

I can't find an efficient algorithm, but neither can all these famous people.

There is a big chasm between poly-time and exp-time.

poly-time solvable

Subset Sum Problem

Given a list of integers, determine if there is a subset of the integers that sum to 0.

Subset Sum Problem

Given a list of integers, determine if there is a non-empty subset of the integers that sum to 0.

Exhaustive Search (Brute Force Search):

> Try every possible subset and see if it sums to 0.

subsets is $2^n \implies$ running time at least 2^n

Note: checking if a given subset sums to 0 is easy.

Theorem Proving Problem (informal description)

Given a mathematical proposition P and an integer k, determine if P has a proof of length at most k.

Exhaustive Search (Brute Force Search):

> Try every possible "proof" of length at most k, and check if it corresponds to a valid proof.

Note: checking if a given proof is correct is easy.

Traveling Salesperson Problem (TSP)

Is there an order in which you can visit the cities so that ticket cost is < \$50000?

Exhaustive Search (Brute Force Search):

> Try every possible order and compute the cost.

Note: checking if a given solution has the desired cost is **easy**.

Traveling Salesperson Problem (TSP)

Input:

A graph G = (V, E), edge weights w_e (non-negative, and target t.

<u>Output:</u>

Yes, iff there is a cycle of cost at most t that visits every vertex exactly once.

Traveling Salesperson Problem (TSP)

Input:

A graph G = (V, E), edge weights w_e (non-negative, and target t.

<u>Output:</u>

Yes, iff there is a cycle of cost at most t that visits every vertex exactly once.

Satisfiability Problem (SAT)

Input: A Boolean propositional formula. e.g. $(x_1 \land \neg x_2) \lor (\neg x_1 \land x_3 \land x_4) \lor x_3$

<u>Output:</u> Yes iff there is an assignment to the variables that makes the formula True.

Exhaustive Search (Brute Force Search):

> Try every possible truth assignment to the input variables. Evaluate the formula to see the output.

Note: checking if a given truth assignment makes the formula True is **easy**.

Circuit Satisfiability Problem (Circuit-SAT)

- Input: A Boolean circuit.
- Output: Yes iff there is an assignment to the input gates that makes the circuit output 1.

Exhaustive Search (Brute Force Search):

> Try every possible truth assignment to the input gates. Evaluate the circuit to see the output.

Note: checking if a given assignment makes the circuit output I is easy.

Sudoku Problem

Given a partially filled *n* by *n* sudoku board, determine if there is a solution.

-								
5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

	Α	8		4							6		E	7	
2				E	Α					С	F				3
D	С	4	7									Α	6	9	G
		F		5	G					Α	D		в		
	G		6		С	Α			7	8		4		в	
		9			2	G			Α	в			С		
				1		6	4	F	G		3				
			2									3			
			5									в			
				3		F	D	8	4		5				
		С			в	2			3	G			9		
	D		Е		6	7			в	1		2		4	
		3		7	1					5	4		G		
G	F	2	Α									С	7	5	4
6				D	9					F	С				1
	5	1		8							G		3	Ε	

J	4	Ν									С		В	2	М	Ρ				Е		Η		0
Η	D		0		6						8			1	А	в	G	С	Ε	5	L			F
	8		I		А	K	0	3	в	М		L	F	5	1		Η	7		С			6	J
в			A				G	L		Ν	J		Η	6	8					D	М	1	2	7
	L	1	5		М		4	2	Ν			Ρ				D	J		6	9	В	8	A	
F	Η		Ν	0	4	5				D				М	J		Ι			6		9	С	8
5				М		6	F							K	9	A	С				1		L	
	1				Ι	2		J	K		7		А	В					Ν		Η	0		
6	А		E	G	9			С		L			0		2	5	7	1	8	F		J	K	М
Ι	J			Κ	D	L					1				Е	G		3	Η				В	5
М	5	3	L	7	Ν	Α	С	I			F	В		G			Κ	Е			0	2	J	Η
	F				в	G		0		1	9			E		7		L	5	K	D	6		
Κ							1			5	0	Η			6			9		Ν				
D	G					J	5	Η	3			Κ	P		в			N		1	С	Ε	8	
1		С		В	7	F	6	Κ	D	2		М		Ν			4		J				5	9
L	I			5			A	Ε		В		1	7		F		Ν	J				С		D
8	6	А	Η						С	0						Ι					F	5	7	
3	С	В	1				L		F	9				А	4				7	8	2	Ν		6
		Ε	G			7		1	5	С			L			2				н				K
		F			0						Η	J		4	С				D	3	Ε	Ι	1	L
	N	6	F	Η					М	Е	K	3				9	Р					G	0	2
G	0	5	3	С	Ρ		E	8		F		6							4	В	J	7		Ι
	9	Ι	D	8	L	В		6		G			4	Η	5	J			С	А		F		1
		J		1	G			F	7				5	9	Ν	L		2	А		6			С
	В				С			9				А			G		8					Κ	D	Ε

Sudoku Problem

Given a partially filled *n* by *n* sudoku board, determine if there is a solution.

