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There is a big chasm between poly-time and exp-time.

poly-time solvable
best we can say:

exp-time solvable

matrix 
multiplication

MST
max matching

shortest path

testing primality

…

scheduling

TSP

Hamiltonian cycle

Pokémon

subset-sum

…



Exponential running time examples

Given a list of integers, determine if there is a subset 
of the integers that sum to 0.

-3 -2 7 99 5 14

Subset Sum Problem



Exponential running time examples

Given a list of integers, determine if there is a 
non-empty subset of the integers that sum to 0.

Exhaustive Search (Brute Force Search):

> Try every possible subset and see if it sums to 0.

Given a list of size 150,

-3 -2 7 99 5 14

Subset Sum Problem

checking if a given subset 
sums to 0 is easy.

Note:

# subsets is running time at least =)2n 2n



Exponential running time examples

Theorem Proving Problem
(informal description)

Given a mathematical proposition P and an integer k,
determine if P has a proof of length at most k.

Exhaustive Search (Brute Force Search):

> Try every possible “proof” of length at most k,
   and check if it corresponds to a valid proof.

checking if a given proof 
is correct is easy.

Note:



Exponential running time examples

Is there an order in which you can visit the cities
so that ticket cost is < $50000?

Traveling Salesperson Problem (TSP)

Exhaustive Search (Brute Force Search):

> Try every possible order and compute the cost.

checking if a given solution 
has the desired cost is easy.

Note:



Exponential running time examples

1

2 4

5
24

Input:

A graph                   ,  edge weights G = (V,E) we (non-negative, 
integral)and target   . t

Output:
Yes, iff there is a cycle of cost at most 
that visits every vertex exactly once.

t

Traveling Salesperson Problem (TSP)



Yes, iff there is a cycle of cost at most 
that visits every vertex exactly once.

Exponential running time examples

1

2 4

5
24

Input:

A graph                   ,  edge weights G = (V,E) we (non-negative, 
integral)

Output:

and target   . t

t

Traveling Salesperson Problem (TSP)



Exponential running time examples

Satisfiability Problem (SAT)

Exhaustive Search (Brute Force Search):

> Try every possible truth assignment to the input 
variables. Evaluate the formula to see the output.

checking if a given truth 
assignment makes the 
formula True is easy.

Note:

Output: Yes iff there is an assignment to the variables
that makes the formula True.

e.g.
Input: A Boolean propositional formula.

(x1 ^ ¬x2) _ (¬x1 ^ x3 ^ x4) _ x3



Exponential running time examples

Circuit Satisfiability Problem (Circuit-SAT)

Exhaustive Search (Brute Force Search):

> Try every possible truth assignment to the input 
gates. Evaluate the circuit to see the output.

Input: A Boolean circuit.

Output: Yes iff there is an assignment to the input gates
that makes the circuit output 1.

checking if a given 
assignment makes the 
circuit output 1 is easy.

Note:



Exponential running time examples

Sudoku Problem

Given a partially filled n by n sudoku board, 
determine if there is a solution.



Exponential running time examples

Sudoku Problem

Given a partially filled n by n sudoku board, 
determine if there is a solution.

Exhaustive Search (Brute Force Search):
> Try every possible way of filling the empty cells
   and check if it is valid.

checking if a given solution 
is correct is easy.

Note:



In our quest to understand efficient computation,
(and life, the universe, and everything)

we come across:

Biggest open problem in all of Computer Science.

One of the biggest open problems in all of Mathematics.

P vs NP  problem

“Can creativity be automated?”



So what is the P vs NP question?

The P vs NP question is the following:

Can the Sudoku problem be solved in polynomial time?

WTF?!



So what is the P vs NP question?

The P vs NP question is the following:

Can the Subset Sum problem be solved in poly-time?

-3 -2 7 99 5 14



So what is the P vs NP question?

The P vs NP question is the following:

Can the Traveling Salesperson (TSP) problem be solved 
in poly-time?



So what is the P vs NP question?

The P vs NP question is the following:

Can the Theorem Proving problem be solved in 
poly-time?



What the &$%# is going on?!?

Let’s explain from the beginning.



