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Some important reminders from last time



The complexity class NP
What is common about 
TSP,  Subset-Sum,  Theorem Proving Problem,  
SAT,  CIRCUIT-SAT,  Sudoku, 
and almost every other interesting problem you can think of?

BUT,  easy to verify a given solution.

Seems hard to find a correct solution 
(solution space is too big!)

They are all problems we can solve with Brute-Force Search.



The complexity class NP

Informally:

A language is in NP if: 

1. The length of the proof is polynomial in the input size.

2. The proof can be verified/checked in polynomial time.

whenever we have a Yes instance,
there is a “simple” proof (solution) for this fact.



Recall the definition of NP

Definition:

A language      is in NP ifA

- there is a polynomial-time  TM
- a polynomial p

such that for all             :

V

x 2 A () 9u with |u|  p(|x|) s.t. V (x, u) = 1

x 2 ⌃⇤

If           , there is some proof (poly-length) that leads         
     to ACCEPT.
x 2 A

V

If           , every “proof” leads       to REJECT.
x /2 A

V



Examples of languages in NP

CIRCUIT-SAT

Input:          where C is a Boolean circuit.

Output:  Yes iff C is satisfiable.

hCi

Fact:  CIRCUIT-SAT is in NP.



Examples of languages in NP

The way you need to write the proof: 
We need to show a poly-time verifier TM      exists
as specified in the definition of NP.

V

- if    is not an encoding        of a valid circuit C,  REJECT.x hCi

- if    is not an encoding of a valid 0/1 assignment to the 
input gates of C,  REJECT.

u

- else,  ACCEPT.

- evaluate the output of the circuit with the given    . 

- if it evaluates to 0,  REJECT.

V (x, u) :def

u



Examples of languages in NP

Need to show:

1.  if        CIRCUIT-SAT,  there is some proof     
of poly-length

x 2
that makes       ACCEPT.

u
V

2.  if        CIRCUIT-SAT,  no matter what     is,
       REJECTS.     

u
V

x 62

3.      is polynomial-time.     V

The way you need to write the proof: 

Argue these, point by point.



Poll

Which of the following decision problems are in NP?

1. Given numbers                   and      in     ,a1, . . . , an k N
is there a set                           s.t.                    ? S ✓ {1, . . . , n}

X

i2S

ai = k

2. Given a graph G and k in    ,  is the largest clique in G
   of size at most k? 

N

3. Both

4. Neither



NP-hard and NP-complete

A language L is NP-hard if

NP P
T L

If  L is in P,   then everything in NP is in P,    i.e. P = NP.

If  L is NP-hard and in NP,  then it is NP-complete.

Extremely strong property. 
How can any language be NP-complete?



The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

It turns it easier to show CIRCUIT-SAT is NP-complete.

So we will consider Cook-Levin Theorem to be:

CIRCUIT-SAT is NP-complete.



NP-hard and NP-complete

NP P
T CIRCUIT-SAT

To show L is NP-hard:

Pick your favorite NP-hard language K.

Show K       L.P
T



Every L in NP

Cook-Levin Theorem

Red:  will show

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM



First: 
An important note about reductions



Cook reduction
We have defined NP-hardness using
polynomial-time Turing reductions.

“You can solve A in poly-time by using an oracle
that solves B.”

x

Yes
or

No

y

MA

MB
Yes
or
No

You can call the oracle poly(|x|) times.

These reductions are also known as Cook reductions.
A        BP

T



Karp reduction
For technical reasons (which you might explore in HW)
NP-hardness is not usually defined using Cook reductions.

Make one call to MB and directly use its answer as output.

Karp reduction (polynomial-time many-one reduction):
A BP

m

MA

MB
input

or
Yes

Notransform
f

x

f(x)

We must have: Ax 2 f(x) 2
f(x) 62

x 62
=) B

A =) B



Karp reduction

Definition:

Let A and B be two languages.

there is a polynomial-time computable function

f : ⌃⇤ ! ⌃⇤

such that:          A   if and only if              B.x 2
f(x) 2

We say there is a polynomial-time many-one reduction 

from A to B (or a Karp reduction from A to B) if 

In this case, we write   A         B.P
m



Karp reduction

⌃⇤ ⌃⇤

A

B

f

A Karp reduction is a Cook reduction.

But not all Cook reductions are Karp reductions.



Karp Reduction:  Example

CLIQUE

Input:            where G is a graph and k is a positive int.

Output:  Yes iff G contains a clique of size k.

hG, ki

INDEPENDENT-SET (IS)

Input:            where G is a graph and k is a positive int.