Exhaustive Search (Brute Force Search):

> Try every possible way of filling the empty cells and check if it is valid.

Note: checking if a given solution is correct is **easy**.

In our quest to understand efficient computation, (and life, the universe, and everything) we come across:

P vs NP problem

"Can creativity be automated?"

Biggest open problem in all of Computer Science. One of the biggest open problems in all of Mathematics.

The P vs NP question is the following:

Can the Sudoku problem be solved in polynomial time?

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

	Α	8		4							6		Е	7	
2				E	Α					С	F				3
D	С	4	7									A	6	9	G
		F		5	G					Α	D		в		
	G		6		С	Α			7	8		4		в	
		9			2	G			Α	в			С		
				1		6	4	F	G		3				
			2									3			
			5									в			
				3		F	D	8	4		5				
		С			в	2			3	G			9		
	D		Е		6	7			в	1		2		4	
		3		7	1					5	4		G		
G	F	2	Α									С	7	5	4
6				D	9					F	С				1
	5	1		8							G		3	Ε	

J	4	Ν									C		В	2	М	Ρ				Ε		H		0
Η	D		0		6						8			1	Α	в	G	С	E	5	L			F
	8		I		А	Κ	0	3	в	М		L	F	5	1		Η	7		С			6	J
в			A				G	L		Ν	J		Η	6	8					D	М	1	2	7
	L	1	5		М		4	2	Ν			Ρ				D	J		6	9	В	8	A	
F	Η		Ν	0	4	5				D				М	J		Ι			6		9	С	8
5				М		6	F							K	9	A	С				1		L	
	1				Ι	2		J	Κ		7		A	в					Ν		H	0		
6	A		Ε	G	9			С		L			0		2	5	7	1	8	F		J	Κ	Μ
Ι	J			K	D	L					1				Е	G		3	Η				в	5
М	5	3	L	7	Ν	A	С	I			F	в		G			Κ	Е			0	2	J	Η
	F				в	G		0		1	9			E		7		L	5	K	D	6		
Κ							1			5	0	Η			6			9		Ν				
D	G					J	5	Η	3			Κ	P		в			Ν		1	С	E	8	
1		С		в	7	F	6	K	D	2		М		Ν			4		J				5	9
L	I			5			А	Е		В		1	7		F		Ν	J				С		D
8	6	A	Η						С	0						I					F	5	7	
3	С	В	1				L		F	9				А	4				7	8	2	Ν		6
		E	G			7		1	5	С			L			2				н				K
		F			0						Η	J		4	С				D	3	E	I	1	L
	Ν	6	F	Η					М	Е	K	3				9	P					G	0	2
G	0	5	3	С	Ρ		Ε	8		F		6							4	в	J	7		Ι
	9	Ι	D	8	L	В		6		G			4	Η	5	J			С	А		F		1
		J		1	G			F	7				5	9	Ν	L		2	А		6			С
	В				С			9				A			G		8					Κ	D	Е

The P vs NP question is the following:

Can the Subset Sum problem be solved in poly-time?

The P vs NP question is the following:

Can the Traveling Salesperson (TSP) problem be solved in poly-time?

The P vs NP question is the following:

Can the Theorem Proving problem be solved in poly-time?

What the **&**\$%# is going on?!?

Let's explain from the beginning.

Toolbox of a computer scientist

- I. Basic algorithmic techniques
 - e.g. greedy algorithms, divide and conquer, dynamic programming, linear programming, semi-definite programming, etc...

- 2. Basic data structures
 - e.g. queues, stacks, hash tables, binary search trees, etc...

3. Identifying and dealing with intractable problems

Toolbox of a computer scientist

3. Identifying and dealing with intractable problems After decades of research and billions of dollars of funding, no one was able to come up with poly-time algs for:

Theorem Proving, TSP, Subset Sum, Sudoku, Tetris, ...

It would be fantastic if we could prove that these <u>cannot</u> be solved in poly-time. But...

