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Matchings recap

A matching in a graph is a set of edges, no two of 

which share a vertex.

A matching is maximal if no edge can be added to 

it. 

A matching is maximum if there is no matching 

with more edges. 

A matching is perfect if it includes every vertex. 

(i.e., every vertex is matched)



Bipartite Graphs

A graph is bipartite if it can be 2-colored, i.e., its 

nodes V can be partitioned into two sets R and B

such that all edges go only between R and B.



Bipartite Graphs

A graph is bipartite if it can be 2-colored, i.e., its 

nodes V can be partitioned into two sets R and B

such that all edges go only between R and B.



Proof:  

⟹ The odd cycle cannot be 2-colored.

⟸ Hint: Take BFS tree rooted at any node s.

The odd and even parts form the bipartition.

Bipartite Graph

Theorem:  A graph is bipartite if and only if it contains

no cycle of odd length.

Note: This also gives an efficient 𝑂(𝑛 +𝑚) time 

algorithm to test bipartiteness and find a 2-coloring 

when the graph is bipartite. 



Bipartite Maximum Matching

Theorem:  There is a bipartite maximum matching

algorithm running in  𝑂(𝑚𝑛) time.  

Algorithm:   

• Start with any matching M (eg. empty, or any maximal one)

• Repeat finding augmenting paths till none exists 

(up to 𝑛 iterations)

• Return the matching found as a maximum matching



The following algorithm starts with a matching M and either 
(1) determines that it is a maximum matching, or (2) constructs 
an alternating path to make the matching bigger.

Let L0 be the set of unmatched vertices on the left.

For i=1,3,5 … do:

Let Ri be the vertices that have not yet been visited, which are 

neighbors of Li-1 via edges not in the matching.

Let Li+1 be the vertices that have not yet been visited which are 

neighbors of Ri via edges in the matching. 

If any vertex of Ri is not matched, we’ve found an alternating 

path.  HALT

If Li+1 is empty then our matching is maximum.  HALT



Bipartite perfect matchings

Theorem:  There is an algorithm computing a perfect

matching in a bipartite graph in O(mn) time,

if one exists.  

INTERESTING STRUCTURAL QUESTION:

For what graphs does such a perfect matching exist??



Hall’s Marriage Theorem

Theorem:  

A bipartite graph has a perfect matching

if and only if 

|A| = |B| = n

and

For any S ⊆ A, there are at least |S| nodes of B 

that are adjacent to a node in S.



Hall’s Marriage Theorem

Theorem:  A bipartite graph has a perfect matching if 

and only if |A| = |B| = n and for any S ⊆ A, there are 

at least |S| nodes of B that are adjacent to a node in 

S.

Proof: ⟹ (only if) obvious

⟸ (if) (Hint): 

• Let 𝑀 be a maximum matching (but not a perfect matching)

• Look at the “modified BFS-tree” rooted at an 

unmatched node in A.

• As there is no augmenting path, infer that odd level nodes 

give a subset S ⊆ A with fewer than |S| neighbors in B.

Note: Can also prove using induction



Suppose that a standard deck of 

cards is dealt in an arbitrary 

manner into 13 piles of 4 cards 

each

Then it is always possible to select 

a card from each pile so that the 

13 chosen cards contain exactly 

one card of each rank

Example

Hall’s theorem is a very handy way to argue 

the existence of perfect matchings in graphs



Proof:  Form a bipartite graph as follows:  Start with 52 

cards on the left and the same 52 cards on the right, 

connected by 52 edges.

Now group the cards on the left into 13 sets according to 

the given piles.  Group the  cards on the right into 13 

groups according to rank.  Let the edges be inherited 

from the original ones (there can be multiple edges between 

nodes)

This bipartite graph satisfies condition of Hall’s theorem --

k groups on the left have to connect to 4k cards on the 

right, thus they connect to at least k groups on the right.

And thus it has a perfect matching.



Today’s main topic:

Stable matchings



WARNING: This lecture 

contains mathematical 

content that may be 

shocking

Discretion is advised



Question: How do we pair them? 

