|5-25|

Great Theoretical Ideas in Computer Science

Lecture 14:
NP and NP-completeness 2

October I3th, 2016

Some important reminders from last time

The complexity class NP

What is common about
TSP, Subset-Sum, Theorem Proving Problem, SAT, CIRCUIT-SAT, Sudoku, and almost every other interesting problem you can think of?

Seems hard to find a correct solution (solution space is too big!)

BUT, easy to verify a given solution.

They are all problems we can solve with Brute-Force Search.

The complexity class NP

Informally:

A language is in NP if: whenever we have a Yes instance, there is a "simple" proof (solution) for this fact. \downarrow
I.The length of the proof is polynomial in the input size.
2.The proof can be verified/checked in polynomial time.

Recall the definition of NP

Definition:

A language A is in NP if

- there is a polynomial-time TM V
- a polynomial p
such that for all $x \in \Sigma^{*}$:

$$
x \in A \Longleftrightarrow \exists u \text { with }|u| \leq p(|x|) \text { s.t. } V(x, u)=1
$$

If $x \in A$, there is some proof (poly-length) that leads V to ACCEPT.

If $x \notin A$, every "proof" leads V to REJECT.

Examples of languages in NP

CIRCUIT-SAT

Input: $\langle C\rangle$ where C is a Boolean circuit. Output: Yes iff C is satisfiable.

Fact: CIRCUIT-SAT is in NP.

Examples of languages in NP

The way you need to write the proof:

We need to show a poly-time verifier TM V exists as specified in the definition of NP.
def $V(x, u)$:

- if x is not an encoding $\langle C\rangle$ of a valid circuit C , REJECT.
- if u is not an encoding of a valid $0 / \mathrm{l}$ assignment to the input gates of C , REJECT.
- evaluate the output of the circuit with the given u.
- if it evaluates to 0 , REJECT.
- else, ACCEPT.

Examples of languages in NP

The way you need to write the proof:

Need to show:
I. if $x \in$ CIRCUIT-SAT, there is some proof u of poly-length that makes V ACCEPT.
2. if $x \notin$ CIRCUIT-SAT, no matter what u is, V REJECTS.
3. V is polynomial-time.

Argue these, point by point.

Poll

Which of the following decision problems are in NP?
I. Given numbers a_{1}, \ldots, a_{n} and k in \mathbb{N}, is there a set $S \subseteq\{1, \ldots, n\}$ s.t. $\sum_{i \in S} a_{i}=k$?
2. Given a graph G and k in \mathbb{N}, is the largest clique in G of size at most k ?
3. Both
4. Neither

NP-hard and NP-complete

A language L is $N P$-hard if

If L is in P, then everything in $N P$ is in P, i.e. $P=N P$.
If L is NP-hard and in NP, then it is NP-complete.
Extremely strong property. How can any language be NP-complete?

The Cook-Levin Theorem

Theorem (Cook 197I - Levin 1973):

SAT is NP-complete.

It turns it easier to show CIRCUIT-SAT is NP-complete.
So we will consider Cook-Levin Theorem to be: CIRCUIT-SAT is NP-complete.

NP-hard and NP-complete

To show L is NP-hard:
Pick your favorite NP-hard language K.
Show $\mathrm{K} \leq_{T}^{P} \mathrm{~L}$.

First:
An important note about reductions

Cook reduction

We have defined NP-hardness using polynomial-time Turing reductions.

These reductions are also known as Cook reductions.

$$
\mathrm{A} \leq_{T}^{P} \mathrm{~B}
$$

"You can solve A in poly-time by using an oracle that solves B."

You can call the oracle poly(|x|) times.

Karp reduction

For technical reasons (which you might explore in HW) NP-hardness is not usually defined using Cook reductions.

Karp reduction (polynomial-time many-one reduction):

$$
\mathrm{A} \leq_{m}^{P} \mathrm{~B}
$$

Make one call to M_{B} and directly use its answer as output. We must have:

$$
\begin{aligned}
& x \in \mathrm{~A} \Longrightarrow f(x) \in \mathrm{B} \\
& x \notin \mathrm{~A} \Longrightarrow f(x) \notin \mathrm{B}
\end{aligned}
$$

Karp reduction

Definition:

Let A and B be two languages.
We say there is a polynomial-time many-one reduction from A to B (or a Karp reduction from A to B) if there is a polynomial-time computable function

$$
f: \Sigma^{*} \rightarrow \Sigma^{*}
$$

such that: $x \in \mathrm{~A}$ if and only if $f(x) \in \mathrm{B}$.
In this case, we write $\mathrm{A} \leq_{m}^{P} \mathrm{~B}$.

Karp reduction

A Karp reduction is a Cook reduction.
But not all Cook reductions are Karp reductions.

