15-251: Great Theoretical Ideas in Computer Science Fall 2016, Lecture 15 October 18, 2016

Approximation Algorithms

SAT	given a Boolean formula F, is it satisfiable?
3SAT	same, but F is a 3-CNF
Vertex-Cover	given G and k are there k vertices which touch all edges?
Clique	are there k vertices all connected?
Max-Cut	is there a vertex 2-coloring with at least k "cut" edges?
Hamiltonian- Cycle	is there a cycle touching each vertex exactly once?

SAT	is NP-complete
3SAT	is NP-complete
Vertex-Cover	is NP-complete
Clique	is NP-complete
Max-Cut	is NP-complete
Hamiltonian- Cycle	is NP-complete

INVENTS BEAUTIFUL THEORY OF ALGORITHMIC COMPLEXITY

EVERYTHING IS NP-COMPLETE

There is only one idea in this lecture:

Don't Give Up

Given graph G = (V, E) and number k, is there a size-k "vertex-cover" for G?

 $S \subseteq V$ is a "vertex-cover" if it touches all edges. (The "popular sets" on HW 5)

Given graph G = (V,E) and number k, is there a size-k "vertex-cover" for G?

 $S \subseteq V$ is a "vertex-cover" if it touches all edges.

G has no vertex-cover of size 2. (Because you need \geq 1 vertex per matching edge.)

Given graph G = (V, E) and number k, is there a size-k "vertex-cover" for G? $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.)}$ The Vertex-Cover problem is NP-complete. \therefore assuming "P \neq NP", there is **no** algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Don't Give Up

Subexponential-time algorithms: Brute-force tries all 2^n subsets of n vertices. Maybe there's an O(1.5ⁿ)-time algorithm. Or O(1.1ⁿ) time, or O($2^{n\cdot 1}$) time, or... Could be quite okay if n = 100, say. As of 2010: there **is** an O(1.28ⁿ)-time algorithm.

> ∴ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Don't Give Up

Special cases: Solvable in poly-time for... tree graphs, bipartite graphs, "series-parallel" graphs...

Perhaps for "graphs encountered in practice"?

∴ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Don't Give Up

Approximation algorithms:

Try to find *pretty small* vertex-covers.

Still want polynomial time, and for all graphs.

∴ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum size vertex-cover.

Gavril's Approximation Algorithm

Easy Theorem (from 1976):

There is a **polynomial-time** algorithm that, given **any** graph G = (V,E), outputs a vertex-cover $S \subseteq V$ such that $|S| \leq 2|S^*|$ where S^{*} is the **smallest** vertex-cover.

"A factor 2-approximation for Vertex-Cover."

Another one of my favorite graph problems: Max-Cut

Input: A graph G=(V,E).

Output: A "2-coloring" of V: each vertex designated blue or gray

Goal:

Have as many **cut** edges as possible. An edge is *cut* if its endpoints have different colors.

Input: A graph G=(V,E).

Output: A "2-coloring" of V: each vertex designated blue or gray.

Goal:

Have as many **cut** edges as possible. An edge is *cut* if its endpoints have different colors.

Max-Cut

On one hand: Finding the MAX-Cut is NP-hard. On the other hand: Polynomial-time "Local Search" algorithm guarantees cutting $\geq \frac{1}{2} |\mathsf{E}|$ edges. (Start with arbitrary 2-coloring and repeatedly switch color of a vertex if it improves cut value, till there is no such vertex.) In particular: (# cut by Local Search) $\geq \frac{1}{2}$ (max # cuttable) "A factor 1/2-approximation for Max-Cut."

Max-Cut

By the way:

Goemans and Williamson (1994) gave a polynomial-time

0.87856-approximation

for Max-Cut.

It is very beautiful, but requires some machinery (semidefinite programming).

A technicality: Optimization vs. Decision NP defined to be a class of decision problems. This is for technical convenience. Usually have natural 'optimization' version.

3SAT	Given a 3-CNF formula, is it satisfiable?
Vertex-Cover	Given G and k, are there k vertices which touch all edges?
Clique	Given G and k, are there k vertices which are all mutually connected?
Max-Cut	Is there a vertex 2-coloring with at least k "cut" edges?
Hamiltonian- Cycle	Is there a cycle touching each vertex exactly once?

