15-251: Great Theoretical Ideas in Computer Science

Fall 2016, Lecture 15
October 18, 2016

Approximation Algorithms




SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

given a Boolean formula F,
IS It satisfiable?

same, but F iIs a 3-CNF

given G and k... are there k
vertices which touch all edges?

are there k vertices all connected?

IS there a vertex 2-coloring with
at least k “cut” edges?

IS there a cycle touching each
vertex exactly once?



SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

.. IS NP-complete

.. IS NP-complete

.. Is NP-complete

.. Is NP-complete

.. Is NP-complete

.. IS NP-complete



INVENTS BEAUTIFUL THEORY
(IF ALGORITHMIC GOMPIE)(ITY

-

EVERYTHING IS NP-COMPLETE




There is only one idea In this lecture:

Don't Give Up



Vertex-Cover

Given graph G = (V,E) and number Kk,
IS there a size-k “vertex-cover” for G?

S € Vis a “vertex-cover’ if it touches all edges.
(The “popular sets” on HW 5)

G has a vertex-cover of size 3.



Vertex-Cover
Given graph G = (V,E) and number K,
IS there a size-k “vertex-cover” for G?

S € Vs a “vertex-cover” if it touches all edges.

G has no vertex-cover of size 2.
(Because you need = 1 vertex per matching edge.)



Vertex-Cover

Given graph G = (V,E) and number Kk,
IS there a size-k “vertex-cover” for G?

(S € Vis a “vertex-cover” if it touches all edges.)

The Vertex-Cover problem is NP-complete. ®

~.assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimum-size vertex-cover.



Don’t Give Up

Subexponential-time algorithms:
Brute-force tries all 2" subsets of n vertices.
Maybe there’s an O(1.5™)-time algorithm.
Or O(1.1") time, or O(2"") time, or...
Could be quite okay if n = 100, say.
As of 2010: there is an O(1.28")-time algorithm.

- assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimum-size vertex-cover.



Don’t Give Up

Special cases:
Solvable in poly-time for...
tree graphs,
bipartite graphs,
“series-parallel” graphs...

Perhaps for “graphs encountered in practice™?

~. assuming “P # NP”, there is no algorithm
running in polynomial time
which, foi all graphs C,
finds the minimum-size vertex-cover.



Don’t Give Up

Approximation algorithms:
Try to find pretty small vertex-covers.

Still want polynomial time, and for all graphs.

~. assuming “P # NP”, there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimum-size vertex-cover.



Gavril’s Approximation Algorithm

Easy Theorem (from 1976):

~

There Is a polynomial-time algorithm that,
given any graph G = (V,E),
outputs a vertex-cover S € V such that

S| < 2|S7]
K where S’ is the smallest vertex-cover. /

“A factor 2-approximation for Vertex-Cover.”



Another one of my favorite graph problems:
Max-Cut

Input:  Agraph G=(V,E).

Output: A“2-coloring” of V:
each vertex designated blue or gray

Goal: Have as many cut edges as possible.
An edge is cut If its endpoints have
different colors.



Max-Cut

Input: A graph G=(V,E).

Output: A“2-coloring” of V:
each vertex designated blue or gray.

Goal: Have as many cut edges as possible.
An edge is cut If its endpoints have
different colors.



Max-Cut

On one hand: Finding the MAX-Cut is NP-hard.

On the other hand:
Polynomial-time “Local Search” algorithm

guarantees cutting = %2|E| edges.

(Start with arbitrary 2-coloring and repeatedly switch color of a
vertex If it improves cut value, till there is no such vertex.)

In particular:
(# cut by Local Search) = %2 (max # cuttable)

“A factor Y2-approximation for Max-Cut.”



Max-Cut

By the way:

Goemans and Williamson (1994)
gave a polynomial-time

0.87856-approximation

for Max-Cut.

It Is very beautiful, but requires some machinery
(semidefinite programming).



A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.
This is for technical convenience.

Usually have natural ‘optimization’ version.

3SAT Given a 3-CNF formula, is it satisfiable?

Given G and k, are there k

Vertex-Cover : )
vertices which touch all edges?

Given G and k, are there k vertices

Clique :
which are all mutually connected?
Max-Cut Is there a vertex 2-coloring with
at least k “cut” edges?
Hamiltonian- Is there a cycle touching each

Cycle vertex exactly once?



A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.
This is for technical convenience.

Usually have natural ‘optimization’ version.

3SAT

Given G, find the smallest S € V

Vertex-Cover :
touching all edges.

Given G, find the largest clique

Clique :
(set of mutually connected vertices).
Max-Cut Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.
Hamiltonian-

Cycle



A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.
This is for technical convenience.

Usually have natural ‘optimization’ version.

Given a 3-CNF formula, find the largest number

Max-3SAT of clauses satisfiable by a truth assignment.

Given G, find the smallest S € V

Vertex-Cover :
touching all edges.

Given G, find the largest clique

Clique :
(set of mutually connected vertices).
Max-Cut Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.
Hamiltonian-

Cycle



A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.
This is for technical convenience.

Usually have natural ‘optimization’ version.

Given a 3-CNF formula, find the largest number

Max-3SAT of clauses satisfiable by a truth assignment.

Given G, find the smallest S € V

Vertex-Cover :
touching all edges.

Given G, find the largest clique

Clique :
(set of mutually connected vertices).
Max-Cut Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.
TSP Given G with edge costs, find the cheapest

cycle touching each vertex exactly once.



A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.
This is for technical convenience.

Usually have natural ‘optimization’ version.

Technically, the ‘optimization’ versions can'’t
be in NP, since they're not decision problems.