Karp Reduction: Example

CLIQUE

Input: $\langle G, k\rangle$ where G is a graph and k is a positive int. Output: Yes iff G contains a clique of size k.

INDEPENDENT-SET (IS)

Input: $\langle G, k\rangle$ where G is a graph and k is a positive int.
Output: Yes iff G contains an independent set of size k .

Fact: CLIQUE \leq_{m}^{P} IS.

Karp Reduction: Example

Want:

$$
\langle G, k\rangle \rightarrow\left\langle G^{\prime}, k^{\prime}\right\rangle
$$

G has a clique of size k iff
G' has an independent set of size k '

G^{\prime}

This is called the complement of G.

Karp Reduction: Example

Proof:

We need to:
I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ CLIQUE $\Longrightarrow f(w) \in$ IS
3. Show $w \notin$ CLIQUE $\Longrightarrow f(w) \notin$ IS
(often easier to argue the contrapositive)
4. Argue f is computable in polynomial time.

Karp Reduction: Example

Proof (continued):

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.

Definition of the function:

- If w is not a valid encoding $\langle G, k\rangle$ of a graph G and int k , map it to ϵ.
- Otherwise w $=\langle G=(V, E), k\rangle$.
- Let $\quad E^{*}=\{\{u, v\}:\{u, v\} \notin E\}$
- Return $\left\langle G^{*}=\left(V, E^{*}\right), k\right\rangle$.

Karp Reduction: Example

Proof (continued):

2. Show $w \in$ CLIQUE $\Longrightarrow f(w) \in$ IS

If w is in CLIQUE, then $w=\langle G=(V, E), k\rangle$ and G has a clique $S \subseteq V$ of size k .

This implies in the complement graph G^{*}, S is an IS of size k.

Karp Reduction: Example

Proof (continued):

3. Show $w \notin$ CLIQUE $\Longrightarrow f(w) \notin$ IS

Show the contrapositive. If $f(w) \in \mathrm{IS}$, then $f(w)=\left\langle G^{*}=\left(V, E^{*}\right), k\right\rangle$ and G^{*} has an IS $S \subseteq V$ of size k.

This means in the complement of G^{*}, which is G, S is a clique of size k.

Karp Reduction: Example

Proof (continued):

4.Argue f is computable in polynomial time.

- checking if the input is a valid encoding can be done in polynomial time.
(for any reasonable encoding scheme)
- creating E^{*}, and therefore G^{*}, can be done in polynomial time.

Can define NP-hardness with respect to \leq_{T}^{P}. (what some courses use for simplicity)

Can define NP-hardness with respect to \leq_{m}^{P}. (what experts use)

These lead to different notions of NP-hardness.

3COL is NP-complete

CIRCUIT-SAT ≤ 3 COL: High level steps

We have already seen 3COL is in NP (sort of).

We know CIRCUIT-SAT is NP-hard.
So it suffices to show CIRCUIT-SAT \leq_{m}^{P} 3COL.

We need to:
I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ CIRCUIT-SAT $\Longrightarrow f(w) \in 3 \mathrm{COL}$
3. Show $w \notin$ CIRCUIT-SAT $\Longrightarrow f(w) \notin 3 \mathrm{COL}$
4. Argue f is computable in polynomial time.

CIRCUIT-SAT $\leq 3 \mathrm{COL}:$ The construction

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.

If x is not an encoding $\langle C\rangle$ of a valid circuit C , map it to ϵ.

So assume x is a valid encoding of a circuit.

Transform the circuit into an equivalent one that consists of only NAND gates.
(in addition to input gates and constant gates)

CIRCUIT-SAT ≤ 3 COL: The main gadget

Consider a NAND gate.

x and y represent some other gates.
$\neg(x \wedge y)$ becomes the input of another gate.

For each NAND gate, construct:

CIRCUIT-SAT ≤ 3 COL: The main gadget

Claim:

A valid coloring of this "gadget" mimics the behaviour of the NAND gate.

Colors $=\{0, \mathrm{I}, \mathrm{n}\}$

WLOG
vertex 0 gets color 0 vertex I gets color I vertex n gets color n

CIRCUIT-SAT ≤ 3 COL: The main gadget

A couple of observations:

Observation I:

vertices x, y

$$
x \wedge y \text { and } \neg(x \wedge y)
$$

will not be assigned the color n .

Observation2:

$$
x \wedge y \text { and } \neg(x \wedge y)
$$

will be assigned different colors.

CIRCUIT-SAT ≤ 3 COL: The main gadget

Possible colorings of the vertices x, y and $\neg(x \wedge y)$:

x	y	$\neg(x \wedge y)$
0	0	I
I	I	0
0	I	I
I	0	I

CIRCUIT-SAT ≤ 3 COL: Rest of construction

blue vertices are the same vertex.

 red vertices are the same vertex.