Ρ

Toolbox of a computer scientist

3. Identifying and dealing with intractable problems

But we are far from accomplishing this.

(maybe these problems are in **P**???)

So what can we do???

Maybe we can try to gather evidence that these problems are hard.

Goal:

Find evidence these problems are computationally hard.

A central concept used to compare the "difficulty" of problems.

will differ based on context

Now we are interested in poly-time decidability vs not poly-time decidability

Want to define: $A \leq B$ (B is at least as hard as Aw.r.t. poly-time decidability.)

 $\begin{array}{ccc} B \ \mbox{poly-time decidable} \implies A \ \mbox{poly-time decidable} \\ B \in {\sf P} \implies A \in {\sf P} \end{array}$

 $\begin{array}{ll} A \ \operatorname{not} \ \operatorname{poly-time} \ \operatorname{decidable} \ \Longrightarrow B \ \operatorname{not} \ \operatorname{poly-time} \ \operatorname{decidable} \\ A \notin \mathsf{P} \ \Longrightarrow \ B \notin \mathsf{P} \end{array}$

Notation: $A \leq_T^P B$ (A poly-time reduces to B) if there is a <u>poly-time</u> machine M_A that decides Ausing an oracle M_B for B as a black-box subroutine.

$\begin{array}{l} B \text{ in } \mathbf{P} \implies A \text{ in } \mathbf{P} \\ A \text{ not in } \mathbf{P} \implies B \text{ not in } \mathbf{P} \end{array}$

def M_B(...):
 # some code that solves problem B

def M_A(...):
 # some code that solves problem A
 # that makes calls to function M_B when needed

If M_B poly-time $\implies M_A$ poly-time then we would write $A \leq_T^P B$.

When you want to show $A \leq_T^P B$, you need to come up with a poly-time M_A.

Example

A:

Given a graph and an integer k, does there exist at least k pairs of vertices connected to each other?

B:

Given a graph and a pair of vertices (s,t), is s and t connected?

A poly-time reduces to B

Example

A:

Given a sequence of integers, and a number k, is there an increasing subsequence of length at least k?

3, 1, 5, 2, 3, 6, 4, 8

B:

Given two sequences of integers, and a number k, is there a common subsequence of length at least k?

```
3, 1, 5, 2, 3, 6, 4, 8
1, 5, 7, 9, 2, 4, 1, 0, 2, 0, 3, 0, 4, 0, 8
```

A poly-time reduces to B

The two sides of reductions

I. Expand the landscape of tractable problems.

If $A \leq_T^P B$ and B is tractable, then A is tractable. $B \in \mathbf{P} \implies A \in \mathbf{P}$

Whenever you are given a new problem to solve:

- check if it is already a problem you know how to solve in disguise.
- check if it can be reduced to a problem you know how to solve.

The two sides of reductions

2. Expand the landscape of intractable problems.

If $A \leq_T^P B$ and A is intractable, then B is intractable.

$$A \not\in \mathbf{P} \implies B \notin \mathbf{P}$$

But we are pretty lousy at showing a problem is intractable.

Maybe we can still make good use of this...

Gathering evidence for intractability

Suppose we want to gather evidence that $A \notin \mathbf{P}$.

If we can show $L \leq_T^P A$ for many L(including some L that we really think should not be in **P**) then that would be good evidence that $A \notin \mathbf{P}$.

Definitions of C-hard and C-complete

Definition: Let **C** be a set of languages containing **P**.

We say that language A is $\mbox{C-hard}$ if

for all $L \in \mathbf{C}$, $L \leq^P_T A$.

A is at least as hard as every language in ${\bf C}.$

Definition: Let **C** be a set of languages containing **P**. We say that language A is **C**-complete if

- A is **C**-hard
- $A \in \mathbf{C}$

A is a representative for hardest languages in ${\bf C}.$

Definitions of C-hard and C-complete

Observation:

Suppose A is C-complete.

- If
$$\mathbf{C} = \mathbf{P}$$
, then $A \in \mathbf{P}$.

- If
$$A \in \mathbf{P}$$
, then $\mathbf{C} = \mathbf{P}$.

$$C = P \iff A \in P$$

If we believe $\mathbf{C} \neq \mathbf{P}$, then we must believe $A \notin \mathbf{P}$.

Recall the goal

Good evidence that A is intractable:

A is C-hard for a really rich set C
 (a set C such that we believe C ≠ P)

So what is a good choice for C?

(if we want to show TSP, Subset-Sum, Sudoku, etc... are C-hard?)

Recall the goal

What if we let **C** be the set of all languages?

