15-251 Great Theoretical Ideas in Computer Science Lecture 14: NP and NP-completeness 2

October 13th, 2016

Some important reminders from last time

The complexity class NP

What is common about TSP, Subset-Sum, Theorem Proving Problem, SAT, CIRCUIT-SAT, Sudoku,

and almost every other interesting problem you can think of?

Seems hard to find a correct solution (solution space is too big!)

BUT, easy to verify a given solution.

They are all problems we can solve with **Brute-Force Search**.

The complexity class NP

Informally:

A language is in **NP** if: whenever we have a Yes instance,

there is a "simple" proof (solution) for this fact.

1. The length of the proof is polynomial in the input size.2. The proof can be verified/checked in polynomial time.

Recall the definition of NP

Definition:

A language A is in ${\bf NP}$ if

- there is a polynomial-time TM $\ V$
- a polynomial $\,p\,$

such that for all $x \in \Sigma^*$:

 $x \in A \iff \exists u \text{ with } |u| \leq p(|x|) \text{ s.t. } V(x,u) = 1$

If $x \in A$, there is some proof (poly-length) that leads V to ACCEPT.

If $x \notin A$, every "proof" leads V to REJECT.

Examples of languages in NP

CIRCUIT-SAT

Input: $\langle C \rangle$ where C is a Boolean circuit. **Output**: Yes iff C is satisfiable.

Fact: CIRCUIT-SAT is in NP.

Examples of languages in NP

The way you need to write the proof:

We need to show a poly-time verifier TM V exists as specified in the definition of NP.

def V(x, u) :

- if x is not an encoding $\langle C \rangle$ of a valid circuit C, REJECT.
- if u is not an encoding of a valid 0/1 assignment to the input gates of C, REJECT.
- evaluate the output of the circuit with the given u .
- if it evaluates to 0, REJECT.
- else, ACCEPT.

Examples of languages in NP

The way you need to write the proof:

Need to show:

I. if $x \in CIRCUIT$ -SAT, there is some proof u of poly-length that makes V ACCEPT.

2. if $x \notin CIRCUIT$ -SAT, no matter what u is, V REJECTS.

3. V is polynomial-time.

Argue these, point by point.

Poll

Which of the following decision problems are in NP?

- I. Given numbers a_1,\ldots,a_n and k in \mathbb{N} , is there a set $S\subseteq\{1,\ldots,n\}$ s.t. $\sum_{i\in S}a_i=k$?
- **2.** Given a graph G and k in \mathbb{N} , is the largest clique in G of size at most k?
- 3. Both

4. Neither

NP-hard and NP-complete

A language L is NP-hard if

If L is in P, then everything in NP is in P, i.e. P = NP.

If L is NP-hard and in NP, then it is NP-complete.

Extremely strong property. How can any language be **NP-**complete?

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is **NP-**complete.

It turns it easier to show CIRCUIT-SAT is NP-complete.

So we will consider Cook-Levin Theorem to be: CIRCUIT-SAT is **NP**-complete.

NP-hard and NP-complete

To show L is **NP**-hard:

Pick your favorite NP-hard language K. Show K \leq_T^P L.

First: An important note about reductions

Cook reduction

We have defined NP-hardness using polynomial-time Turing reductions.

These reductions are also known as Cook reductions.

"You can solve A in poly-time by using an oracle that solves B." You can call the oracle poly(|x|) times.

Karp reduction

For technical reasons (which you might explore in HW) **NP**-hardness is not usually defined using Cook reductions.

Karp reduction (polynomial-time many-one reduction):

Make one call to M_B and directly use its answer as output. We must have: $x \in A \implies f(x) \in B$ $x \notin A \implies f(x) \notin B$

Karp reduction

Definition:

- Let A and B be two languages.
- We say there is a polynomial-time many-one reduction
- from A to B (or a Karp reduction from A to B) if
- there is a polynomial-time computable function

$$f: \Sigma^* \to \Sigma^*$$

such that: $x \in A$ if and only if $f(x) \in B$.

In this case, we write $A \leq_m^P B$.

Karp reduction

A Karp reduction is a Cook reduction.

