
September 29th, 2016

15-251 
Great Theoretical Ideas in Computer Science 

Lecture 10:
Graphs II:  Graph Algorithms



Today’s Menu

- Graph search:  DFS

- Minimum spanning tree

- Maximum matching



Graph Search



Motivating question

Given a map, and two locations x and y, 
determine efficiently if it is possible to go from x to y.

How can we efficiently check if two vertices in a graph
are connected or not?



I  ❤ Recursion

The basic idea:

To explore all the nodes you can reach from vertex x:

explore all the nodes you can reach from the 
neighbors of x.

DFS:   On input G = (V, E),  x    V2
Mark x as “visited”.

For each z    N(x):2
If z is not marked “visited”,  run DFS(G, z).

Depth-First Search



I  ❤ Recursion

1

2

3 4 5

6 7 8

9

10 11 12

Suppose x = 1
The order in which vertices marked “visited”:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



I  ❤ Recursion

DFS:   On input G = (V, E),  x    V2
Mark x as “visited”.

For each z    N(x):2
If z is not marked “visited”,  run DFS(G, z).

The above visits every vertex connected to x.

To traverse every vertex in the graph:

DFS2:   On input G = (V, E)

For each vertex v that is not marked “visited”:

run DFS(G, v).



I  ❤ Recursion

DFS:   On input G = (V, E),  x    V2
Mark x as “visited”.

For each z    N(x):2
If z is not marked “visited”,  run DFS(G, z).

DFS2:   On input G = (V, E)

For each vertex v that is not marked “visited”:

run DFS(G, v).

Running time: O(m)

Running time: O(n+m)

(exercise)

(exercise)



I  ❤ Recursion

Can use DFS to solve:

- Check if there is a path between two given vertices.

- Decide if G is connected.

- Identify the connected components of G.

- (and other similar problems)

There are other graph traversing algorithms
that you can use to solve above problems.

One famous one is Breadth-First Search (BFS).



Minimum Spanning Tree



Motivating question

Year:            1926

Place:           Brno, Moravia

Our Hero:   Otakar Boruvka

Boruvka’s pal Jindrich Saxel was working for 
Zapadomoravske elektrarny
(the West Moravian Power Plant company).

Saxel asked:   
         What is the least cost way to electrify 
         southwest Moravia?





Remember the CS life lesson



Graph representation

Svitavy

Vyskov

Kyjov

Hustopece

Trebic

Znojmo
Brno

8 5

10

18 1632

12 30
14

4 26

weighted graph



Graph representation

Svitavy

Vyskov

Kyjov

Hustopece

Trebic

Znojmo
Brno

8 5

10

18 1632

12 30
14

4 26

Total weight/cost:  42

weighted graph



Minimum spanning tree problem

Input:  A connected graph                   , 
          and a cost function                    . 

Output:  Subset of edges with minimum total cost
             such that all vertices are connected.

G = (V,E)
c : E ! R+

Observation:

If not (i.e. there is a cycle),  you could delete an edge 
from the cycle to get a cheaper solution.

The output must be a tree.
Recall
tree: connected, acyclic



Minimum spanning tree problem

Convenient Assumption:

Edges have distinct costs.

Exercise:  In this case the MST is unique.

“Whether the distance from Brno
to Breclav is 50km or 50km and 1cm
is a matter of conjecture.”

A hint on why this is WLOG:



Jarník-Prim Algorithm

8 5

10

18 16
32

12 30

14

4 26

V’ = vertices connected so far

E’ = edges in the solution so far

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5

10

18 16
32

12 30

14

4 26

V’ = {a}    (start with an arbitrary node)

E’ = { }

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5

10

18 16
32

12 30

14

4 26

V’ = {a, b}   

E’ = {{a, b}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5

10

18 16
32

12 30

14

4 26

V’ = {a, b, g}   

E’ = {{a, b}, {b, g}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5

10

18 16
32

12 30

14

4 26

V’ = {a, b, g, f}   

E’ = {{a, b}, {b, g}, {g, f}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5

10

18 16
32

12 30

14

4 26

V’ = {a, b, g, f, e}   

E’ = {{a, b}, {b, g}, {g, f}, {g, e}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5

10

18 16
32

12 30

14

4 26

V’ = {a, b, g, f, e, d}   

E’ = {{a, b}, {b, g}, {g, f}, {g, e}, {e, d}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5

10

18 16
32

12 30

14

4 26

V’ = {a, b, g, f, e, d, c}   

E’ = {{a, b}, {b, g}, {g, f}, {g, e}, {e, d}, {b, c}}

a

b

c

d

e

f
g

Total cost:  42



Jarník-Prim Algorithm

On input a weighted & connected graph G = (V, E):

V’ = {w}  (for an arbitrary w in V)

E’ = Ø 

While  V’ ≠ V:

- Let {u,v} be the min cost edge such that 
  u is in V’,  v is not in V’.