A technicality: Optimization vs. Decision NP defined to be a class of decision problems. This is for technical convenience. Usually have natural 'optimization' version.

3SAT

Vertex-Cover

Clique

Given G, find the smallest $S \subseteq V$ touching all edges.

Given G, find the largest clique (set of mutually connected vertices).

Max-Cut

Given G, find the largest number of edges 'cut' by some vertex 2-coloring.

Hamiltonian-Cycle A technicality: **Optimization vs. Decision** NP defined to be a class of **decision problems**. This is for technical convenience. Usually have natural 'optimization' version. Given a 3-CNF formula, find the largest number Max-3SAT of clauses satisfiable by a truth assignment. Given G, find the smallest $S \subseteq V$ Vertex-Cover touching all edges. Given G, find the largest clique Clique (set of mutually connected vertices). Given G, find the largest number of Max-Cut edges 'cut' by some vertex 2-coloring. Hamiltonian-

Cycle

A technicality: **Optimization vs. Decision** NP defined to be a class of **decision problems**. This is for technical convenience. Usually have natural 'optimization' version. Given a 3-CNF formula, find the largest number Max-3SAT of clauses satisfiable by a truth assignment. Given G, find the smallest $S \subseteq V$ Vertex-Cover touching all edges. Given G, find the largest clique Clique (set of mutually connected vertices). Given G, find the largest number of Max-Cut edges 'cut' by some vertex 2-coloring. TSP Given G with edge costs, find the cheapest cycle touching each vertex exactly once.

A technicality: **Optimization vs. Decision** NP defined to be a class of **decision problems**. This is for technical convenience. Usually have natural 'optimization' version. Technically, the 'optimization' versions can't be in NP, since they're not decision problems. We often still say they are NP-hard. This means: *if* you could solve them in poly-time, then you could solve any NP problem in poly-time. Let's not worry about this terminology technicality!

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...

All of these problems are equally NP-hard.

(There's no poly-time algorithm to find the optimal solution unless P = NP.)

But from the point of view of finding *approximately* optimal solutions, there is an intricate, fascinating, and wide range of possibilities...

Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

Given graph G = (V,E) try to find the smallest "vertex-cover" for G.

 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$

A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G) $S \leftarrow \emptyset$ while **not** all edges marked as "covered" find v \in V touching most unmarked edges $S \leftarrow S \cup \{v\}$ mark all edges v touches

(Break ties arbitrarily.)

Done. Vertex-cover size 3 (optimal) ©.

GreedyVC analysis

Correctness: ✓ Always outputs a **valid** vertex-cover. Running time: Polynomial time (good enough). Solution quality: This is the interesting question. There must be some graph G where it doesn't find the smallest vertex-cover.

Because otherwise... P = NP!

A bad graph for GreedyVC

3

Smallest?

A bad graph for GreedyVC

3

4

Smallest? GreedyVC?

So GreedyVC is **not** even a 1.33-approximation. (Because 1.33 < 4/3.)

A worse graph for GreedyVC

Smallest?

GreedyVC?

Poll

21

So GreedyVC is **not** even a 1.74-approximation. (Because 1.74 < 21/12.)

Even worse graph for GreedyVC		
Well it's a good homework problem.		
We know GreedyVC is not a 1.74-approximation.		
Fact:	GreedyVC is not a 2-approximation.	
Fact:	GreedyVC is not a 3.14-approximation.	
Fact:	GreedyVC is not a 42-approximation.	
Fact:	GreedyVC is not a 999-approximation.	

Greed is Bad (for Vertex-Cover)

Theorem: $\forall C$, GreedyVC is **not** a C-approximation.

In other words: For any constant C, there is a graph G such that [GreedyVC(G)] > C - [Min-Vertex-Cover(G)].

Gavril's simple algorithm

GavrilVC(G) S ← Ø while not all edges marked as "covered" let {v,w} be any unmarked edge S ← S ∪ {v,w} mark all edges v,w touch as covered

GavrilVC example

GavrilVC example

GavriIVC example

3

6

Smallest: GavrilVC:

So GavrilVC is **at best** a **2**-approximation.