Dating Scenario

There are n boys and n girls

Each girl has her own ranked 

preference list of all the boys

Each boy has his own ranked 

preference list of the girls

The lists have no ties



Matchings - Context

While we’ll use the dating metaphor, what we

will discuss now is applicable and used in 

matching hospitals and residents 

(matchingMarkets package)

CSD handshake process (for matching first year Ph.D. 

students and advisors, coincidentally announced at today’s 

“login ball”) takes preference lists as input to the 

process.
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More Than One Notion of What 

Constitutes A “Good” Pairing

Maximizing total satisfaction 

Maximizing the minimum satisfaction

Minimizing maximum difference in mate ranks

Maximizing number of people getting their first

choice

We will ignore the issue of 

what is “best”! 



Rogue Couples

Suppose we pair off all the boys and girls

Now suppose that some boy and some girl 

prefer each other to the people to whom they are 

paired 

They will be called a rogue couple



Why be with them when we can 

be with each other?



What use is fairness, 

if it is not stable?

Any list of criteria for a good pairing must 

include stability. (A pairing is doomed if it 

contains a rogue couple.)



A pairing of boys and girls is called stable if it 

contains no rogue couples

Stable Pairings
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A pairing of boys and girls is called unstable if it 
contains at least one rogue couple

Stable Pairings
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Stability is the subject of the 

remaining lecture

We will:

Analyze various mathematical properties of an 

algorithm that looks a lot like 1950’s dating

Discover the mathematical truth about which 

sex has the romantic edge



Given a set of preference lists, how 

do we find a stable pairing?

Wait! We don’t even know 

that such a pairing always 

exists!



Does every set of 

preference lists have a 

stable pairing? 

Revised Question



Idea: Allow the pairs to keep breaking up and 

reforming until they become stable



Can we argue that the 

couples will not  continue 

breaking up and 

reforming forever?



1

3

2,3,4

1,2,4

2

4

3,1,4

1,2,3

An Instructive Variant:

Roommate Problem



Stable roommates 
The non-bipartite case may not have any stable 

matching. In fact, this is the case for the 

example we just saw (Why?)
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Lesson

Any proof of the existence of stable matching 

must contain a step that exploit bipartiteness

If we have a proof idea that works equally well 

in the bipartite and non-bipartite case, then our 

idea is not adequate to correctly establish the 

existence of stables matchings. 



The Traditional Marriage Algorithm

Worshipping Males
Female

String



The Traditional Marriage Algorithm
For each day some boy gets a “No” (& on first day) do:

Morning

• Each girl stands on her balcony

• Each boy proposes to his highest ranked girl   

whom he has not yet crossed off

Afternoon (for girls with at least one suitor)

• To today’s best: “Maybe, return tomorrow”

• To any others: “No, I will never marry you”

Evening

• Any rejected boy crosses the girl off his list

If every boy gets a “maybe,” each girl marries the boy 

to whom she just said “maybe”
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Wait! There is a more 

primary question!

Does the Traditional Marriage Algorithm 

always produce a stable pairing?



Does TMA Always Terminate?

It might encounter a situation where the 

algorithm does not specify what to do 

next.

It might keep on going for an infinite 

number of days



Does TMA Always Terminate?

It might encounter a situation where the 

algorithm does not specify what to do 

next

It might keep on going for an infinite 

number of days
cannot happen, every day 

some name is crossed off

this could happen if some boy

crosses all names off his list!

we’ll show it doesn’t…



Improvement Lemma: 

If a girl has a boy on a string, then she will always 

have someone at least as good on a string (or for a 

husband)

She would only let go of him in order to 

“maybe” someone better

She would only let go of that guy for someone 

even better

She would only let go of that guy for someone 

even better

AND SO ON… 



Corollary: Each girl will marry her 

absolute favorite of the boys who visit 

her during the TMA



Contradiction

Lemma: No boy can be rejected by all the girls

Proof (by contradiction):

Suppose boy b is rejected by all the girls

At that point:

Each girl must have a suitor other than b

(By Improvement Lemma, once a girl has 

a suitor she will always have at least one) 

The n girls have n suitors, and b is not among 

them. Thus, there are at least n+1 boys



Theorem: The TMA always 

terminates in at most n2 days

A “master list” of all n of the boys’ lists starts 

with a total of n x n = n2 girls on it

Each day TMA doesn’t terminate, at least one 

boy gets a “No”, so at least one girl gets 

crossed off the master list

Therefore, the number of days is bounded by 

the original size of the master list



Great! We know that TMA 

terminates and produces 

a pairing

But is it stable?



g
b

g*

I rejected you when you 

came to my balcony. Now 

I’ve got someone better

Theorem: The pairing T produced by TMA is 

stable.