Output:  Yes iff G contains an independent set of size k.

hG, ki

Fact:  CLIQUE         IS.P
m



Karp Reduction:  Example

G

G has a clique of size k iff 
G’ has an independent set of size k’

hG, ki ! hG0, k0i
Want:

G0

This is called the 
complement of G.



Karp Reduction:  Example

Proof:

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

4. Argue      is computable in polynomial time.f

2. Show        CLIQUE                        IS=)w 2 f(w) 2

We need to:

3. Show        CLIQUE                        IS=)w 62 f(w) 62
(often easier to argue the contrapositive)



Karp Reduction:  Example

Proof (continued):

- If w is not a valid encoding            of a graph G and int k,  
map it to    . 

hG, ki
✏

- Otherwise w =                          .hG = (V,E), ki
- Let E⇤ = {{u, v} : {u, v} 62 E}
- Return                             .  hG⇤ = (V,E⇤), ki

Definition of the function:

1. Define a map                       .f : ⌃⇤ ! ⌃⇤



Karp Reduction:  Example

Proof (continued):

2. Show        CLIQUE                        IS=)w 2 f(w) 2

If w is in CLIQUE,  then      =   w hG = (V,E), ki
and G has a clique            of size k.S ✓ V

This implies in the complement graph G*,
    is an IS of size k.S



Karp Reduction:  Example

Proof (continued):

Show the contrapositive.

3. Show        CLIQUE                        IS=)w 62 f(w) 62

If              IS,  then       = 
and G* has an IS             of size k.

f(w) 2 hG⇤ = (V,E⇤), kif(w)

S ✓ V

This means in the complement of G*, which is G,
      is a clique of size k.S



Karp Reduction:  Example

Proof (continued):

4. Argue      is computable in polynomial time.f

- checking if the input is a valid encoding can be done in 
polynomial time.
(for any reasonable encoding scheme)

- creating E*, and therefore G*, can be done in 
polynomial time.



Can define NP-hardness with respect to        .

P
m

P
T

Can define NP-hardness with respect to        .

These lead to different notions of NP-hardness.

(what experts use)

(what some courses use for simplicity)



Every L in NP

Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM



3COL is NP-complete



CIRCUIT-SAT ≤ 3COL:  High level steps

We have already seen 3COL is in NP (sort of).

We know CIRCUIT-SAT is NP-hard. 
So it suffices to show CIRCUIT-SAT        3COL.

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

4. Argue      is computable in polynomial time.f

3. Show        CIRCUIT-SAT                        3COL=)w 62 f(w) 62

2. Show        CIRCUIT-SAT                        3COL=)w 2 f(w) 2

We need to:

P
m



CIRCUIT-SAT ≤ 3COL:  The construction

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

Transform the circuit into an equivalent one that 
consists of only NAND gates.
(in addition to input gates and constant gates)

  If    is not an encoding        of a valid circuit C, 
  map it to   .

x hCi
✏

So assume      is a valid encoding of a circuit.x



CIRCUIT-SAT ≤ 3COL:  The main gadget

x ^ y

¬(x ^ y)

x

y

0 1

s1 s2
d1 d2

n

Consider a NAND gate.

NAND

x

y

¬(x ^ y)

    and     represent 
some other gates.
x

y

¬(x ^ y)             becomes the input
of another gate.

For each NAND gate, construct:



CIRCUIT-SAT ≤ 3COL:  The main gadget

x ^ y

¬(x ^ y)

x

y

0 1

s1 s2
d1 d2

n

A valid coloring of this “gadget”
mimics the behaviour of the 
NAND gate.

Claim:

Colors = {0, 1, n}

WLOG 
vertex 0 gets color 0
vertex 1 gets color 1
vertex n gets color n



CIRCUIT-SAT ≤ 3COL:  The main gadget

x ^ y

¬(x ^ y)

x

y

0 1

s1 s2
d1 d2

nObservation1:

vertices     ,x y

¬(x ^ y)x ^ y and

will not be assigned the color n.

Observation2:

¬(x ^ y)x ^ y and

will be assigned different colors.

A couple of observations:



CIRCUIT-SAT ≤ 3COL:  The main gadget

x ^ y

¬(x ^ y)

x

y

0 1

s1 s2
d1 d2

n

Possible colorings of the vertices
   ,       and                 :x

y ¬(x ^ y)

x

y ¬(x ^ y)

0 0 1

1 1 0

0 1 1

1 0 1



CIRCUIT-SAT ≤ 3COL:  Rest of construction

NAND

g1 g2

g1 g2

blue  vertices are the same vertex.

red   vertices are the same vertex.