Toolbox of a computer scientist

1. Basic algorithmic techniques
e.g.  greedy algorithms, divide and conquer, 
      dynamic programming, linear programming,
      semi-definite programming, etc…

2. Basic data structures
e.g.  queues, stacks, hash tables, binary search trees, etc…

3. Identifying and dealing with intractable problems



Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

It would be fantastic if we could prove that 
these cannot be solved in poly-time.  But…

P

After decades of research and billions of dollars of funding, 
no one was able to come up with poly-time algs for:

Theorem Proving,  TSP,  Subset Sum,  Sudoku,  Tetris, … 



Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

But we are far from accomplishing this.

(maybe these problems are in P???) 

So what can we do???

Maybe we can try to gather evidence that these problems 
are hard.



Goal:

Find evidence these problems are computationally hard.



Revisiting reductions
A central concept used to compare the “difficulty” of 
problems.

will differ based on context

Now we are interested in poly-time decidability vs
                                  not poly-time decidability 

Want to define: (    is at least as hard as     A  B
 w.r.t. poly-time decidability.)

AB

            poly-time decidable             poly-time decidable=)B A
B 2 P =) A 2 P

    not poly-time decidable            not poly-time decidable=) BA
A /2 P =) B /2 P



Revisiting reductions

Notation: (      poly-time reduces to     )A B

if there is a poly-time machine        that decides 

using an oracle         for      as a black-box subroutine.

A P
T B

MA

MB B

A

x

Yes
or

No

y

MA

MB
Yes
or
No

B in P          A in P=)
A not in P          B not in P=)



Revisiting reductions

def MB(…):
     # some code that solves problem B

def MA(…):
     # some code that solves problem A
     # that makes calls to function MB when needed

When you want to show              , 
you need to come up with a poly-time MA.

A P
T B

then we would write               .

If          MB  poly-time            MA  poly-time

A P
T B

=)



Revisiting reductions

Given a graph and an integer k, does there exist at least 
k pairs of vertices connected to each other?

Given a graph and a pair of vertices (s,t),
is s and t connected?

A:

B:

A poly-time reduces to B

Example



Revisiting reductions

A:

B:

A poly-time reduces to B

Given a sequence of integers, and a number k,
is there an increasing subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8

Given two sequences of integers, and a number k,
is there a common subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8
1, 5, 7, 9, 2, 4, 1, 0, 2, 0, 3, 0, 4, 0, 8

Example



The two sides of reductions

1. Expand the landscape of tractable problems.

Whenever you are given a new problem to solve:

- check if it is already a problem you know how to solve
  in disguise.

- check if it can be reduced to a problem you know 
  how to solve.

B AA P
T BIf                  and     is tractable,  then     is tractable.

P =) PB 2 A 2



The two sides of reductions

2. Expand the landscape of intractable problems.

But we are pretty lousy at showing a problem is 
intractable.

Maybe we can still make good use of this…

A P
T BIf                  and     is intractable,  then     is intractable.BA

A 62 B 62=)P P



Gathering evidence for intractability

Suppose we want to gather evidence that           .A 62 P

If we can show                for many L P
T A L

(including some     that we really think should not be in P )  L

then that would be good evidence that           . A 62 P



Definitions of C-hard and C-complete

       for all         C ,                     .          

Let C be a set of languages containing P.Definition:

We say that language     is C-hard ifA

L 2 L P
T A

        is at least as hard as every language in C.  A

A        is a representative for hardest languages in C. 

Definition:
We say that language     is C-complete ifA
  -       is C-hardA
  -        C     A 2

Let C be a set of languages containing P.



Definitions of C-hard and C-complete

Observation:

Suppose      is C-complete.A

- If         P ,  then C = P.A 2

- If  C = P ,  then         P.A 2
() A 2C = P                  P

If we believe C ≠ P,  then we must believe         P. A 62

C-complete
C

P



Recall the goal

So what is a good choice for C ?

(if we want to show  TSP,  Subset-Sum,  Sudoku,  etc… 
  are C-hard?)

Good evidence that      is intractable: A

-      is C-hard for a really rich set CA

   ( a set C such that we believe C ≠ P )



What if we let C be the set of all languages 
decidable using Brute Force Search (BFS)?

Can it be true that TSP is C-hard? 

Recall the goal

What if we let C be the set of all languages?

Can it be true that TSP is C-hard? 



A complexity class for BFS?

How can we identify the problems solvable using BFS?

What would be a reasonable definition?

What is common about 
TSP,  Subset-Sum,  Theorem Proving Problem,  etc…?

Seems hard to find a correct solution 
(solution space is too big!)