- E’ = E’ + {u,v}

- V’ = V’ + v

Output E’



Jarník-Prim Algorithm

This is usually known as Prim’s algorithm. 
(due to a 1957 publication by Robert Prim)

Actually, first discovered by Vojtech Jarník,
who described it in a letter to Boruvka,
and later published it in 1930.

Boruvka himself had published a different 
algorithm in 1926.



Jarník-Prim Algorithm

How do we know the algorithm is correct?

Lemma: (MST Cut Property)

Let                    be a graph with distinct edge costs.G = (V,E)

Let                  (            ,              ).V 0 ⇢ V V 0 6= ; V 0 6= V

Let                  be the cheapest edge with                       . e = {u, v} u 2 V 0, v 62 V 0

Then the MST must contain this edge    .e



MST Cut Property

Let  T  be the MST.

Proof idea:

u e

V 0 V \V 0

v

e’={u’,v’} is in T. (e’ chosen carefully) u0 e0 v0
Suppose e={u,v} is not in T.

c(e’) > c(e)

T - e’ + e   is a spanning tree with smaller cost.

Proof by contradiction.

- clearly has smaller cost
- clearly has n-1 edges
- argue it must be connected

it is a spanning tree



Runtime race for MST:  An amusing story

A naïve implementation of Jarník-Prim runs in time O(m2).

A better implementation runs in time                    .O(m logm)

In practice, this is pretty good!

But a good algorithm designer always thinks:

Can we do better?



Runtime race for MST:  An amusing story

1984:  Fredman & Tarjan invent the “Fibonacci heap”
          data structure.

Running time improved from                      to O(m logm)

O(m log

⇤ m)

Tarjan

not Fredman

also not Fredman



Runtime race for MST:  An amusing story

1986:  Gabow, Galil, T. Spencer, Tarjan improved the alg.

Running time improved from                      to O(m log

⇤ m)

Gabow

O(m log(log

⇤ m))

Galil Tarjan & Not-Spencer



Runtime race for MST:  An amusing story

1997:  Chazelle invents “soft heap” data structure.

Running time improved from                                to O(m log(log

⇤ m))

O(m ↵(m) log↵(m))

Bernard Chazelle

What is          ? ↵(m)

Damien Chazelle (writer & director)



Runtime race for MST:  An amusing story

What is          ? ↵(m)

It is known as the Inverse-Ackermann function.

log

⇤
(m) # times you do           to go down to 2.log

log

⇤
log

⇤⇤
(m) # times you do           to go down to 2.

log

⇤⇤
log

⇤⇤⇤
(m) # times you do           to go down to 2.

⇤↵(m) #    ’s  you need so that log⇤⇤⇤...⇤⇤⇤(m)  2

Incomprehensibly small!



Runtime race for MST:  An amusing story

2002:  Pettie & Ramachandran gave a new algorithm.

Pettie Ramachandran

They proved its runnin time is                    . O(optimal)

Would you like to know its running time?

So would we! It is unknown.
 All we know is:  whatever it is, it’s optimal.



Maximum matching problem 
(in bipartite graphs)



Some motivating real-world examples

matching machines and jobs

...

Job 1

Job 2

Job n

...



Some motivating real-world examples

matching professors and courses

15-110

15-112

15-122

15-150

15-251
......



Some motivating real-world examples

matching students and internships



Remember the CS life lesson



Bipartite Graphs

X Y

-  there exists a bipartition of      into       and    

is bipartite if: G = (V,E)

-  each edge connects a vertex in     to a vertex in

X YV

X Y

not allowed

Given a graph                   , we could ask,  is it bipartite?G = (V,E)



Bipartite Graphs

Given a graph                   , we could ask,  is it bipartite?G = (V,E)

1

2 3

1 2

3 4

1 2

3 4

5



Poll

Is this graph bipartite?

- Yes

- No

- Beats me

1
23

4

10

6

5

8 7



Bipartite Graphs

X Y

Often we write the bipartition explicitly: 

G = (X,Y,E)



Bipartite Graphs

Great for modeling relations between two classes of 
objects.

Examples:

    = machines,      = jobs

An edge           means    is capable of doing    .

X Y

{x, y}
x y

    = professors,     = courses

An edge           means     can teach    .

X Y

{x, y}
x y

    = students,       = internship jobs

An edge           means    and     are interested in each other.

X Y

{x, y}
x y

…



Matchings in bipartite graphs

Often, we are interested in finding a matching in a 
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.



Matchings in bipartite graphs

Often, we are interested in finding a matching in a 
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

matching



Matchings in bipartite graphs

Often, we are interested in finding a matching in a 
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

matching



Matchings in bipartite graphs

Often, we are interested in finding a matching in a 
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

not a
matching



Matchings in bipartite graphs

Often, we are interested in finding a matching in a 
bipartite graph

X Y

maximum
matching

Maximum matching:  a matching with largest number 
of edges (among all possible matchings).



