repeat until there is no augmenting path w.r.t. M:
- Find an augmenting path with respect to M.
- Update M according to the augmenting path.

OK, but how do you find an augmenting path? Not too bad for bipartite graphs (attend recitation).

Today's Menu

- Graph search: DFS
- Minimum spanning tree
- Maximum matching

