|5-251
Great Theoretical Ideas in Computer Science

Lecture 14:
NP and NP-completeness 2

October |3th, 2016

Some important reminders from last time

The complexity class NP

What is common about

TSP, Subset-Sum, Theorem Proving Problem,
SAT, CIRCUIT-SAT, Sudoku,

and almost every other interesting problem you can think of?

Seems hard to find a correct solution
(solution space is too big!)

BUT, easy to verify a given solution.

They are all problems we can solve with Brute-Force Search.

The

Informally:

complexity class NP

A language is in NP if:

whenever we have a Yes instance,
there is a “simple” proof (solution) for this fact.

l

. T
2.T

ne length of t

ne proof can

ne proof is polynomial in the input size.

oe verified/checked in polynomial time.

Recall the definition of NP

-

Definition:

o

A language A isin NP if
- there is a polynomial-time TM V
- a polynomial p
such that for all x € X
r € A<= Ju with |u| < p(|z|) s.t. V(x,u) =1

If © € A, there is some proof (poly-length) that leads
V to ACCEPT.

If x ¢ A, every“proof” leads V to REJECT.

Examples of languages in NP

CIRCUIT-SAT

Input: (C') where C is a Boolean circuit.
Output: Yes iff C is satisfiable.

Fact: CIRCUIT-SAT is in NP.

Examples of languages in NP

The way you need to write the proof:

We need to show a poly-time verifier TM V' exists
as specified in the definition of NP.

def V(x,u) :
- if z is not an encoding (C) of a valid circuit C, REJECT.

- if u is not an encoding of a valid 0/] assignment to the
input gates of C, REJECT.

- evaluate the output of the circuit with the given u .
- if it evaluates to 0, REJECT.
- else, ACCEPT.

Examples of languages in NP

The way you need to write the proof:

Need to show:

|. if x € CIRCUIT-SAT, there is some proof u
of poly-length that makes V' ACCEPT.

2. if x ¢ CIRCUIT-SAT, no matter what u is,
V REJECTS.

3. V' is polynomial-time.

Argue these, point by point.

Poll

Which of the following decision problems are in NP?

|. Given numbers a{,...,a, and k£ inN ,
is thereaset S C{l,...,n} st Zai =k 2
1€S

2. Given a graph G and k in N, is the largest clique in G
of size at most k!

3. Both

4. Neither

NP-hard and NP-complete

A language L is NP-hard if

-

-

NP

~

)

If Lisin P, then everything in NP is in P,

P
<7 L

i.,e. P = NP.

If Lis NP-hard and in NP, then it is NP-complete.

Extremely strong property.

How can any language be NP-complete!

The Cook-Levin Theorem

-

o

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

~

J

It turns it easier to show CIRCUIT-SAT is NP-complete.

So we will consider Cook-Levin Theorem to be:

CIRCUIT-SAT is NP-complete.

NP-hard and NP-complete

NP

_

~

J

To show L is NP-hard:

<% CIRCUIT-SAT

Pick your favorite NP-hard language K.

Show K S? L.

Every L in NP
lCook—Levin Theorem

CIRCUIT-SAT
/ N\
3SAT 3COL
N\
SUBSET-SUM CLIQUE
!
VERTEX-COVER

'
HAMILTONIAN-CYCLE

!

TSP Red: will show

First:
An important note about reductions

Cook reduction

We have defined NP-hardness using
polynomial-time Turing reductions.

These reductions are also known as Cook reductions.

A <L B
M 4
Ye
Tr —> No —p Or

No

“You can solve A in poly-time by using an oracle
that solves B.” Yoy can call the oracle poly(|x]|) times.

Karp reduction

For technical reasons (which you might explore in HW)
NP-hardness is not usually defined using Cook reductions.

Karp reduction (polynomial-time many-one reduction):

A <UB
M 4
f Yes
L =T transform e f(w) — Mp — ,Sl';
input

Make one call to Mg and directly use its answer as output.
We must have: rec A = f(r)€B
rZd A — f(z)<B

Karp reduction

D

Let A and B be two languages.

efinition:

We say there is a polynomial-time many-one reduction
from A to B (or a Karp reduction from A to B) if
there is a polynomial-time computable function

foX" =3
such that: x € A ifandonlyif f(x) € B.

In this case, we write A Sf; B.

_

~

Karp reduction

(A N f 4
_ B
— g:
—>
R, _ Y,

A Karp reduction is a Cook reduction.

But not all Cook reductions are Karp reductions.

Karp Reduction: Example

CLIQUE
Input: (G, k) where G is a graph and k is a positive int.

