|5-25|
 Great Theoretical Ideas in Computer Science

Lecture I2:
 Boolean Circuits

October 6th, 2015

Where we are, where we are going

Monday	Tuesday	Wednesday	Thursday	Friday
Aug 29	Aug30 Introduction	Aug 31 On proofs	Sep 1 Combinatorial Games	Sep 2
Sep 5	Sep 6 Finite Automata	Sep 7 hw1 w.s.	Sep 8 Turing Machines	Sep9
Sep 12	Sep 13 Uncountability	Sep 14 hw2 w.s.	Sep 15 Undecidability	Sep 16
Sep 19	Sep 20 Intro to Complexity 1	Sep 21 hw3 w.s.	Sep 22 Intro to Complexity 2	Sep 23
Sep 26	$\text { Sep } 27$ Graphs 1	Sep 28 hw4 w.s.	Sep 29 Graphs 2	Sep 30
Oct 3	Oct 4 Graphs 3	Oct 5 Midterm 1	Oct 6 Boolean Circuits	Oct 7
Oct 10	Oct 11 NP-completeness 1	Oct 12 hw5 w.s.	Oct 13 NP-completeness 2	Oct 14

Computational complexity of a problem

How to show an upper bound on the intrinsic complexity?
$>$ Give an algorithm that solves the problem.

How to show a lower bound on the intrinsic complexity?
> Argue against all possible algorithms that solve the problem.

The dream: Get a matching upper and lower bound.

What is P ?

P

The set of languages that can be decided in $O\left(n^{k}\right)$ steps for some constant k.

The theoretical divide between efficient and inefficient:
$L \in \mathrm{P} \longrightarrow$ efficiently solvable.
$L \notin \mathrm{P} \longrightarrow$ not efficiently solvable.

What is NP?

EXP

The set of languages that can be decided in $O\left(2^{n^{k}}\right)$ steps for some constant $k>0$.
DECIDABLE LANGUAGES

NP:
A class between
P and EXP.

What is NP?

$P \stackrel{?}{=} N P$

asks whether these two sets are equal.

How would you show $P=N P$?
> Show that every problem in NP can be solved in poly-time.

How would you show $P \neq N P$?
$>$ Show that there is a problem in NP which cannot be solved in poly-time.

You have to argue against all possible poly-time TMs.

Boolean Circuits

Some preliminary questions

What is a Boolean circuit?

- It is a computational model for computing decision problems (or computational problems).

We already have TMs. Why Boolean circuits?
-The definition is simpler.

- Easier to understand, usually easier to reason about.
- Boolean circuits can efficiently simulate TMs. (efficient decider TM \Longrightarrow efficient/small circuits.)
- Circuits are good models to study parallel computation.
- Real computers are built with digital circuits.

Sounds AWESOME!

So why didn't we just learn about circuits first?

There is a small catch.

An algorithm is a finite answer to infinite number of questions.

Stephen Kleene
(I909-1994)

Sounds AWESOME!

So why didn't we just learn about circuits first?

There is a small catch.

Circuits are an infinite answer to infinite number of questions.

Anil Ada
(???? - 2077)

Dividing a problem according to length of input

$$
\begin{gathered}
\Sigma=\{0,1\} \\
L \subseteq\{0,1\}^{*} \\
L_{n}=\{w \in L:|w|=n\} \\
\begin{array}{c}
f:\{0,1\}^{*} \rightarrow\{0,1\} \\
\{0,1\}^{n}=\text { all strings of length } n \\
f^{n}:\{0,1\}^{n} \rightarrow\{0,1\} \\
\text { for } x \in\{0,1\}^{n}, \\
f^{n}(x)=f(x)
\end{array} \\
L=L_{0} \cup L_{1} \cup L_{2} \cup \cdots
\end{gathered} \begin{gathered}
\\
f=\left(f^{0}, f^{1}, f^{2}, \ldots\right)
\end{gathered}
$$

Dividing a problem according to length of input

A TM is a finite object (finite number of states) but can handle any input length.

Imagine a model where we allow the TM to grow with input length.

Dividing a problem according to length of input

So one machine does not compute L.
You use a family of machines:

$$
\left(M_{0}, M_{1}, M_{2}, \ldots\right)
$$

(Imagine having a different Python function for each input length.)

Is this a reasonable/realistic model of computation?!?
Boolean circuits work this way.
Need a separate circuit for each input length.

Boolean Circuit Definition

Picture of a circuit

Picture of a circuit

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate
($)$ unary NOT gate
x_{i} input gate ذ output gate

Picture of a circuit

(V) binary OR gate
(ヘ) binary AND gate
(- unary NOT gate
(xi) input gate \dagger output gate

Picture of a circuit

No feedback loops allowed!

It is a directed acyclic graph.

Information flows from input gates to the output gate.