CIRCUIT-SAT ≤ 3 COL: Rest of construction

vertices labeled 0 are all the same.

CIRCUIT-SAT ≤ 3 COL: Rest of construction

vertices labeled I are all the same.

CIRCUIT-SAT ≤ 3 COL: Rest of construction

vertices labeled n are all the same.

CIRCUIT-SAT ≤ 3 COL: Rest of construction

Input gates just map to a single vertex.

For the gadget corresponding to the output gate, we have one extra edge:

CIRCUIT-SAT ≤ 3 COL: Why does it work?

Convince yourself that:

$$
\begin{aligned}
w \in \text { CIRCUIT-SAT } & \Longrightarrow f(w) \in 3 \mathrm{COL} \\
w \notin \text { CIRCUIT-SAT } & \Longrightarrow f(w) \notin 3 \mathrm{COL}
\end{aligned}
$$

f is computable in polynomial time.

CLIQUE is NP-complete

Definition of 3SAT Problem

3SAT

Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

e.g.

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg x_{5} \vee x_{6}\right)
$$

a clause
(an OR of literals)
literal: a variable or its negation
conjunctive normal form: AND of clauses.
To satisfy the formula, you need to satisfy each clause.
Output: Yes iff the formula is satisfiable.

3SAT \leq CLIQUE: High level steps

We have already seen CLIQUE is in NP.

We know 3SAT is NP-hard.
So it suffices to show 3 SAT \leq_{m}^{P} CLIQUE.

We need to:
I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ 3SAT $\quad \Longrightarrow \quad f(w) \in$ CLIQUE
3. Show $w \notin$ 3SAT $\Longrightarrow f(w) \notin$ CLIQUE
4.Argue f is computable in polynomial time.

3SAT \leq CLIQUE: Defining the map

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.

Words that don't correspond to a valid encoding of a 3SAT formula get mapped to ϵ.

So assume we are given a valid 3SAT formula φ (with m clauses).

We construct $\langle G, k\rangle$ from φ. (we set $\mathrm{k}=\mathrm{m}$)
Construction demonstrated with an example.

3SAT \leq CLIQUE: Defining the map

$C_{1} \wedge \quad C_{2} \wedge \quad C_{3}$

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{1} \vee \neg x_{1}\right)
$$

G_{φ}

The construction:

- A vertex for each literal in each clause.
- No edges between two literals in the same clause.
- No edges between
x_{i} and $\neg x_{i}$ for any i.
- All other possible edges present.
- Set k to be \# clauses in φ.

3SAT \leq CLIQUE: Why it works

If φ is satisfiable, then G_{φ} has a clique of size m:
φ is satisfiable \Longrightarrow
\exists a truth assignment to variables such that all the clauses are satisfied.
i.e., in each clause, there is a literal set to True.

The vertices corresponding to these literals form a clique of size m.

- two such literals/vertices are not connected only if one is the negation of the other.

3SAT \leq CLIQUE: Why it works

If G_{φ} has a clique of size m , then φ is satisfiable:
G_{φ} has a clique K of size m there is exactly one vertex from each clause in K .

Claim:The literals corresponding to these vertices can be set to True. (i.e., φ is satisfiable)

Proof: Only way we could not do this is if K contains a literal and its negation. But a literal and its negation cannot be both in K (since there is no edge between them).

3SAT \leq CLIQUE: Poly-time reduction?

Creation of G_{φ} is poly-time:

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most $O\left(\mathrm{~m}^{2}\right)$ possible edges.
- scan input formula to determine if an edge should be present.

Independent Set is NP-complete

Corollary: IS is NP-hard.

CIRCUIT-SAT is NP-complete

Recall

Theorem: Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be a decision problem which can be decided in time $O(T(n))$.
Then it can be computed by a circuit family of size
$O\left(T(n)^{2}\right)$.

With this Theorem, it is actually easy to prove that
CIRCUIT-SAT is NP-hard.

Proof Sketch

WTS: for an arbitrary L in NP, $\mathrm{L} \leq_{m}^{P}$ CIRCUIT-SAT. i.e., we need to map $x \in \Sigma^{*}$ to a circuit C_{x} such that: $x \in L \quad \Longleftrightarrow \quad C_{x}$ is satisfiable.

Since L is in NP, there is a poly-time verifier TM V s.t.:

$$
x \in L \quad \Longleftrightarrow \quad \exists u,|u|=|x|^{k} \text { s.t. } V(x, u)=1
$$

Let C be a poly-size circuit that simulates V.
For $x \in \Sigma^{*}$, let C_{x} be C with x -variables set to x. (u-variables are the input)

$$
\begin{aligned}
x \in L & \Longleftrightarrow \exists u \text { s.t. } V(x, u)=1 \\
& \Longleftrightarrow C_{x} \text { is satisfiable. }
\end{aligned}
$$

