15-251

Great Theoretical Ideas in Computer Science

Lecture 12: Boolean Circuits

October 6th, 2015

Where we are, where we are going

Monday	Tuesday	Wednesday	Thursday	Friday
<u>Aug 29</u>	<u>Aug 30</u>	<u>Aug 31</u>	<u>Sep 1</u>	Sep 2
	Introduction	On proofs	Combinatorial Games	
<u>Sep 5</u>	<u>Sep 6</u>	<u>Sep 7</u>	<u>Sep 8</u>	<u>Sep 9</u>
	Finite Automata	hw1 w.s.	Turing Machines	
<u>Sep 12</u>	<u>Sep 13</u>	<u>Sep 14</u>	<u>Sep 15</u>	<u>Sep 16</u>
	Uncountability	hw2 w.s.	Undecidability	
<u>Sep 19</u>	<u>Sep 20</u>	<u>Sep 21</u>	<u>Sep 22</u>	<u>Sep 23</u>
	Intro to Complexity 1	hw3 w.s.	Intro to Complexity 2	
<u>Sep 26</u>	<u>Sep 27</u>	<u>Sep 28</u>	<u>Sep 29</u>	<u>Sep 30</u>
	Graphs 1	hw4 w.s.	Graphs 2	
Oct 3	Oct 4	Oct 5	Oct 6	Oct 7
	Graphs 3	Midterm 1	Boolean Circuits	
Oct 10	Oct 11	Oct 12	Oct 13	Oct 14
	NP-completeness 1	hw5 w.s.	NP-completeness 2	

Computational complexity of a problem

How to show an upper bound on the intrinsic complexity?

> Give an algorithm that solves the problem.

How to show a lower bound on the intrinsic complexity?

> Argue against <u>all</u> possible algorithms that solve the problem.

The dream: Get a matching upper and lower bound.

What is P?

P

The set of languages that can be decided in $O(n^k)$ steps for some constant k.

The theoretical divide between efficient and inefficient:

 $L \in \mathsf{P} \longrightarrow \mathsf{efficiently} \mathsf{solvable}.$

 $L \not\in P \longrightarrow \text{not efficiently solvable.}$

What is NP?

EXP

The set of languages that can be decided in $O(2^{n^k})$ steps for some constant k>0.

DECIDABLE LANGUAGES

NP:

A class between

P and EXP.

What is NP?

$$P \stackrel{?}{=} NP$$

asks whether these two sets are equal.

How would you show P = NP?

> Show that every problem in NP can be solved in poly-time.

How would you show $P \neq NP$?

> Show that there is a problem in NP which cannot be solved in poly-time.

You have to argue against all possible poly-time TMs.

Boolean Circuits

Some preliminary questions

What is a Boolean circuit?

- It is a computational model for computing decision problems (or computational problems).

We already have TMs. Why Boolean circuits?

- The definition is simpler.
- Easier to understand, usually easier to reason about.
- Boolean circuits can efficiently simulate TMs.
 (efficient decider TM => efficient/small circuits.)
- Circuits are good models to study parallel computation.
- Real computers are built with digital circuits.

Sounds AWESOME! So why didn't we just learn about circuits first?

There is a small catch.

An algorithm is a finite answer to infinite number of questions.

Stephen Kleene (1909 - 1994)

Sounds AWESOME! So why didn't we just learn about circuits first?

There is a small catch.

Circuits are an infinite answer to infinite number of questions.

Anil Ada (???? - 2077)

Dividing a problem according to length of input

$$\Sigma = \{0, 1\}$$

$$L \subseteq \{0, 1\}^*$$

$$L_n = \{ w \in L : |w| = n \} \mid f^n : \{0, 1\}^n \to \{0, 1\}$$

$$L = L_0 \cup L_1 \cup L_2 \cup \cdots$$

$$f: \{0,1\}^* \to \{0,1\}$$

$$\{0,1\}^n$$
 = all strings of length n

$$f^n: \{0,1\}^n \to \{0,1\}$$

for $x \in \{0,1\}^n$,

$$f^n(x) = f(x)$$

$$f = (f^0, f^1, f^2, \dots)$$

Dividing a problem according to length of input

ATM is a finite object (finite number of states) but can handle any input length.

Imagine a model where we allow the TM to grow with input length.

Dividing a problem according to length of input

So one machine does not compute L.

You use a family of machines:

$$(M_0,M_1,M_2,\ldots)$$

(Imagine having a different Python function for each input length.)