CIRCUIT-SAT ≤ 3COL:  Rest of construction

g1 g2

vertices labeled 0 are all the same.NAND

g1 g2



CIRCUIT-SAT ≤ 3COL:  Rest of construction

g1 g2

vertices labeled 1 are all the same.NAND

g1 g2



CIRCUIT-SAT ≤ 3COL:  Rest of construction

g1 g2

vertices labeled n are all the same.NAND

g1 g2



CIRCUIT-SAT ≤ 3COL:  Rest of construction

For the gadget corresponding to the output gate,
we have one extra edge:

Input gates just map to a single vertex.



CIRCUIT-SAT ≤ 3COL:  Why does it work?

        CIRCUIT-SAT                        3COL=)

        CIRCUIT-SAT                        3COL=)

      is computable in polynomial time.f

w 2

w 62 f(w) 62

f(w) 2

Convince yourself that:



Every L in NP

Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM



CLIQUE is NP-complete



Definition of 3SAT Problem

3SAT

Input:  A Boolean formula in “conjunctive normal form” 
in which every clause has exactly 3 literals.

Output:  Yes iff the formula is satisfiable.

a clause
(an OR of literals)

conjunctive normal form: AND of clauses.

To satisfy the formula, you need to satisfy each clause.

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)
e.g.

literal: a variable or its negation



3SAT ≤ CLIQUE:  High level steps

We have already seen CLIQUE is in NP.

We know 3SAT is NP-hard. 
So it suffices to show 3SAT        CLIQUE.

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

4. Argue      is computable in polynomial time.f

3. Show        3SAT                        CLIQUE=)w 62 f(w) 62

2. Show        3SAT                        CLIQUE=)w 2 f(w) 2

We need to:

P
m



3SAT ≤ CLIQUE:  Defining the map

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

So assume we are given a valid 3SAT formula    
(with m clauses).

'

We construct             from      .    (we set k = m)hG, ki '

Construction demonstrated with an example.

Words that don’t correspond to a valid encoding of a 
3SAT formula get mapped to    .✏



3SAT ≤ CLIQUE:  Defining the map

' = (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x1 _ ¬x1)

- No edges between
two literals in the same clause.

- No edges between
         and         for any    .xi ¬xi i

- All other possible edges 
present.

k = 3 - Set k to be # clauses in     . '

The construction:

x1

¬x2

x3

C1

x1 x1 ¬x1C3

¬x1

x2

x3

C2

C1 C2 C3^ ^

G'

- A vertex for each literal
in each clause.



3SAT ≤ CLIQUE:  Why it works

If       is satisfiable,  then        has a clique of size m:' G'

     a truth assignment to variables such that
all the clauses are satisfied.
9

i.e.,  in each clause, there is a literal set to True.

The vertices corresponding to these literals
form a clique of size m.

- two such literals/vertices are not connected 
  only if one is the negation of the other.

is satisfiable' =)



3SAT ≤ CLIQUE:  Why it works

If        has a clique of size m,  then     is satisfiable:'G'

       has a clique  K  of size mG' =)

there is exactly one vertex from each clause in K.

Claim: The literals corresponding to these vertices can 
be set to True.  (i.e.,      is satisfiable)  '

Proof:  Only way we could not do this is if
K contains a literal and its negation.  
But a literal and its negation cannot be both in K
(since there is no edge between them).



3SAT ≤ CLIQUE:  Poly-time reduction?

Creation of        is poly-time:G'

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m2) possible edges.
- scan input formula to determine if an edge 
  should be present.



Independent Set is NP-complete

Corollary: IS is NP-hard.



Every L in NP

Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM



CIRCUIT-SAT is NP-complete



Recall

Theorem: Let                               be a decision problemf : {0, 1}⇤ ! {0, 1}
which can be decided in time O(T (n)).

Then it can be computed by a circuit family of size
O(T (n)2).

With this Theorem, it is actually easy to prove that

CIRCUIT-SAT is NP-hard.



Proof Sketch

For             ,  let       be      with x-variables set to    .
(u-variables are the input)

x 2 ⌃⇤
xC

x

C

x 2 L () 9u s.t. V (x, u) = 1

() C
x

is satisfiable.

WTS:  for an arbitrary L in NP,    L        CIRCUIT-SAT.P
m

i.e., we need to map               to a circuit        such that:x 2 ⌃⇤ C
x

                                             is satisfiable.x 2 L () C

x

Let      be a poly-size circuit that simulates     .C V

Since L is in NP, there is a poly-time verifier TM     s.t.:

x 2 L () 9u, |u| = |x|k s.t. V (x, u) = 1

V