Output: Yes iff G contains a clique of size k.

INDEPENDENT-SET (IS)
Input: (G, k) where G is a graph and k is a positive int.
Output: Yes iff G contains an independent set of size k.

Fact: CLIQUE < IS.

Karp Reduction: Example
Want:
(G, k) = (G, k')

G has a clique of size k iff
G’ has an independent set of size k’

%
This is called the
complement of G.

G/

Karp Reduction: Example

Proof:

We need to:

|.Defineamap f : 2" — X7
2.Show w € CLIQUE — f(w) € IS
3.Show w € CLIQUE — f(w) &€ IS

(often easier to argue the contrapositive)

4.Argue f is computable in polynomial time.

Karp Reduction: Example

Proof (continued):
|.Defineamap f: X" — X7

Definition of the function:

- If w is not a valid encoding (G, k) of a graph G and int k,
map it to €.

- Otherwise w = (G = (V, E), k) .
-Let E* = {{u,v}: {u,v} ¢ E}
- Return (G* = (V, E™), k).

Karp Reduction: Example

Proof (continued):

2.Show w € CLIQUE — f(w) € IS

If wis in CLIQUE, then w = (G = (V, E), k)
and G has a clique S C V of size k.

This implies in the complement graph G*,
S is an IS of size k.

Karp Reduction: Example

Proof (continued):
3.Show w € CLIQUE — f(w) € IS

Show the contrapositive.
If f(w) €IS, then f(w)=(G* = (V,E*), k)
and G*hasan IS S C V of size k.

This means in the complement of G*, which is G,
S is a clique of size k.

Karp Reduction: Example

Proof (continued):

4.Argue f is computable in polynomial time.

- checking if the input is a valid encoding can be done in

polynomial time.
(for any reasonable encoding scheme)

- creating E*, and therefore G*, can be done in
polynomial time.

Can define NP-hardness with respect to <7 .

(what some courses use for simplicity)

Can define NP-hardness with respect to <!’ .

(what experts use)

These lead to different notions of NP-hardness.

Every L in NP
lCook—Levin Theorem

CIRCUIT-SAT
4 N
3SAT 3COL
7 N\
SUBSET-SUM CLIQUE
!
VERTEX-COVER

!
HAMILTONIAN-CYCLE

!

TSP

3COL is NP-complete

CIRCUIT-SAT =< 3COL: High level steps
We have already seen 3COL is in NP (sort of).

We know CIRCUIT-SAT is NP-hard.
So it suffices to show CIRCUIT-SAT <!’ 3COL.

We need to:
|.Defineamap f : 2" — X7
2.Show w € CIRCUIT-SAT — f(w) € 3COL
3.Show w & CIRCUIT-SAT — f(w) € 3COL

4.Argue f is computable in polynomial time.

CIRCUIT-SAT =< 3COL: The construction
|.Defineamap f : 2" — X7

If = is not an encoding (C') of a valid circuit C,
map it to €.

So assume x is a valid encoding of a circuit.

Transform the circuit into an equivalent one that
consists of only NAND gates.
(in addition to input gates and constant gates)

CIRCUIT-SAT =< 3COL: The main gadget
Consider a NAND gate.
r Y
&
g

'

=(z N y)

x and Y represent
some other gates.

dq

—(x A y) becomes the input
of another gate.

For each NAND gate, construct: /

CIRCUIT-SAT =< 3COL: The main gadget

Claim:

A valid coloring of this “gadget”
mimics the behaviour of the

NAND gate.
Colors = {0, I, n}

dq
WLOG

vertex 0 gets color 0
vertex | gets color |
vertex n gets color n

CIRCUIT-SAT =< 3COL: The main gadget

A couple of observations: 0 1

Observationl: n

vertices I, VY

r Ay and —(x Ay)

will not be assigned the color n.

Observation?2:

r Ay and —(x Ay)

will be assigned different colors.

CIRCUIT-SAT =< 3COL: The main gadget

Possible colorings of the vertices

r, ¥y and —(x Ay):

=(z AN y)

T Y A
0 0 I
| | 0
0 | I
| 0 I

CIRCUIT-SAT =< 3COL: Rest of construction

1 .
g 92 vertices are the same vertex.
vertices are the same vertex.

CIRCUIT-SAT =< 3COL: Rest of construction

vertices labeled 0 are all the same.

CIRCUIT-SAT =< 3COL: Rest of construction

vertices labeled | are all the same.