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its |S| = 2T. Say it picked edges $e_1, e_2, ..., e_T \in E$. **Key claim**: $\{e_1, e_2, \dots, e_T\}$ is a <u>matching</u>. Because... when e_i is picked, it's unmarked, so its endpoints are not among e_1, \ldots, e_{i-1} . So any vertex-cover must have ≥ 1 vertex from each e_i .

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its |S| =2T. Say it picked edges $e_1, e_2, ..., e_T \in E$. **Key claim**: $\{e_1, e_2, \dots, e_T\}$ is a <u>matching</u>. Because... when e_i is picked, it's unmarked, so its endpoints are not among e_1, \ldots, e_{i-1} . So any vertex-cover must have ≥ 1 vertex from each e_i . Including the **minimum** vertex-cover S^* , whatever it is. Thus $|S^*| \ge T$. So for Gavril's final vertex-cover S,

 $|\mathsf{S}| = 2\mathsf{T} \le 2|\mathsf{S}^*|.$

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

"k-Coverage" problem

"Pokémon-Coverage" problem

Let's say you have some Pokémon,

and some trainers, each having a subset of Pokémon.

Given k, choose a team of k trainers to maximize the # of distinct Pokémon.

"Pokémon-Coverage" problem
This problem is NP-hard. ☺
Approximation algorithm?
We could try to be greedy again...

GreedyCoverage() for i = 1...k add to the team the trainer bringing in the most new Pokémon, given the team so far

Example with k=3:

Greed is Pretty Good (for k-Coverage)

Theorem: GreedyCoverage is a 63%-approximation for k-Coverage.

> More precisely, 1–1/e where e ≈ 2.718281828...

Proof: (Don't read if you don't want to.)

Let P^{*} be the Pokémon covered by the best k trainers. Define $r_i = |P^*| - \#$ Pokémon covered after i steps of Greedy. We'll prove by induction that $r_i \leq (1-1/k)^i \cdot |P^*|$. The base case i=0 is clear, as $r_0 = |P^*|$. For the inductive step, suppose Greedy enters its ith step. At this point, the number of uncovered Pokémon in P^{*} must be $\geq r_{i-1}$. We know there are some k trainers covering all these Pokémon. Thus one of these trainers must cover at least r_{i-1}/k of them. Therefore the trainer chosen in Greedy's i'th step will cover $\geq r_{i-1}/k$ Pokémon. Thus $r_i \leq r_{i-1} - r_{i-1}/k = (1-1/k) \cdot r_{i-1} \leq (1-1/k) \cdot (1-1/k)^{i-1} \cdot |P^*|$ by induction. Thus we have completed the inductive proof that $r_i \leq (1-1/k)^i \cdot |P^*|$. Therefore the Greedy algorithm terminates with $r_k \leq (1-1/k)^k \cdot |P^*|$. Since $(1-1/k)^k \leq 1/e$, we get $r_k \leq |P^*|/e$ Thus Greedy covers at least $|P^*| - |P^*|/e = (1-1/e) \cdot |P^*|$ Pokémon. This completes the proof that Greedy is a (1-1/e)-approximation algorithm.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

(Traveling Salesperson Problem)

Many variants. Most common is "Metric-TSP": (distance between two nodes is shortest path in graph)

Input: A graph G=(V,E) with edge costs.
 Output: A "tour": i.e., a walk that visits each vertex at least once, and starts and ends at the same vertex.

Goal: Minimize total cost of tour.

TSP example

TSP is probably the most famous NP-complete problem.

It has inspired many things...

Textbooks

The Traveling Salesman Problem

A Computational Study

Princeton Series in APPLIED MATHEMATICS

The

TRAVELING SALESMAN PROBLEM

A Guided Tour of Combinatorial Optimization

David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook

Gerhard Reinelt

Lecture Notes in Computer Science

The Traveling Salesman

Computational Solutions for TSP Applications

CONSINATORIAL OFTIMIZATION

The Traveling Salesman Problem and Its Variations

Gregory Gittin and Abraham P. Ponnen (Bols.)