Let b and g be any couple in T, and b prefers g* to g. 
We claim that g* prefers her husband to b.

During TMA, b proposed to g* before he proposed to g. 

Hence, at some point g* rejected b for someone 
she preferred to b. 

By the Improvement lemma, the person she married was also 
preferable to b.

Thus, every boy will be rejected by any girl 
he prefers to his wife.

 T is stable.





Forget TMA for a Moment…

How should we define 

“the optimal girl for boy b”?

Flawed Attempt:

“The girl at the top of b’s list”

,   , 

,    ,   



She is the best girl he can conceivably get 

in a stable world. Presumably, she might be  

better than the girl he gets in the stable pairing 

output by TMA

The Optimal Girl

A boy’s optimal girl is the highest ranked 
girl for whom there is some stable pairing 

in which the boy gets her



A boy’s pessimal girl is the lowest ranked girl for 

whom there is some stable pairing in which the 

boy gets her

The Pessimal Girl

She is the worst girl he can conceivably get in a 

stable world



,      ,     ,     ,  

,     ,  ,       ,   

,     ,  ,       ,   



Dating Heaven and Hell

A pairing is male-optimal if every boy gets his 

optimal mate. This is the best of all possible 

worlds for every boy simultaneously

A pairing is male-pessimal if every boy gets his 

pessimal mate. This is the worst of all possible 

worlds for every boy simultaneously

not clear if either exists!

we’ll show that both exist…



Dating Heaven and Hell

A pairing is female-optimal if every girl gets her 

optimal mate. This is the best of all possible stable 

worlds for every girl simultaneously

A pairing is female-pessimal if every girl gets her 

pessimal mate. This is the worst of all possible 

stable worlds for every girl simultaneously



Opinion poll

The stable matching produced by the TMA algorithm is:

• Male-optimal

• Male-pessimal

• Female-optimal

• Female-pessimal

• Depends on the instance

• Beats me

(You may make multiple choices.)



The TMA was first properly analyzed by

Gale and Shapley, in a famous paper dating back to 1962: 

D. Gale and L.S. Shapley, 

“College Admissions and the Stability of Marriage,”

American Mathematical Monthly 69 (1962), pp. 9–14.

Stable marriage and its numerous variants remain an 

active topic of research in computer science. 

The following very readable book covers many of the interesting 

developments since Gale and Shapley’s algorithm:

D. Gusfield and R.W. Irving, The Stable Marriage 

Problem: Structure and Algorithms, MIT Press, 1989.

The TMA has been used in the National 

Residency Matching Program (NMRP) since 

1952 



The Mathematical Truth!

The Traditional Marriage 

Algorithm always produces a 

male-optimal, 

female-pessimal pairing



Theorem:

TMA produces a male-optimal pairing



g

Suppose TMA

is not male-optimal

b

b*

g b

b*
g’

likes b*

more than b

likes g

at least 

as much as

his optimal

(not been 

rejected by

optimal yet)

consider the

first moment

in TMA when

some boy 

is rejected by 

his optimal girl

since g is b’s optimal,

there is a stable matching S

where  g and b are matched

g’ at most

as good as

his optimal

likes b*

more than b

contradicts

stability of S!!!