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate (- unary NOT gate
(xi) input gate $\dot{\jmath}$ output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate \bigcirc unary NOT gate
(xi) input gate \dagger output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate \bigcirc unary NOT gate
(xi) input gate ذ output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate \bigcirc unary NOT gate
(xi) input gate $\dot{\jmath}$ output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate (- unary NOT gate
(xi) input gate $\dot{\jmath}$ output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate \bigcirc unary NOT gate
(xi) input gate $\dot{\jmath}$ output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate \bigcirc unary NOT gate
(xi) input gate $\dot{\jmath}$ output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate (- unary NOT gate
(xi) input gate $\dot{\jmath}$ output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate (- unary NOT gate
(xi) input gate ذ output gate

Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Picture of a circuit

(V) binary OR gate
(\wedge binary AND gate ($)$ unary NOT gate
(xi) input gate

output gate
Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
So how does it compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

Poll: What does this circuit compute?

(sometimes circuits are drawn upside down)

Poll: What does this circuit compute?

(sometimes circuits are drawn upside down)

Poll: What does this circuit compute?

(sometimes circuits are drawn upside down)
parity of $\mathrm{x}_{1}+\mathrm{x}_{2}$
$x_{1} \oplus x_{2}$

How does a circuit decide/compute a language?

How do we measure the complexity of a circuit?

How can a circuit compute a language?

A circuit has a fixed number of inputs.
How can we compute/decide a decision problem $f:\{0,1\}^{*} \rightarrow\{0,1\}$ with circuits?

$$
f=\left(f^{0}, f^{1}, f^{2}, \ldots\right) \text { where } f^{n}:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Construct a circuit for each input length.

A circuit family C is a collection of circuits $\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ where each C_{n} takes n input variables.

How can a circuit compute a language?

We say that a circuit family $C=\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ decides/computes $f:\{0,1\}^{*} \rightarrow\{0,1\}$
if C_{n} computes f^{n} for every n.

Circuit size and complexity

Definition: [size of a circuit]

The size of a circuit is the total number of gates (counting the input variables as gates too) in the circuit.

Definition: [size of a circuit family]
The size of a circuit family $C=\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ is a function $s(\cdot)$ such that $s(n)=$ size of C_{n}.

Definition: [circuit complexity]

The circuit complexity of a decision problem is the size of the minimal circuit family that decides it.
(This is the intrinsic complexity with respect to circuit size)

Poll

Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be the parity decision problem.

$$
\begin{aligned}
& f(x)=x_{1}+\ldots+x_{n} \quad \bmod 2 \quad(\text { where } n=|x|) \\
& f(x)=x_{1} \oplus \cdots \oplus x_{n}
\end{aligned}
$$

What is the circuit complexity of this function?
Choose the tightest one:
$O(n)$
$O\left(2^{n}\right)$
$O\left(n^{2}\right)$
$O\left(2^{2^{n}}\right)$
$O\left(n^{2.5}\right)$
None of the above.
Beats me.

Poll

$$
\begin{array}{ll}
s(n)=2 s(n / 2)+5 \\
s(1)=1
\end{array} \quad \Longrightarrow s(n)=O(n) .
$$

The Big Picture Regarding Boolean Circuits

The big picture

Computability with respect to circuits

Theorem: Any decision problem $f:\{0,1\}^{*} \rightarrow\{0,1\}$

can be computed by a circuit family of size $O\left(2^{n}\right)$.

The big picture

Limits of efficient computability with respect to circuits

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^{n} / 4 n$.

In fact, most decision problems require exponential size.

The big picture

Circuits can efficiently "simulate" TMs

Theorem: Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be a decision problem which can be decided in time $O(T(n))$.
Then it can be computed by a circuit family of size $O\left(T(n)^{2}\right)$.
poly-timeTM \Longrightarrow poly-size circuits no poly-size circuits \Longrightarrow no poly-time TM

The big picture

Circuits can efficiently "simulate" TMs

To show $\mathrm{P} \neq \mathrm{NP}$:
Find h in NP whose circuit complexity is more than poly(n).

The big picture

So we can just work with circuits instead

This is awesome in 2 ways:
Circuits: clean and simple definition of computation. "Just" a composition of AND, OR, NOT gates.
2. Restrict the circuit. Make it less powerful.
e.g. (i) restrict depth
(ii) restrict types of gates

The big picture

So we can just work with circuits instead

Exciting progress was made in the 1980s.
People thought $P \neq N P$ would be proved soon.

Alas...

After 60 years of research,
best lower bound on circuit size for an explicit function:

$$
5 n-\text { peanuts }
$$

The big picture

Theorem: Any decision problem $f:\{0,1\}^{*} \rightarrow\{0,1\}$ can be computed by a circuit family of size $O\left(2^{n}\right)$.

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^{n} / 4 n$.

Theorem: Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be a decision problem which can be decided in time $O(T(n))$.
Then it can be computed by a circuit family of size
$O\left(T(n)^{2}\right)$.