Springer

"Popular" books

Movies

0101010001101111					
00100100100000001					
001010110110101011					
0100001000000111					
1010110110001111					
0101110011011001					000100000011100
			10.09		011101110110100
101110110110010101100001 0111010000110100001101010100001					110000101101110
			10111		110100011000010
1111001001000000110100001 1101000110100111011			00101)		011010110010101
0111001110100011000010110			010000		010101110011011
0101011100100111011001100			11010		111011011100010
10000100000011011101100		8000		010110001101110	
1001100101011101000010000				101110011011010	
1011011110110111					01101101010110100
0110111001100100001000000			0101101110001000000110110101100101 10111010001110011011		
1101100110010101110010001			0010000001100010011010010110111001		
0010001101001011011100110 0101011011000110011000100			010000001101101011110010111001101 11010101101		
0100010000001101					010111001101110
1100100000011000					
0011101000111100					
0111010001101000					
1101000011000010					
1110010010000001			001110010		
80000011000110111010101					001101110010031
1111011100110111					001001000000111
1000110111101101					
1101110010011011					
0011000010110111			000001110		
0010000001101101					110010001111001
0100000011000100					100100001000000
1010010110111000					
0000101101110011					
0100011010000110					
0010111010000100					
0101110100011001					
10010110000100		11101	000110		011001010010000
01110100011011		01001	001110		10010003100101
01000000110010		00110	011100	0.00000000000000	001011011100
10010000100000		01101	110111	01110	110010000001
10100011101110		100C	100101	000011	L01101110001
00000111010001	3.	201C	011100	000117	301011010110
11001101111011	34	010	000001	00110	111010101110
10011100110011	00	10 G	011011	0.0000000000000000000000000000000000000	+110101011013
00110010000101	3496.	343	000110		.1001010111001
00100000011014	101	1	101110.		1103113003100111
11011000111100	0000		011100		110111011010010
10110001101100101101	0110		110110		1100100100000001 010100100000011
01000110100001	0101		0110001		1010111110010010
00001110011011	1011		010101		100010000001001
11011000100111	0110		111011		001101001011011
	1101		100010	1100001	011011100010000
10110111000100	011101	0001100	101011100	10011001010	110010000100000
0100010101101110	111000				
0100010101101110 1000001011100000					
0100010101101110 1000001011100000 100011011					
01000101011101110 1000001011100000 100011011	011000				
0100010101101101110 1000004011100000 1000110110010100 01000011001010110 01110110	011000	TUMMERICH	110000101		
0100010101101110 100001011100000 100011011	011000	1008000	110000101	01101011001	010010000001110
0100010101101110 1000001011100000 010000110010100 0100001100101010 0100001100101010 1010110000101100 10101100001001	0110000	1000010100 00010100	110000101	01101011001	010010000001110 101110011011101
	0110000 0110000 011011 010110 001101	1000000 0010100 0001011 1110010	110000101	01101011001 01100110000 01101100101	010010000001110 101110011011101 0110010101111000
0100010101101110 1000001011100000 01000011010010	0110000 0110000 011011 010110 001101 001101	100010100 0010100 0001011 1110010 1001100	10000101000001100000011000000011000000110000	01101011001 01100110000 01101100101 00011100000	010010000001110 101110011011101 0110010101110110

TRAVELLING SALESMAN

TRAVELLINGSALESMANMOVIE.COM @INAVSALEMOVIE

(Advice: do not watch this movie)

'60s sitcom-themed household-goods conglomerate ad/contests

People genuinely want to solve large instances.

Applications in:

- School bus routing
- Moving farm equipment
- Package delivery
- Space interferometer scheduling
- Circuit board drilling
- Genome sequencing

Basic Approximation Algorithm: The MST Heuristic

Given G with edge costs...

Compute an MST T for G, rooted at any s∈V.
 Visit the vertices via DFS from s.