Can it be true that TSP is C-hard?

What if we let **C** be the set of all languages decidable using Brute Force Search (BFS)?

Can it be true that TSP is C-hard?

A complexity class for BFS?

How can we identify the problems solvable using BFS? What would be a reasonable definition?

What is common about TSP, Subset-Sum, Theorem Proving Problem, etc...?

Seems hard to find a correct solution (solution space is too big!)

BUT, easy to verify a given solution.

Informally:

A language is in **NP** if:

whenever we have a Yes instance,

there is a "simple" proof (solution) for this fact.

1. The length of the proof is polynomial in the input size.2. The proof can be verified/checked in polynomial time.

Formally:

Definition:

A language $A\,$ is in ${\bf NP}$ if

- there is a polynomial-time TM $\ V$
- a polynomial $\,p\,$

such that for all $x \in \Sigma^*$:

 $x \in A \iff \exists u \text{ with } |u| \leq p(|x|) \text{ s.t. } V(x,u) = 1$

If $x \in A$, there is some proof that leads V to accept. If $x \notin A$, every "proof" leads V to reject.

Formally:

Definition:

A language $A\,$ is in ${\bf NP}$ if

- there is a polynomial-time TM $\ V$
- a polynomial $\,p\,$

such that for all $x \in \Sigma^*$:

 $x \in A \iff \exists u \text{ with } |u| \leq p(|x|) \text{ s.t. } V(x,u) = 1$

The following are synonyms in this context: proof = solution = certificate

NP: A game between a Prover and a Verifier

Verifier

poly-time skeptical

Prover

omniscient untrustworthy

Given some input x (known both to Verifier and Prover) Prover wants to convince Verifier that $x \in A$. Prover cooks up a "proof" u and sends it to Verifier. Verifier (in poly-time), should be able to tell if the proof is legit.

NP: A game between a Prover and a Verifier

Verifier

poly-time skeptical

Prover

omniscient untrustworthy

"Completeness"

If $x \in A$, there must be some proof u that convinces the Verifier.

"Soundness"

If $x \notin A$, no matter what "proof" **Prover** gives, Verifier should detect the lie.

NP: A game between a Prover and a Verifier

Verifier

poly-time skeptical

Prover

omniscient untrustworthy

If we have completeness and soundness, then

 $A \in \mathbf{NP}.$

CLIQUE

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. **Output**: Yes iff G contains a clique of size k.

Fact: CLIQUE is in NP.

<u>Proof</u>: We need to show a verifier TM V exists as specified in the definition of NP.

def V(x, u) :

- if x is not an encoding $\langle G = (V, E), k \rangle$ of a valid graph G and a positive integer k, REJECT.
- if u is not an encoding of a set $S \subseteq V$ of size k, REJECT.
- for each pair of vertices in S:
 - if the vertices are not neighbors, **REJECT**.
- ACCEPT

Proof (continued):

Need to show:

- I. if $x \in \text{CLIQUE}$, there is some proof u (of poly-length) that makes V ACCEPT.
- 2. if $x \notin \text{CLIQUE}$, no matter what u is, V REJECTS.
- 3. V is polynomial-time.

(we leave 3 as an exercise)

Proof (continued):

Need to show:

I. if $x \in \text{CLIQUE}$, there is some proof u (of poly-length) that makes V ACCEPT.

if $x \in CLIQUE$, then $x = \langle G, k \rangle$ is a valid encoding, and G contains a clique of size k.

Then when u is a valid encoding of this clique, the verifier will accept.

Proof (continued):

Need to show:

2. if $x \notin \text{CLIQUE}$, no matter what u is, V REJECTS.

if $x \notin CLIQUE$, then there are 2 options:

- x is not a valid encoding $\langle G, k \rangle$.
- x is a valid encoding, but G does not contain a clique of size k.

In either case, V rejects for any u. (add a couple of lines of justification) This would be the proper way of showing that a language is in **NP**.

However, we usually don't write it this way.

- We assume implicitly that inputs are automatically checked to be of the correct type.
- Instead of starting with the description of V, we start with the description of the expected proof.
- We describe things at a very high level and skip many details.

3COL

Input: $\langle G \rangle$ where G is a graph. **Output**: Yes iff G is 3-colorable.

Fact: 3COL is in NP.

Proof (sort of):

The proof string is a valid coloring of the vertices with 3 colors.

The verifier goes through each edge one by one and checks that the endpoints are different colors.

If the input graph is 3-colorable, this check will succeed for a valid 3-coloring of the vertices.

