15-251 Great Theoretical Ideas in Computer Science Lecture 10: Graphs II: Graph Algorithms

September 29th, 2016

Today's Menu

- Graph search: DFS

- Minimum spanning tree

- Maximum matching

Graph Search

Motivating question

Given a map, and two locations x and y, determine efficiently if it is possible to go from x to y.

How can we efficiently check if two vertices in a graph are connected or not?

The basic idea:

To explore all the nodes you can reach from vertex x:

explore all the nodes you can reach from the neighbors of \mathbf{x} .

Depth-First Search

DFS: On input
$$G = (V, E), x \in V$$

Mark x as "visited".

```
For each z \in N(x):
```

If z is not marked "visited", run DFS(G, z).

Suppose x = I

The order in which vertices marked "visited":

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


```
DFS: On input G = (V, E), x \in V
Mark x as "visited".
For each z \in N(x):
If z is not marked "visited", run DFS(G, z).
```

The above visits every vertex connected to \mathbf{x} .

To traverse every vertex in the graph:

DFS2: On input G = (V, E)

For each vertex v that is not marked "visited": run DFS(G, v).


```
DFS: On input G = (V, E), x \in V
Mark x as "visited".
For each z \in N(x):
If z is not marked "visited", run DFS(G, z).
```

Running time: O(m) (exercise)

DFS2: On input G = (V, E)

For each vertex v that is not marked "visited": run DFS(G, v).

Running time: O(n+m) (exercise)

Can use DFS to solve:

- Check if there is a path between two given vertices.
- Decide if G is connected.
- Identify the connected components of G.
- (and other similar problems)

There are other graph traversing algorithms that you can use to solve above problems.

One famous one is Breadth-First Search (BFS).

Minimum Spanning Tree

Motivating question

Year: 1926

- Place: Brno, Moravia
- Our Hero: Otakar Boruvka

Boruvka's pal Jindrich Saxel was working for Zapadomoravske elektrarny (the West Moravian Power Plant company).

Saxel asked: What is the least cost way to electrify southwest Moravia?

Remember the CS life lesson

If your problem has a graph, great. If not, try to make it have a graph!

Graph representation

Graph representation

Minimum spanning tree problem

Input: A connected graph G = (V, E), and a cost function $c : E \to \mathbb{R}^+$.

Output: Subset of edges with minimum total cost such that all vertices are connected.

Observation:

The output must be a tree.

Recall

tree: connected, acyclic

If not (i.e. there is a cycle), you could delete an edge from the cycle to get a cheaper solution.

Minimum spanning tree problem

Convenient Assumption:

Edges have distinct costs.

Exercise: In this case the MST is unique.

A hint on why this is WLOG:

"Whether the distance from Brno to Breclav is 50km or 50km and 1cm is a matter of conjecture."

V' = vertices connected so far

E' = edges in the solution so far

V' = {a} (start with an arbitrary node)
E' = { }

V' = {a, b} E' = {{a, b}}

V' = $\{a, b, g\}$ E' = $\{\{a, b\}, \{b, g\}\}$

V' = {a, b, g, f} E' = {{a, b}, {b, g}, {g, f}}

 $E' = \{\{a, b\}, \{b, g\}, \{g, f\}, \{g, e\}\}\$

 $E' = \{\{a, b\}, \{b, g\}, \{g, f\}, \{g, e\}, \{e, d\}\}$

On input a weighted & connected graph G = (V, E):

- $V' = \{w\}$ (for an arbitrary w in V)
- **E'** = Ø
- While $V' \neq V$:
 - Let {u,v} be the min cost edge such that
 u is in V', v is not in V'.
 - E' = E' + {u,v}
 - -V' = V' + v

Output E'

This is usually known as Prim's algorithm. (due to a 1957 publication by Robert Prim)

Actually, first discovered by Vojtech Jarník, who described it in a letter to Boruvka, and later published it in 1930.