Matchings in bipartite graphs

Often, we are interested in finding a matching in a 
bipartite graph

X Y

maximal
matching

Cannot add
more edges.

“local optimum”

Maximal matching:  a matching which cannot contain 
any more edges.



Matchings in bipartite graphs

Often, we are interested in finding a matching in a 
bipartite graph

X Y

Perfect matching:  a matching that covers all vertices.

perfect
matching

a necessary
condition for

perfect matching:
|X| = |Y |



Important Note

We can define matchings for non-bipartite graphs as well.



Important Note

We can define matchings for non-bipartite graphs as well.



Maximum matching problem

The problem we want to solve is:

Input:  A graph                   .G = (V,E)

Output:  A maximum matching in    . G

Maximum matching problem



Bipartite maximum matching problem

Actually, we want to solve the following restriction:

Input:  A bipartite graph                        .

Output:  A maximum matching in    . G

Bipartite maximum matching problem

G = (X,Y,E)



Bipartite maximum matching problem

What if we picked edges greedily?

A good first attempt:

1

2

3

4

5

6

7

8



Bipartite maximum matching problem

What if we picked edges greedily?

A good first attempt:

1

2

3

4

5

6

7

8



Bipartite maximum matching problem

What if we picked edges greedily?

A good first attempt:

1

2

3

4

5

6

7

8



Bipartite maximum matching problem

maximal matching

but not maximum

Is there a way to get out of this local optimum?

What if we picked edges greedily?

A good first attempt:

1

2

3

4

5

6

7

8



Bipartite maximum matching problem

maximal matching

but not maximum

What if we picked edges greedily?

A good first attempt:

1

2

3

4

5

6

7

8

Consider the following path:

4 8 2 5 1 7

4 8 2 5 1 7



Bipartite maximum matching problem

now maximum

What if we picked edges greedily?

A good first attempt:

1

2

3

4

5

6

7

8

Consider the following path:

4 8 2 5 1 7

4 8 2 5 1 7



Augmenting paths
Let M be some matching.

Augmenting path:

4-8-2-5-1-7

An augmenting path with respect to M is a path in G
such that:

-  the edges in the path alternate between 
    being in M and not being in M

-  the first and last vertices are not matched by M

1

2

3

4

5

6

7

8

matching = red edges



Augmenting paths

Augmenting path:

4-8-2-5-1-7

4 8 2 5 1 7

4 8 2 5 1 7

augmenting path           can obtain a bigger matching.=)

1

2

3

4

5

6

7

8

matching = red edges



Augmenting paths

1

2

3

4

5

6

7

8

2 5 1 7

2 5 1 7

augmenting path           can obtain a bigger matching.=)

matching = red edges

Augmenting path:

2-5-1-7

An augmenting path
need not contain
all the edges of the matching.



Augmenting paths

1

2

3

4

5

6

7

8

4 8

4 8

augmenting path           can obtain a bigger matching.=)

matching = red edges

Augmenting path:

4-8

An augmenting path
need not contain
any of the edges of the matching.



Augmenting paths and maximum matchings

augmenting path           can obtain a bigger matching.=)

no augmenting path            maximum matching.
In fact, it turns out:

=)

Theorem:
A matching M is maximum if and only if 
there is no augmenting path with respect to M.



Augmenting paths and maximum matchings
Proof:
If there is an augmenting path with respect to M,
we saw that M is not maximum.

Want to show:
If M is not maximum, then there is an augmenting path.

Let M* be a maximum matching.    |M*| > |M|.

1

2

3

4

5

6

7

8

Let S be the set of edges 
contained in M* or M 
but not both.

S = (M*    M) - (M    M*)[ \



Augmenting paths and maximum matchings
Proof:

1

2

3

4

5

6

7

8 S = (M*    M) - (M    M*)[ \

What does S look like?

So S is a collection of cycles and paths.  (exercise)

The edges alternate red and blue.

Each vertex has degree at most 2.  (why?)

(will find an augmenting path in S)

Let S be the set of edges 
contained in M* or M 
but not both.



Augmenting paths and maximum matchings
Proof:

1

2

3

4

5

6

7

8

Let S be the set of edges 
contained in M* or M 
but not both.

                           # red  >  # blue   in S
                           # red  =  # blue   in cycles

This is an augmenting path with respect to M.
 So     a path with  # red  >  # blue.9

So S is a collection of cycles and paths.  (exercise)

The edges alternate red and blue.

S = (M*    M) - (M    M*)[ \



Algorithm to find maximum matching

OK, but how do you find an augmenting path?

Theorem:
A matching M is maximum if and only if 
there is no augmenting path with respect to M.

Not too bad for bipartite graphs (attend recitation).

Algorithm:

- Start with a single edge as your matching M.

- Find an augmenting path with respect to M.

- Update M according to the augmenting path.

- Repeat until there is no augmenting path w.r.t. M:



Today’s Menu

- Graph search:  DFS

- Minimum spanning tree

- Maximum matching