BUT,  easy to verify a given solution.



The complexity class NP

Informally:

A language is in NP if: 

1. The length of the proof is polynomial in the input size.

2. The proof can be verified/checked in polynomial time.

whenever we have a Yes instance,
there is a “simple” proof (solution) for this fact.



The complexity class NP

Definition:

A language      is in NP ifA

Formally:

- a polynomial p
- there is a polynomial-time TM V

If           , there is some proof that leads       to accept.
x 2 A

V

If           , every “proof” leads       to reject.
x /2 A

V

x 2 A () 9u with |u|  p(|x|) s.t. V (x, u) = 1

such that for all             :x 2 ⌃⇤



The complexity class NP

Formally:

proof = solution = certificate

The following are synonyms in this context:

Definition:

A language      is in NP ifA

- there is a polynomial-time TM
- a polynomial p

such that for all             :

V

x 2 A () 9u with |u|  p(|x|) s.t. V (x, u) = 1

x 2 ⌃⇤



NP:  A game between a Prover and a Verifier

Verifier Prover

Given some input      (known both to Verifier and Prover)x

Prover wants to convince  Verifier that            .x 2 A

Prover cooks up a “proof”      and sends it to  Verifier.u

Verifier (in poly-time), should be able to tell
if the proof is legit. 

poly-time
skeptical

omniscient
untrustworthy



NP:  A game between a Prover and a Verifier

Verifier Prover

poly-time
skeptical

omniscient
untrustworthy

“Completeness”

“Soundness”

If            , there must be some proof     that convinces
the Verifier. 

x 2 A u

If            , no matter what “proof” Prover gives, 
Verifier should detect the lie.

x 62 A



NP:  A game between a Prover and a Verifier

Verifier Prover

poly-time
skeptical

omniscient
untrustworthy

If we have completeness and soundness, then

A 2 NP.



Examples of languages in NP

CLIQUE

Input:            where G is a graph and k is a positive int.

Output:  Yes iff G contains a clique of size k.

hG, ki

Fact:  CLIQUE is in NP.



Examples of languages in NP

Proof: We need to show a verifier TM      exists
as specified in the definition of NP.

V

- if    is not an encoding                     of a valid graph G
  and a positive integer k,  REJECT.

x hG = (V,E), ki

- if    is not an encoding of a set           of size k, REJECT.u S ✓ V

- ACCEPT

- for each pair of vertices in    :

- if the vertices are not neighbors, REJECT.

S

V (x, u) :def



Examples of languages in NP

Proof (continued): 
Need to show:

1.  if        CLIQUE,  there is some proof     (of poly-length)
x 2

that makes       ACCEPT.

u

V

2.  if        CLIQUE,  no matter what     is,       REJECTS.     u Vx 62

3.      is polynomial-time.     V

(we leave 3 as an exercise)



Examples of languages in NP

Proof (continued): 
Need to show:

1.  if        CLIQUE,  there is some proof     (of poly-length)
x 2

that makes       ACCEPT.

u

V

if        CLIQUE,  then                   is a valid encoding, x 2 x = hG, ki
and      contains a clique of size    .   kG

Then when     is a valid encoding of this clique,
the verifier will accept.

u



Examples of languages in NP

Proof (continued): 
Need to show:

2.  if        CLIQUE,  no matter what     is,       REJECTS.     u Vx 62

if        CLIQUE,  then there are 2 options: x 62
-     is not a valid encoding           .x

hG, ki
-     is a valid encoding,  but        does not contain 
   a clique of size    .

G
k

x

In either case,      rejects for any    .V u
(add a couple of lines of justification)



This would be the proper way of showing that a 
language is in NP.

However, we usually don’t write it this way.

- We assume implicitly that inputs are automatically
  checked to be of the correct type.

- Instead of starting with the description of    ,
  we start with the description of the expected proof.

V

- We describe things at a very high level and 
  skip many details.



Examples of languages in NP

3COL

Input:          where G is a graph.

Output:  Yes iff G is 3-colorable.

hGi

Fact:  3COL is in NP.



Examples of languages in NP
Proof (sort of): 
The proof string is a valid coloring of the vertices with 3 
colors.

The verifier goes through each edge one by one and 
checks that the endpoints are different colors.

If the input graph is 3-colorable, this check will succeed 
for a valid 3-coloring of the vertices.