Boruvka himself had published a different algorithm in 1926.

Jarník-Prim Algorithm

How do we know the algorithm is correct?

Lemma: (MST Cut Property) Let G = (V, E) be a graph with distinct edge costs. Let $V' \subset V$ ($V' \neq \emptyset$, $V' \neq V$). Let $e = \{u, v\}$ be the cheapest edge with $u \in V', v \notin V'$. Then the MST <u>must</u> contain this edge e.

MST Cut Property

Proof idea:

- Proof by contradiction.
- Let **T** be the MST.
- Suppose $e = \{u, v\}$ is not in **T**.
- $e'=\{u',v'\}$ is in T. (e' chosen carefully)
- c(e') > c(e)

- T e' + e is a spanning tree with smaller cost. CONTRADICTION
 - clearly has smaller cost
 - clearly has n-1 edges
 - argue it must be connected

it is a spanning tree

A naïve implementation of Jarník-Prim runs in time $O(m^2)$.

A better implementation runs in time $O(m \log m)$.

In practice, this is pretty good!

But a good algorithm designer always thinks:

Can we do better?

1984: Fredman & Tarjan invent the "Fibonacci heap" data structure.

Running time improved from $O(m \log m)$ to $O(m \log^* m)$

1986: Gabow, Galil, T. Spencer, Tarjan improved the alg.

Running time improved from $O(m \log^* m)$ to $O(m \log(\log^* m))$

Galil

Tarjan & Not-Spencer

Gabow

1997: Chazelle invents "soft heap" data structure.

Running time improved from $O(m \log(\log^* m))$ to $O(m \alpha(m) \log \alpha(m))$

What is $\alpha(m)$?

Bernard Chazelle

Damien Chazelle (writer & director)

What is $\alpha(m)$?

- It is known as the Inverse-Ackermann function.
- $$\begin{split} \log^*(m) & \# \text{ times you do } \log & \text{to go down to 2.} \\ \log^{**}(m) & \# \text{ times you do } \log^* & \text{to go down to 2.} \\ \log^{***}(m) & \# & \text{times you do } \log^{**} & \text{to go down to 2.} \\ & & \alpha(m) & \# & \text{*'s you need so that } \log^{***\dots***}(m) \leq 2 \end{split}$$

Incomprehensibly small!

2002: Pettie & Ramachandran gave a new algorithm.

They proved its runnin time is O(optimal).

Would you like to know its running time?

So would we! It is unknown.

All we know is: whatever it is, it's optimal.

Pettie

Ramachandran

Maximum matching problem (in bipartite graphs)

Some motivating real-world examples

matching machines and jobs

Some motivating real-world examples

matching professors and courses

- - •

- 15-110 15-112 15-122 15-150 15-251
 - •
 - ٠

Some motivating real-world examples

matching students and internships

"Our business is life itself ... "

Remember the CS life lesson

If your problem has a graph, great. If not, try to make it have a graph!

Bipartite Graphs

G = (V, E) is bipartite if:

- there exists a bipartition of $\,V\,$ into $\,X\,$ and $\,Y\,$
- each edge connects a vertex in ${\boldsymbol X}$ to a vertex in ${\boldsymbol Y}$

Given a graph G = (V, E), we could ask, is it bipartite?

Bipartite Graphs

Given a graph G = (V, E), we could ask, is it bipartite?

Poll

Is this graph bipartite?

- -Yes
- No
- Beats me

Bipartite Graphs

Often we write the bipartition explicitly:

$$G = (X, Y, E)$$

Bipartite Graphs

Great for modeling relations between two classes of objects.

Examples:

X =machines, Y =jobs

An edge $\{x, y\}$ means x is capable of doing y.

X = professors, Y = courses

An edge $\{x, y\}$ means x can teach y.

X =students, Y =internship jobs

An edge $\{x, y\}$ means x and y are interested in each other.