CIRCUIT-SAT =< 3COL: Rest of construction

CIRCUIT-SAT =< 3COL: Rest of construction

Input gates just map to a single vertex.

For the gadget corresponding to the output gate,
we have one extra edge:

CIRCUIT-SAT =< 3COL: Why does it work!?

Convince yourself that:

w € CIRCUIT-SAT = f(w) € 3COL
w & CIRCUIT-SAT —> f(w) & 3COL

f is computable in polynomial time.

Every L in NP
lCook—Levin Theorem

CIRCUIT-SAT
/ N\
3SAT 3COL
"
SUBSET-SUM CLIQUE
!
VERTEX-COVER

!
HAMILTONIAN-CYCLE

!

TSP

CLIQUE is NP-complete

Definition of 3SAT Problem
3SAT

Input: A Boolean formula in “conjunctive normal form”
in which every clause has exactly 3 literals.

€.g.
(2131 V X9 \% 2133) N\ (_lilfl \% L4 V .’]35) N\ (332 V X5 V 2136)
_-——\~

a clause
(an OR of literals)

literal: a variable or its negation

conjunctive normal form: AND of clauses.

To satisfy the formula, you need to satisfy each clause.

Output: Yes iff the formula is satisfiable.

3SAT < CLIQUE: High level steps
We have already seen CLIQUE is in NP.

We know 3SAT is NP-hard.
So it suffices to show 3SAT <! CLIQUE.

We need to:
|.Defineamap f : 2" — X7
2.Show w € 3SAT — f(w) € CLIQUE
3.Show w & 3SAT —> f(w) € CLIQUE

4.Argue f is computable in polynomial time.

3SAT < CLIQUE: Defining the map
|.Defineamap f : X" — X7,

Words that don’t correspond to a valid encoding of a
3SAT formula get mapped to ¢.

So assume we are given a valid 3SAT formula ¢
(with m clauses).

We construct (G, k) from ¢. (we setk =m)

Construction demonstrated with an example.

3SAT < CLIQUE: Defining the map
Cq A Cs A Cs

QO = (561 \V4 X9 \/LUg) A\ (_liUl \/.CUQ \/.CUg) A\ (513'1 \/5171 \ _ICIZ‘1)
The construction:
X1

* - A vertex for each literal
Gso in each clause.

T - No edges between
two literals in the same clause.

- No edges between
x; and —x; forany 7.

- All other possible edges
present.

I — 3 | -Setktobe#clausesin .

3SAT < CLIQUE: Why it works

If ¢ is satisfiable, then G, has a clique of size m:

© is satisflable —

3 a truth assignment to variables such that
all the clauses are satisfied.

i.e., in each clause, there is a literal set to True.

The vertices corresponding to these literals
form a clique of size m.

- two such literals/vertices are not connected
only if one is the negation of the other.

3SAT < CLIQUE: Why it works

If G, has a clique of size m, then ¢ is satisfiable:

G, hasaclique K ofsizem =—

there is exactly one vertex from each clause in K.

Claim: The literals corresponding to these vertices can
be set to True. (i.e., ¥ is satisfiable)

Proof: Only way we could not do this is if
K contains a literal and its negation.

But a literal and its negation cannot be both in K
(since there is no edge between them).

3SAT < CLIQUE: Poly-time reduction!?

Creation of G, is poly-time:

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m?) possible edges.

- scan input formula to determine if an edge
should be present.

Independent Set is NP-complete

[Corollar)g IS is NP-hard.

Every L in NP
*Cook-Levin Theorem

CIRCUIT-SAT
/ N\
3SAT 3COL
7 N\
SUBSET-SUM CLIQUE
!
VERTEX-COVER

!
HAMILTONIAN-CYCLE

!

TSP

CIRCUIT-SAT is NP-complete

Recall

-)
Theorem: Let f : {0,1}" — {0, 1} be a decision problem

which can be decided in time O(7'(n)).

Then it can be computed by a circuit family of size
O(T'(n)?).

&

With this Theorem, it is actually easy to prove that

CIRCUIT-SAT is NP-hard.

Proof Sketch

WIS: for an arbitrary L in

NP, L </ CIRCUIT-SAT.

i.e.,we needtomap x € X toacircuit C, such that:

relL <= (, issatisfiable.

Since L is in NP, there is a

rel <— du,|u

boly-time verifier TM V' s.t.:

= |2|" s.t. V(z,u) =1

Let C' be a poly-size circuit that simulates V.

For x € ™, let ', be C with x-variables set to .

(u-variables are the input)

rel <— dust V(ir,u)=1
<— (', is satisfiable.