But not all Cook reductions are Karp reductions.

CLIQUE

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. **Output**: Yes iff G contains a clique of size k.

INDEPENDENT-SET (IS)

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. **Output**: Yes iff G contains an independent set of size k.

Fact: CLIQUE \leq_m^P IS.

Want:

 $\langle G, k \rangle \to \langle G', k' \rangle$

G has a clique of size k **iff** G' has an independent set of size k'

This is called the complement of G.

Proof:

We need to:

- I. Define a map $f: \Sigma^* \to \Sigma^*$.
- **2.** Show $w \in \mathsf{CLIQUE} \implies f(w) \in \mathsf{IS}$
- 3. Show $w \not\in \mathsf{CLIQUE} \implies f(w) \not\in \mathsf{IS}$

(often easier to argue the contrapositive)

4. Argue f is computable in polynomial time.

Proof (continued):

I. Define a map
$$f: \Sigma^* \to \Sigma^*$$
.

Definition of the function:

- If w is not a valid encoding $\langle G,k\rangle$ of a graph G and int k, map it to $\ \epsilon$.
- Otherwise w = $\langle G = (V, E), k \rangle$.
- Let $E^* = \{\{u, v\} : \{u, v\} \notin E\}$
- Return $\langle G^* = (V, E^*), k \rangle$.

Proof (continued):

2. Show $w \in \mathsf{CLIQUE} \implies f(w) \in \mathsf{IS}$

If w is in CLIQUE, then $w = \langle G = (V, E), k \rangle$ and G has a clique $S \subseteq V$ of size k.

This implies in the complement graph G*, S is an IS of size k.

Proof (continued):

3. Show $w \notin \mathsf{CLIQUE} \implies f(w) \notin \mathsf{IS}$

Show the contrapositive.

If $f(w) \in IS$, then $f(w) = \langle G^* = (V, E^*), k \rangle$

and G^* has an IS $S \subseteq V$ of size k.

This means in the complement of G^* , which is G, S is a clique of size k.

Proof (continued):

4. Argue f is computable in polynomial time.

 checking if the input is a valid encoding can be done in polynomial time.
(for any reasonable encoding scheme)

- creating E*, and therefore G*, can be done in polynomial time.

Can define NP-hardness with respect to \leq_T^P . (what some courses use for simplicity)

Can define NP-hardness with respect to \leq_m^P . (what experts use)

These lead to different notions of NP-hardness.

3COL is NP-complete

CIRCUIT-SAT \leq 3COL: High level steps

We have already seen 3COL is in NP (sort of).

We know CIRCUIT-SAT is NP-hard. So it suffices to show CIRCUIT-SAT \leq_m^P 3COL.

We need to:

- I. Define a map $f: \Sigma^* \to \Sigma^*$.
- 2. Show $w \in \text{CIRCUIT-SAT} \implies f(w) \in \text{3COL}$
- 3. Show $w \not\in \mathsf{CIRCUIT}\operatorname{-SAT} \implies f(w) \not\in \mathsf{3COL}$

4. Argue f is computable in polynomial time.

CIRCUIT-SAT \leq 3COL: The construction

I. Define a map $f: \Sigma^* \to \Sigma^*$.

If x is not an encoding $\langle C \rangle$ of a valid circuit C, map it to ϵ .

So assume x is a valid encoding of a circuit.

Transform the circuit into an equivalent one that consists of only NAND gates. (in addition to input gates and constant gates)

Consider a NAND gate.

x and y represent some other gates.

 $\neg(x \wedge y)$ becomes the input of another gate.

For each NAND gate, construct: *

Claim:

A valid coloring of this "gadget" mimics the behaviour of the NAND gate.

Colors = $\{0, I, n\}$

WLOG vertex 0 gets color 0 vertex 1 gets color 1 vertex n gets color n

A couple of observations:

Observation I:

vertices x, y $x \wedge y$ and $\neg(x \wedge y)$ will not be assigned the color n.