Theorem I: Max circuit size of a function

Theorem: Any decision problem $f:\{0,1\}^{*} \rightarrow\{0,1\}$
can be computed by a circuit family of size $O\left(2^{n}\right)$.
Proof:
Goal:
construct a circuit of size $O\left(2^{n}\right)$ for $f^{n}:\{0,1\}^{n} \rightarrow\{0,1\}$.

Observation:

$$
\begin{aligned}
f^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & \left(x_{1} \wedge f^{n}\left(1, x_{2}, \ldots, x_{n}\right)\right) \vee \\
& \left(\neg x_{1} \wedge f^{n}\left(0, x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Theorem I: Max circuit size of a function

Theorem: Any decision problem $f:\{0,1\}^{*} \rightarrow\{0,1\}$ can be computed by a circuit family of size $O\left(2^{n}\right)$.

Proof:
Goal:
construct a circuit of size $O\left(2^{n}\right)$ for $f^{n}:\{0,1\}^{n} \rightarrow\{0,1\}$.
Observation:

$$
\begin{aligned}
& f^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\left(f_{1}^{n}\left(1, x_{2}, \ldots, x_{n}\right)\right)}{(\underbrace{\prime})} \vee \\
& \quad \text { if } x_{1}=1
\end{aligned}
$$

Theorem I: Max circuit size of a function

Theorem: Any decision problem $f:\{0,1\}^{*} \rightarrow\{0,1\}$ can be computed by a circuit family of size $O\left(2^{n}\right)$.

Proof:

Goal:
construct a circuit of size $O\left(2^{n}\right)$ for $f^{n}:\{0,1\}^{n} \rightarrow\{0,1\}$.
Observation:

$$
\begin{array}{ll}
f^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & \frac{0}{\left(x_{1} \wedge f^{n}\left(1, x_{2}, \ldots, x_{n}\right)\right)} \vee \\
\text { if } \mathrm{x}_{1}=0 & \left(\rightarrow x_{1} \wedge f^{n}\left(0, x_{2}, \ldots, x_{n}\right)\right)
\end{array}
$$

Theorem I: Max circuit size of a function

Proof (continued):

$s(n)=$ max size of a circuit computing n-variable function $s(n) \leq 2 s(n-1)+5, \quad s(1) \leq 3 \Longrightarrow s(n)=O\left(2^{n}\right)$

Poll

How many different functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ are there?

- n
- $2 n$
- n^{2}
- 2^{n}
- $2^{2^{n}}$
- none of the above
- beats me

Theorem 2: Some functions are hard

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^{n} / 5 n$.

Proof:

Want to show: there is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit of size $<2^{n} / 5 n$.
Observation: \# possible functions is $2^{2^{n}}$.
Claim I: \# circuits of size at most s is $\leq 2^{5 s \log s}$.
Claim2: For

$$
s \leq 2^{n} / 5 n, \quad 2^{5 s \log s}<2^{2^{n}}
$$

Theorem 2: Some functions are hard

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^{n} / 5 n$.

Proof:

Want to show: there is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit of size $<2^{n} / 5 n$.
Observation: \# possible functions is $2^{2^{n}}$.
Claiml: \# circuits of size at most s is $\leq 2^{5 s \log s}$.
Claim2: For $s \leq 2^{n} / 5 n, \quad 2^{5 s \log s}<2^{2^{n}}$.
We are done once we prove Claim I. (Claim 2 is easy/uninteresting.)

Theorem 2: Some functions are hard

Proof (continued):

Claiml: \# circuits of size at most s is $\leq 2^{5 s \log s}$. Proof of claim:

Recall $|A| \leq|B|$ iff $B \rightarrow A$.
Let $A=\{$ circuits of size at most $s\}$

$$
B=\{0,1\}^{5 s \log s} \quad|B|=2^{5 s \log s}
$$

To show $B \rightarrow A$: encode a circuit with a binary string of length $5 s \log s$. (just like the CS method)

Theorem 2: Some functions are hard

Proof (continued):

Claiml: \# circuits of size at most s is $\leq 2^{5 s \log s}$. Proof of claim (continued):

Encoding a circuit with a binary string of length $5 s \log s$:
Number the gates: I, $2,3,4, \ldots, s$
For each gate in the circuit, write down:

- type of the gate (3 bits)
- from which gates the inputs are coming from (2 log s bits)

Total: $s(3+2 \log s)$ bits

$$
(3 s+2 s \log s) \text { bits } \leq(5 s \log s) \text { bits }
$$

Theorem 2: Some functions are hard

That was due to Claude Shannon (I949).
Father of Information Theory.

Claude Shannon
(I916-200I)
A non-constructive argument.

In fact, it is easy to show that most functions require exponential size circuits.

Theorem 3: Circuits can simulate TMs

Theorem: Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be a decision problem which can be decided in time $O(T(n))$.
Then it can be computed by a circuit family of size $O\left(T(n)^{2}\right)$.

How can you prove such a theorem?
If you like a challenge, try to prove it yourself.
If you don't like a challenge, but still curious, see the course notes for a sketch of the proof.

If you don't like a challenge, and are not curious, \Leftrightarrow you can ignore the proof.