MST Heuristic example

Step 1: MST Step 2: DFS

Valid tour? ✓
Poly-time? ✓
Cost?
2 × MST Cost
(84 in this case)

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.
Key Claim: Optimal TSP cost ≥ MST Cost always.
This implies the Theorem, since
MST Heuristic Cost = 2 × MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution. They form a connected graph on all |V| vertices. Take any spanning tree from within these edges. Its cost is at least the MST Cost. Therefore the original TSP tour's cost is \geq MST Cost.

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time, factor **1.5**-approximation algorithm for (Metric) TSP.

Proof is not **too** hard. Ingredients:

- MST Heuristic
- Eulerian Tours
- Cheapest Perfect Matching algorithm

In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.1 approximation algorithm.

In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.01 approximation algorithm.

In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.001 approximation algorithm.

In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor $1+\epsilon$ approximation algorithm , for any $\epsilon > 0$.

(Running time is like $O(n (\log n)^{1/\epsilon})$.)

Euclidean-TSP: NP-hard, but not **that** hard

n > 10,000 is feasible

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".

3. A 1.5-approximation algorithm for Metric-TSP.

4. A $(1+\epsilon)$ -approximation alg. for Euclidean-TSP.

- 1. A 2-approximation algorithm for Vertex-Cover.
- 2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".

3. A 1.5-approximation algorithm for Metric-TSP.

4. A $(1+\epsilon)$ -approximation alg. for Euclidean-TSP.

 A 2-approximation algorithm for Vertex-Cover
 A 63% (1-1/e) approximation algorithm for Vertex-Cover for the "k-Coverage Problem".

A 1.5-approximation algorithm for Metric-TSP.

4. A $(1+\epsilon)$ -approximation alg. for Euclidean-TSP.

3. A 1.5-approximation algorithm for Metric-TSP. On one hand: No improvement in the last 40 years. On the other hand: Researchers strongly believe we can improve the factor of 1.5. Lots of progress on special cases and related problems in the last 5 years. I predict an improvement within next 6 years.

Computer Scientists Take Road Less Traveled

After decades without progress, new shortcuts are discovered in the traveling salesman problem.

Federal Highway Administration

By Erica Klarreich January 29, 2013

2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".

We cannot do better. (Unless P=NP.)

Theorem: For any $\beta > 1-1/e$, it is NP-hard to factor β -approximate k-Coverage.

Proved in 1998 by Feige, building on many prior works.
Unwound proof length of reduction: ≈ 100 pages.

 A 2-approximation algorithm for Vertex-Cover. It is open if we can do better.
 Theorem (Dinur & Safra, 2002, Annals of Math.): For any β < 10√5 - 21 ≈ 1.36 it is NP-hard to β-approximate Vertex-Cover.

"

Between 1.36 & 2: unknown. But a barrier called "Unique Games Conjecture" has been identified against improving factor 2 approximation

Unique Games Conjecture

Conjecture made by Subhash Khot in 2002 on intractability of certain approximation problem:

2016 MacArthur Fellow (among long list of major honors)

Given linear equations of form $x_i - x_j \equiv \alpha_{ij} \pmod{p}$

such that there is an assignment of $x'_i s$ with values in $\{0, 1, ..., p - 1\}$ satisfying 0.999^* of the equations, it is hard to find assignment satisfying γ_p fraction of the equations, for some $\gamma_p \to 0$ as $p \to \infty$

* 0.999 is really $(1-\varepsilon)$ for arbitrary $\varepsilon > 0$

The Unique Games Conjecture
has many striking consequencesNo (2-ε)-approximation algo for Vertex Cover [Khot-Regev'03]No (0.87856+ε)-approx. algo. for Max-Cut!

[Khot-Kindler-Mossel-O'Donnell'05]

Single unified algorithm (semidefinite programming) gives optimal approximation for all *constraint satisfaction problems* (like Max-Cut, Max-3SAT, etc.) [Raghavendra'08]

And many more implications...

Unlike P vs. NP, no consensus opinion on UGC's validity. A fascinating chapter in current algorithms & complexity research

Study Guide

Definitions:

Approximation algorithm.

The idea of "greedy" algorithms.

Algorithms and analysis:

Gavril algorithm for Vertex-Cover.

MST Heuristic for TSP.