If the input graph is not 3-colorable, then no matter what 3-coloring is given, the verifier will be able to find an edge whose endpoints are colored the same.

The verifier is poly-time since going through each edge and checking their colors takes poly-time.

CIRCUIT-SAT

Input: $\langle C \rangle$ where C is a Boolean circuit.

Output: Yes iff C is satisfiable.

Fact: CIRCUIT-SAT is in NP.

Exercise

2 Observations:

- I. Every decision problem in NP can be solved using BFS.
 - Go through all possible proofs $\,u\,,{\rm and}\,\,{\rm run}\,\,V(x,u)$
- 2. This is a pretty BIG class!

Contains everything in P. (recitation)

People expect NP contains much more than P.

Coming back to our goal

We wanted to find evidence that TSP, Subset-Sum, Theorem Proving problem, etc. are not in **P**.

Could it be true that one of them is NP-complete?

Is there any language that is NP-complete? Is NP-completeness a useful definition?

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is **NP-**complete.

So SAT is in NP. (easy)

And for every L in NP, $L \leq_T^P SAT$.

Karp's 21 NP-complete problems

1972: "Reducibility Among Combinatorial Problems"

0-1 Integer Programming Clique Set Packing Vertex Cover Set Covering Feedback Node Set Feedback Arc Set **Directed Hamiltonian Cycle** Undirected Hamiltonian Cycle 3SAT

Partition Clique Cover Exact Cover Hitting Set Knapsack **Steiner Tree 3-Dimensional Matching** Job Sequencing Max Cut Chromatic Number

Today

Thousands of problems are known to be NP-complete. (including the languages mentioned in this lecture)

1979

Some other "interesting" examples

Super Mario Bros

Given a Super Mario Bros level, is it completable?

Tetris

Given a sequence of Tetris pieces, and a number k, can you clear more than k lines?

How do you show a language is NP-complete?

Seems like an unbelievably strong statement. How could one possibly prove such a thing?!?

Once you have one, things are easier. If SAT \leq_T^P L, then L is NP-hard. (transitivity of \leq_T^P) How do you show a language is NP-complete?

It is similar to showing undecidability.

- we need an initial direct proof that a language is NP-hard. (Cook-Levin Theorem)
- to show other languages are NP-hard, we use poly-time reductions.

This is the topic of Thursday's lecture.

Good evidence for intractability?

If A is NP-hard, that seems to be good evidence that $A \notin P$.

(if you believe $P \neq NP$)

But is $P \neq NP$??

The P vs NP Question

The P vs NP question

After years of research:

We are pretty confident that this is one of the deepest questions we have ever asked.

The two possible worlds

What do experts think?

- Two polls from 2002 and 2012
- # respondents in 2002: 100
- # respondents in 2012: 152

	$P \neq NP$	P = NP	Ind	DC	DK
2002	61(61%)	9(9%)	4(4%)	1(1%)	22(22%)
2012	126~(83%)	12~(9%)	5~(3%)	5~(3%)	1(0.6%)

What does NP stand for anyway?

- Not Polynomial?
- None Polynomial?
- No Polynomial?
- No Problem?
- Nurse Practitioner?
- It stands for Nondeterministic Polynomial time.
 - Languages in NP are the languages decidable in polynomial time by a nondeterministic TM.
 - DFA \leftarrow SFA (actually called NFA)
 - TM ← → NTM

What does NP stand for anyway?

Other contenders for the name of the class:

Herculean

Formidable

Hard-boiled

PET "possibly exponential time" "provably exponential time" "any is used a second time"

"previously exponential time"

Summary

Summary

- How do you identify intractable problems? (problems not in P) e.g. SAT, TSP, ...
- We are not able to prove they are intractable. Can we gather some sort of evidence?
- Poly-time reductions $A \leq_T^P B$ are useful to compare hardness of problems.
- Evidence for intractability of A: Show $L \leq_T^P A$, for all $L \in \mathbf{C}$, for a large class \mathbf{C} .
- Definitions of C-hard, C-complete.
- What is a good choice for C, if we want to show, say, SAT is C-hard?

Summary

- The complexity class NP (take C = NP)
- NP-hardness, NP-completeness
- Cook-Levin Theorem: SAT is **NP**-complete
- Many other languages are NP-complete.
- If L is NP-hard, is this good evidence it is intractable (i.e., L not in P)?
- The P vs NP question

How did Cook-Levin show SAT is **NP**-complete?

And examples of poly-time reductions that show other problems are **NP**-complete.