Observation2:

$$x \wedge y$$
 and $\neg (x \wedge y)$

will be assigned different colors.

		orings of the v $\neg(x \land y)$:	vertices
x	y	$\neg(x \land y)$	
0	0	1	
I	- T	0	
0	- I.	1	
I	0	- I	

CIRCUIT-SAT \leq 3COL: Rest of construction

CIRCUIT-SAT \leq 3COL: Rest of construction

CIRCUIT-SAT \leq 3COL: Rest of construction

CIRCUIT-SAT \leq 3COL: Rest of construction

CIRCUIT-SAT \leq 3COL: Rest of construction

Input gates just map to a single vertex.

For the gadget corresponding to the **output gate**, we have one extra edge:

CIRCUIT-SAT \leq 3COL: Why does it work?

Convince yourself that:

- $w \in \text{CIRCUIT-SAT} \implies f(w) \in \text{3COL}$ $w \notin \text{CIRCUIT-SAT} \implies f(w) \notin \text{3COL}$
- f is computable in polynomial time.

CLIQUE is NP-complete

Definition of 3SAT Problem

3SAT

Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

3SAT ≤ CLIQUE: High level steps

We have already seen CLIQUE is in NP.

We know 3SAT is **NP-hard**. So it suffices to show 3SAT \leq_m^P CLIQUE.

We need to:

- I. Define a map $f: \Sigma^* \to \Sigma^*$.
- 2. Show $w \in 3SAT \implies f(w) \in CLIQUE$
- 3. Show $w \not\in \mathsf{3SAT} \implies f(w) \not\in \mathsf{CLIQUE}$

4. Argue f is computable in polynomial time.

3SAT ≤ CLIQUE: Defining the map

I. Define a map $f: \Sigma^* \to \Sigma^*$.

Words that don't correspond to a valid encoding of a 3SAT formula get mapped to ϵ .

So assume we are given a valid 3SAT formula φ (with m clauses).

We construct $\langle G, k \rangle$ from φ . (we set k = m)

Construction demonstrated with an example.

$3SAT \leq CLIQUE$: Why it works

- If φ is satisfiable, then G_{φ} has a clique of size m:
 - φ is satisfiable \Longrightarrow

 \exists a truth assignment to variables such that all the clauses are satisfied.

i.e., in each clause, there is a literal set to True.

The vertices corresponding to these literals form a clique of size m.

- two such literals/vertices are not connected only if one is the negation of the other.

$3SAT \leq CLIQUE$: Why it works

If G_{φ} has a clique of size m, then φ is satisfiable:

 G_{φ} has a clique K of size m \Longrightarrow

there is exactly one vertex from each clause in K.

<u>Claim</u>: The literals corresponding to these vertices can be set to True. (i.e., φ is satisfiable)

<u>**Proof</u>:** Only way we could not do this is if K contains a literal and its negation.</u>

But a literal and its negation cannot be both in K (since there is no edge between them).

3SAT ≤ CLIQUE: Poly-time reduction?

Creation of G_{φ} is poly-time:

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most $O(m^2)$ possible edges.
- scan input formula to determine if an edge should be present.

Independent Set is NP-complete

CIRCUIT-SAT is NP-complete

Recall

Theorem: Let $f : \{0,1\}^* \to \{0,1\}$ be a decision problem which can be decided in time O(T(n)). Then it can be computed by a circuit family of size $O(T(n)^2)$.

With this Theorem, it is actually easy to prove that

CIRCUIT-SAT is **NP-**hard.

Proof Sketch

<u>WTS</u>: for an arbitrary L in NP, $L \leq_m^P CIRCUIT-SAT$. i.e., we need to map $x \in \Sigma^*$ to a circuit C_x such that: $x \in L \iff C_x$ is satisfiable.

Since L is in NP, there is a poly-time verifier TM V s.t.:

$$x \in L \quad \iff \quad \exists u, |u| = |x|^k \text{ s.t. } V(x, u) = 1$$

Let C be a poly-size circuit that simulates V.

For $x \in \Sigma^*$, let C_x be C with x-variables set to x. (u-variables are the input)

$$x \in L \iff \exists u \text{ s.t. } V(x, u) = 1$$

 $\iff C_x \text{ is satisfiable.}$