Is this a reasonable/realistic model of computation?!?

Boolean circuits work this way.

Need a separate circuit for each input length.

Boolean Circuit Definition

Information flows from input gates to the output gate.

Poll: What does this circuit compute?

(sometimes circuits are drawn upside down)

Poll: What does this circuit compute?

(sometimes circuits are drawn upside down)

Poll: What does this circuit compute?

(sometimes circuits are drawn upside down)

parity of

 $x_1 \oplus x_2$

How does a circuit decide/compute a language?

How do we measure the complexity of a circuit?

How can a circuit compute a language?

A circuit has a fixed number of inputs.

How can we compute/decide a decision problem $f: \{0,1\}^* \to \{0,1\}$ with circuits?

$$f = (f^0, f^1, f^2, \ldots)$$
 where $f^n : \{0, 1\}^n \to \{0, 1\}$

Construct a circuit for each input length.

A circuit family C is a collection of circuits (C_0, C_1, C_2, \ldots) where each C_n takes n input variables.

How can a circuit compute a language?

```
We say that a circuit family C = (C_0, C_1, C_2, ...) decides/computes f: \{0,1\}^* \to \{0,1\} if C_n computes f^n for every n.
```

Circuit size and complexity

Definition: [size of a circuit]

The size of a circuit is the total number of gates (counting the input variables as gates too) in the circuit.

Definition: [size of a circuit family]

The size of a circuit family $C = (C_0, C_1, C_2, ...)$ is a function $s(\cdot)$ such that s(n) = size of C_n .

Definition: [circuit complexity]

The circuit complexity of a decision problem is the size of the minimal circuit family that decides it.

(This is the intrinsic complexity with respect to circuit size)

Poll

Let $f: \{0,1\}^* \to \{0,1\}$ be the parity decision problem.

$$f(x) = x_1 + \ldots + x_n \mod 2 \qquad \text{(where } n = |x|\text{)}$$

$$f(x) = x_1 \oplus \cdots \oplus x_n$$

What is the circuit complexity of this function?

Choose the tightest one:

$$O(n)$$
 $O(2^n)$

$$O(n^2)$$
 $O(2^{2^n})$

$$O(n^{2.5})$$

None of the above. Beats me.

Poll

s(n) = 2s(n/2) + 5 $s(1) = 1 \qquad \Longrightarrow s(n) = O(n).$

Computability with respect to circuits

Theorem: Any decision problem $f: \{0,1\}^* \to \{0,1\}$ can be computed by a circuit family of size $O(2^n)$.

Limits of efficient computability with respect to circuits

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^n/4n$.

In fact, most decision problems require exponential size.

Circuits can efficiently "simulate" TMs

Theorem: Let $f:\{0,1\}^* \to \{0,1\}$ be a decision problem which can be decided in time O(T(n)). Then it can be computed by a circuit family of size $O(T(n)^2)$.

poly-time TM \Longrightarrow poly-size circuits no poly-size circuits \Longrightarrow no poly-time TM

Circuits can efficiently "simulate" TMs

To show $P \neq NP$:

Find h in NP whose circuit complexity is more than poly(n).

So we can just work with circuits instead

This is awesome in 2 ways:

Circuits: clean and simple definition of computation. "Just" a composition of AND, OR, NOT gates.

- Restrict the circuit.
 Make it less powerful.
 - e.g. (i) restrict depth
 - (ii) restrict types of gates

So we can just work with circuits instead

Exciting progress was made in the 1980s.

People thought $P \neq NP$ would be proved soon.

Alas...

After 60 years of research, best lower bound on circuit size for an explicit function:

5n – peanuts

Theorem: Any decision problem $f: \{0,1\}^* \to \{0,1\}$ can be computed by a circuit family of size $O(2^n)$.

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^n/4n$.

Theorem: Let $f:\{0,1\}^* \to \{0,1\}$ be a decision problem which can be decided in time O(T(n)). Then it can be computed by a circuit family of size $O(T(n)^2)$.

Theorem: Any decision problem $f: \{0,1\}^* \to \{0,1\}$ can be computed by a circuit family of size $O(2^n)$.

Proof:

Goal:

construct a circuit of size $O(2^n)$ for $f^n: \{0,1\}^n \to \{0,1\}$.