Often, we are interested in finding a matching in a bipartite graph

A matching :

Often, we are interested in finding a matching in a bipartite graph

A matching :

Often, we are interested in finding a matching in a bipartite graph

A matching :

Often, we are interested in finding a matching in a bipartite graph

A matching :

Often, we are interested in finding a matching in a bipartite graph

maximum matching

Maximum matching: a matching with largest number of edges (among all possible matchings).

Often, we are interested in finding a matching in a bipartite graph

Maximal matching: a matching which cannot contain any more edges.

Often, we are interested in finding a **matching** in a bipartite graph

Perfect matching: a matching that covers all vertices.

Important Note

We can define matchings for non-bipartite graphs as well.

Important Note

We can define matchings for non-bipartite graphs as well.

Maximum matching problem

The problem we want to solve is:

Maximum matching problem

Input: A graph
$$G = (V, E)$$
.

Output: A maximum matching in G.

Actually, we want to solve the following restriction:

Bipartite maximum matching problem

Input: A bipartite graph G = (X, Y, E).

Output: A maximum matching in G.

A good first attempt:

What if we picked edges greedily?

A good first attempt:

What if we picked edges greedily?

A good first attempt:

What if we picked edges greedily?

A good first attempt:

What if we picked edges greedily?

maximal matching but not maximum

Is there a way to get out of this local optimum?

A good first attempt:

What if we picked edges greedily?

maximal matching

but not maximum

Consider the following path:

A good first attempt:

What if we picked edges greedily?

now maximum

Consider the following path:

Let M be some matching.

An *augmenting path* with respect to M is a path in G such that:

- the edges in the path alternate between being in M and not being in M
- the first and last vertices are not matched by M

matching = red edges

Augmenting path:

4-8-2-5-1-7

augmenting path \implies can obtain a bigger matching.

matching = red edges

Augmenting path: 2-5-1-7

> An augmenting path need **not** contain all the edges of the matching.

augmenting path \implies can obtain a bigger matching.

matching = red edges

Augmenting path: 4-8

4 8

An augmenting path need **not** contain *any* of the edges of the matching.

augmenting path \implies can obtain a bigger matching.

augmenting path \implies can obtain a bigger matching.

In fact, it turns out:

no augmenting path \implies maximum matching.

<u>Theorem:</u>

A matching M is maximum if and only if there is no augmenting path with respect to M.

Proof:

If there is an augmenting path with respect to M, we saw that M is not maximum.

Want to show:

If M is not maximum, then there is an augmenting path.

Let M^* be a maximum matching. $|M^*| > |M|$.

Let **S** be the set of edges contained in **M*** or **M** but not both.

 $S = (M^* \cup M) - (M \cap M^*)$

Proof:

Let **S** be the set of edges contained in **M*** or **M** but not both.

 $S = (M^* \cup M) - (M \cap M^*)$

(will find an augmenting path in S)

What does **S** look like?

Each vertex has degree at most 2. (why?)

So **S** is a collection of **cycles** and **paths**. (exercise) The edges alternate **red** and **blue**.

Proof:

Let S be the set of edges contained in M* or M but not both.

$$S = (M^* \cup M) - (M \cap M^*)$$

So **S** is a collection of **cycles** and **paths**. (exercise) The edges alternate **red** and **blue**.

red > # blue in S

red = # blue in cycles

So \exists a path with # red > # blue.

This is an *augmenting path* with respect to M.

Algorithm to find maximum matching

Theorem:

A matching M is maximum if and only if there is no augmenting path with respect to M.

Algorithm:

- Start with a single edge as your matching M.
- Repeat until there is no augmenting path w.r.t. M:
 - Find an augmenting path with respect to M.
 - Update M according to the augmenting path.

OK, but how do you find an augmenting path? Not too bad for bipartite graphs (attend recitation).

Today's Menu

- Graph search: DFS

- Minimum spanning tree

- Maximum matching