Theorem: TMA produces a male-optimal 

pairing

Suppose, for a contradiction, that some boy gets 

rejected by his optimal girl during TMA

At time t, boy b got rejected by his optimal girl g 

because she said “maybe” to a preferred b*

Therefore, b* likes g at least as much as his 

optimal

Let t be the earliest time at which this happened

By the definition of t, b* had not yet been rejected 

by his optimal girl



Some boy b got rejected by his optimal girl g because she 

said “maybe” to a preferred b*. b* likes g at least as much as 

his optimal girl

Also, there must exist a stable pairing S in which b and 
g are married  (by def. of “optimal”)

b* wants g more than his wife in S:

g wants b* more than her husband in S:

Contradiction

g is at least as good as his optimal and he is not 

matched to g in stable pairing S

b is her husband in S and she rejects him for b* in 
TMA



Thm: The TMA pairing, T, is female-pessimal

In fact, we’ll show a male-optimal pairing, (which 

T is) is female-pessimal

Let b be her mate in T = { …, (g,b), …}

Let b* be her mate in S = { …, (g,b*), (g’,b), …}

b likes g better than his mate g’ in S (because g is 
his optimal girl)

So, b is the worst of all boys g can be paired with in

a stable matching! 

Let S be an arbitrary stable matching, and g any girl. 

Since S is stable, g must like b* more than b

(otherwise (g,b) will be a rouge couple in S)



A graph is planar if  it 

can be drawn in the 

plane without crossing 

edges



Examples of Planar Graphs

=



http://www.planarity.net



Faces

A planar graph splits the 

plane into disjoint faces

4 faces



Euler’s Formula

If G is a connected planar graph 

with n vertices, e edges and f faces, 

then  n – e + f = 2



Proof  of  Euler’s Formula

The proof  is by induction.

For connected arbitrary planar graphs n-e+f=2 

Let’s build up the graph by adding edges one at 

a time, always preserving the Euler formula.

Start with a single edge and 2 vertices. n=2, 

f=1, e=1.  Check.

Add the edges in an order so that what we’ve 

added so far is connected.



There are two cases to consider.

(1) The edge connects two vertices already there.

(2) The edge connects the current graph to a new vertex

In case (1) we add a new edge (e++) and we split 

one face in half  (f++).  So n-e+f is preserved.

In case (2) we add a new vertex (n++) and a new 

edge (e++). So again n-e+f is preserved.



Corollary 1:  Let G be a simple connected planar graph 

with n > 2 vertices. G has at most 3n – 6 edges

Proof: We already showed that under these 

conditions 2e≤6n-12.  Thus e≤3n-6.  QED.  

Note: This theorem is important because it shows 

that in a simple planar graph e = O(n).



Corollary 1: Let G be a simple connected planar graph 

with n > 2 vertices. G has at most 3n – 6 edges

Proof sketch: Each face has minimum 3 edges and each 

edge has maximum two faces. So 3f ≤ 2e.

Euler: n-e+f=2  

⇒ 3e = 3n+3f-6 ≤ 3n+2e-6    ⇒ e≤3n-6

Corollary 2:  Let G be a simple connected planar graph. 

Then G has a vertex of degree at most 5.



A coloring of a graph is an assignment of a color 

to each vertex such that no neighboring vertices 

have the same color

Graph Coloring



Graph Coloring

Fundamental problem that arises surprisingly often

Register allocation: assign temporary variables to 

registers for scheduling instructions.  Variables that  

interfere, or are simultaneously active, cannot  be 

assigned to the same register

Assigning time slots for final exams: courses with 

common students can’t be scheduled at the same time



Theorem: Every planar graph can be 6-colored

Proof (by induction):

Assume every planar graph with less than n vertices 

can be 6-colored.  A base case of  n<7 is trivial.

Assume G has n vertices

Since G is planar, it has some node v with degree at 

most 5.

Remove v and color remaining graph with 6 colors.  

Now color v with a color not used among its at most 5 

neighbors.



Theorem: Every planar graph can be 5-colored

Proof (by induction):

Assume every planar graph with less than n vertices 

can be 5-colored.  A base case of  n<6 is trivial.

Assume G has n vertices

Since G is planar, it has some node v with degree at 

most 5.

If  deg(v)<5, Remove v and color remainin graph with 5 

colors.  Now color v with a color not used among its 

neighbors.



What if v has degree 5?

One can show that G – {v} admits a 5-coloring 

in which at most 4 colors are used amongst the 

neighbors of v. 

One can extend this 5-coloring to G by using 

the 5’th color (that is unused among neighbors 

of v) to color v. 



A computer-assisted proof of the 4-color 

theorem was discovered in 1976 by Appel and 

Haken of the University of Illinois.