Observation:

$$f^{n}(x_{1}, x_{2}, \dots, x_{n}) = (x_{1} \wedge f^{n}(1, x_{2}, \dots, x_{n})) \vee$$

$$(\neg x_{1} \wedge f^{n}(0, x_{2}, \dots, x_{n}))$$

Theorem: Any decision problem $f: \{0,1\}^* \to \{0,1\}$ can be computed by a circuit family of size $O(2^n)$.

Proof:

Goal:

construct a circuit of size $O(2^n)$ for $f^n: \{0,1\}^n \to \{0,1\}$.

Observation:

$$f^n(x_1,x_2,\ldots,x_n) = (x_1 \wedge \underbrace{f^n(1,x_2,\ldots,x_n)}) \vee$$
 if $\mathbf{x}_1 = \mathbf{I}$
$$(\neg x_1 \wedge f^n(0,x_2,\ldots,x_n))$$

Theorem: Any decision problem $f: \{0,1\}^* \to \{0,1\}$ can be computed by a circuit family of size $O(2^n)$.

Proof:

Goal:

construct a circuit of size $O(2^n)$ for $f^n: \{0,1\}^n \to \{0,1\}$.

Observation:

$$f^{n}(x_{1}, x_{2}, \dots, x_{n}) = (x_{1} \wedge f^{n}(1, x_{2}, \dots, x_{n})) \vee$$
if $\mathbf{x}_{1} = \mathbf{0}$
 $(\neg x_{1} \wedge f^{n}(0, x_{2}, \dots, x_{n}))$

 $s(n) = \max \text{ size of a circuit computing } n\text{-variable function}$

$$s(n) \le 2s(n-1) + 5$$
, $s(1) \le 3 \implies s(n) = O(2^n)$

Poll

How many different functions $f: \{0,1\}^n \to \{0,1\}$ are there?

- **-** n
- **-** 2n
- n^2
- -2^{n}
- -2^{2^n}
- none of the above
- beats me

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^n/5n$.

Proof:

Want to show: there is a function $f: \{0,1\}^n \to \{0,1\}$ that cannot be computed by a circuit of size $< 2^n/5n$.

Observation: # possible functions is 2^{2^n} .

Claim I: # circuits of size at most s is $\leq 2^{5s \log s}$.

Claim2: For $s \le 2^n/5n$, $2^{5s \log s} < 2^{2^n}$.

circuits < # functions

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^n/5n$.

Proof:

Want to show: there is a function $f: \{0,1\}^n \to \{0,1\}$ that cannot be computed by a circuit of size $< 2^n/5n$.

Observation: # possible functions is 2^{2^n} .

Claim I: # circuits of size at most s is $\leq 2^{5s \log s}$.

<u>Claim2</u>: For $s \le 2^n/5n$, $2^{5s \log s} < 2^{2^n}$.

We are done once we prove Claim 1. (Claim 2 is easy/uninteresting.)

Proof (continued):

Claim I: # circuits of size at most s is $\leq 2^{5s \log s}$.

Proof of claim:

Recall
$$|A| \leq |B|$$
 iff $B \rightarrow A$.

Let $A = \{\text{circuits of size at most } s\}$

$$B = \{0, 1\}^{5s \log s} \qquad |B| = 2^{5s \log s}$$

To show $B \rightarrow A$:

encode a circuit with a binary string of length $5s\log s$.

(just like the CS method)

Proof (continued):

Claim I: # circuits of size at most s is $\leq 2^{5s \log s}$.

Proof of claim (continued):

Encoding a circuit with a binary string of length $5s \log s$:

Number the gates: 1, 2, 3, 4, ..., s

For each gate in the circuit, write down:

- type of the gate (3 bits)
- from which gates the inputs are coming from (2 log s bits)

```
Total: s(3 + 2 \log s) bits
(3s + 2s log s) bits \leq (5s log s) bits
```

That was due to Claude Shannon (1949).

Father of Information Theory.

Claude Shannon (1916 - 2001)

A non-constructive argument.

In fact, it is easy to show that <u>most</u> functions require exponential size circuits.

Theorem 3: Circuits can simulate TMs

Theorem: Let $f:\{0,1\}^* \to \{0,1\}$ be a decision problem which can be decided in time O(T(n)). Then it can be computed by a circuit family of size $O(T(n)^2)$.

How can you prove such a theorem?

If you like a challenge, try to prove it yourself.

If you don't like a challenge, but still curious, see the course notes for a sketch of the proof.

If you don't like a challenge, and are not curious, you can ignore the proof.