If the input graph is not 3-colorable, then no matter what 
3-coloring is given, the verifier will be able to find an edge
whose endpoints are colored the same.

The verifier is poly-time since going through each edge 
and checking their colors takes poly-time.



Examples of languages in NP

CIRCUIT-SAT

Input:          where C is a Boolean circuit.

Output:  Yes iff C is satisfiable.

hCi

Fact:  CIRCUIT-SAT is in NP.

Exercise



The complexity class NP

2 Observations:

 2. This is a pretty BIG class!

1. Every decision problem in NP can be solved using BFS.

- Go through all possible proofs    , and run u
V (x, u)

People expect NP contains much more than P.

NP-complete
NP

P

Contains everything in P. (recitation)



Coming back to our goal

Could it be true that one of them is NP-complete? 

We wanted to find evidence that 
TSP,  Subset-Sum,  Theorem Proving problem, etc.
are not in P.

Is there any language that is NP-complete? 

Is NP-completeness a useful definition?



The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

So SAT is in NP.  (easy)

And for every L in NP,     L        SAT .P
T



Karp’s 21 NP-complete problems

1972:  “Reducibility Among Combinatorial Problems”

0-1 Integer Programming
Clique
Set Packing
Vertex Cover
Set Covering
Feedback Node Set
Feedback Arc Set
Directed Hamiltonian Cycle
Undirected Hamiltonian Cycle
3SAT Chromatic Number

Partition
Clique Cover
Exact Cover
Hitting Set
Knapsack
Steiner Tree
3-Dimensional Matching
Job Sequencing
Max Cut



Today

1979

Thousands of problems are known to be NP-complete.

(including the languages mentioned in this lecture)



Some other “interesting” examples

Tetris
Given a sequence of Tetris pieces, and a number k,
can you clear more than k lines?

Super Mario Bros
Given a Super Mario Bros level, is it completable?



How do you show a language is NP-complete?

Seems like an unbelievably strong statement. 

How could one possibly prove such a thing?!?

NP P
T SAT

Once you have one,  things are easier.

If   SAT        L,   then L is NP-hard.P
T

(transitivity of         )P
T



How do you show a language is NP-complete?

It is similar to showing undecidability.

- we need an initial direct proof that a language
  is NP-hard.    (Cook-Levin Theorem)

- to show other languages are NP-hard,
  we use poly-time reductions.

This is the topic of Thursday’s lecture.



Good evidence for intractability?

If       is  NP-hard,  
that seems to be good evidence that            . 

A
A /2 P

(if you believe P ≠ NP) 

But is P ≠ NP??



The P vs NP Question



The P vs NP question

We are pretty confident that this is one of the
deepest questions we have ever asked.

After years of research:



The two possible worlds

NP-c

NP-hard

NP

P

P = NP = NP-c

NP-hard

P ≠ NP P = NP



What do experts think?

Two polls from 2002 and 2012

# respondents in 2002:   100

# respondents in 2012:   152



What does NP stand for anyway?

Not Polynomial?

None Polynomial?

No Polynomial?

Nurse Practitioner?

It stands for Nondeterministic Polynomial time.

Languages in NP are the languages decidable 
in polynomial time by a nondeterministic TM.

DFA                    SFA (actually called NFA)

TM                      NTM

No Problem?



What does NP stand for anyway?

Other contenders for the name of the class:

Herculean

Formidable

Hard-boiled

PET “possibly exponential time”

“provably exponential time”

“previously exponential time”



Summary



Summary
How do you identify intractable problems?
(problems not in P) e.g.  SAT,  TSP, …

We are not able to prove they are intractable. 
Can we gather some sort of evidence?

Poly-time reductions                are useful to compare 
hardness of problems.

A P
T B

Evidence for intractability of    :
Show               ,   for all         C,  for a large class C. L P

T A
A

L 2

Definitions of   C-hard,    C-complete.

What is a good choice for  C, 
if we want to show, say,   SAT  is  C-hard? 



Summary
The complexity class NP   ( take  C = NP ) 

NP-hardness,     NP-completeness

Cook-Levin Theorem:   SAT  is  NP-complete

Many other languages are NP-complete.

If L is NP-hard,  is this good evidence it is intractable
(i.e.,  L not in P)?

The P vs NP question



Next Time

How did Cook-Levin show SAT is NP-complete?

And examples of poly-time reductions that show other 
problems are NP-complete.