We often still say they are NP-hard.

This means: If you could solve them in poly-time,
then you could solve any NP problem in poly-time.

Let’'s not worry about this terminology technicality!



Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...

All of these problems are equally NP-hard.

(There’s no poly-time algorithm to find
the optimal solution unless P = NP.)

But from the point of view of finding
approximately optimal solutions,
there Is an intricate, fascinating, and wide
range of possibilities...



Today: A case study of
approximation algorithms

1. Asomewhat good approximation algorithm
for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.



Today: A case study of
approximation algorithms

1. Asomewhat good approximation algorithm
for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.



Vertex-Cover

Given graph G = (V,E) try to find the
smallest “vertex-cover” for G.

(S € Vis a “vertex-cover” if it touches all edges.)



A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GeedyVC(G)

S—20

while not all edges marked as “covered”
find veV touching most unmarked edges
S «— Su{v}

\ mark all edges v touches

\




GreedyVC example



GreedyVC example

(Break ties arbitrarily.)

2 2 0



GreedyVC example




GreedyVC example

Done. Vertex-cover size 3 (optimal) ©.



GreedyVC analysis

Correctness:
v/ Always outputs a valid vertex-cover.

Running time:
v Polynomial time (good enough).

Solution quality:
This Is the interesting question.
There must be some graph G where it
doesn’t find the smallest vertex-cover.
Because otherwise... P = NP!



A bad graph for GreedyVC

Smallest? 3



A bad graph for GreedyVC

Smallest? 3 So GreedyVC iIs not even
a 1.33-approximation.

GreedyVC? 4
Y (Because 1.33 < 4/3.)



A worse graph for GreedyVC

Smallest? So GreedyVC iIs not even

a 1./4-approximation.

GreedyVC? 21
Y (Because 1.74 < 21/12.)



Even worse graph for GreedyVC

Well... it's a good homework problem.

We know GreedyVC Is not a 1.74-approximation.

Fact: GreedyVC Is not a 2-approximation.
Fact: GreedyVC Is not a 3.14-approximation.
Fact: GreedyVC is not a 42-approximation.

Fact: GreedyVC is not a 999-approximation.



Greed I1s Bad (for Vertex-Cover)

Theorem: VC, GreedyVC is not a C-approximation.

In other words:
For any constant C,
there Is a graph G such that

|GreedyVC(G)| > C - [Min-Vertex-Cover(G)|.



Gavril’s simple algorithm

@avriIVC(G) \

S—0
while not all edges marked as “covered”

let {v,w} be any unmarked edge
S «— Su{vwi}
K mark all edges v,w touch as covered /




GavrilVC example



GavrilVC example




GavrilVC example

Smallest: 3 So GavrilVC is at best

GavrilVC: 6 a 2-approximation.



Theorem:
GavrilVC Is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its |S| = 2T.
Say it picked edges e, e,, ..., et E E. N
Key claim: {eq, e,, ..., €7} IS a matching.
Because... when e; is picked, it's unmarked,

SO Its endpoints are not among ey, ..., €j_4.
So any vertex-cover must have = 1 vertex from each e;.




Theorem:
GavrilVC Is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its |S| = 2T.
Say it picked edges e, e,, ..., et E E.
Key claim: {eq, e,, ..., €7} IS a matching.
Because... when e; is picked, it's unmarked,

SO Its endpoints are not among ey, ..., €j_4.
So any vertex-cover must have = 1 vertex from each e;.
Including the minimum vertex-cover S, whatever it is.
Thus |S| = T.
So for Gavril’s final vertex-cover S,

IS| = 2T < 2|S7].




Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.



Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm
for the "k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.



“k-Coverage” problem



Let's say you have
some Pokémon,

and some trainers,

each having a
subset of Pokémon.

Given k, choose a

team of k trainers

to maximize the #
of distinct Pokémon.




“Pokéemon-Coverage” problem

This problem is NP-hard. ®
Approximation algorithm?

We could try to be greedy again...

-

\_

GreedyCoverage()

forir=1...k
add to the team the trainer bringing in the
most new Pokemon, given the team so far




Example with k=3:

30 Pokémon
SRIEIIEES

Optimum: 27 So Greedy is at best
GreedyCoverage: 27 a /7.7%-approximation.



Greed Is Pretty Good (for k-Coverage)

Theorem:
GreedyCoverage Is a 63%-approximation

[ for k-Coverage.

More precisely, 1-1/e
where e = 2.718281828...



Proof: (Don’t read if you don’'t want to.)

Let P* be the Pokémon covered by the best k trainers.

Define r; = |P*| — # Pokémon covered after i steps of Greedy.

We’'ll prove by induction that r, < (1-1/k)" - [P*|.

The base case i=0 is clear, as r, = |P*|.

For the inductive step, suppose Greedy enters its ith step.

At this point, the number of uncovered Pokémon in P* must be = r_,.
We know there are some k trainers covering all these Pokémon.
Thus one of these trainers must cover at least r,_,/k of them.

Therefore the trainer chosen in Greedy'’s i’'th step will cover = r,_,/k Pokémon.

Thusr, < r_, = r_/k=(1-1/k)r_; < (1-1/k)-(1-1/k)"*-|P*| by induction.
Thus we have completed the inductive proof that r, < (1-1/k)' - |P*|.
Therefore the Greedy algorithm terminates with r, < (1-1/k)<- |[P*|.

Since (1-1/k)k < 1/e, we get r, < |P*|/e

Thus Greedy covers at least |P*| — |P*|/e= (1-1/e) - |P*| Pokémon.

This completes the proof that Greedy is a (1-1/e)-approximation algorithm.



Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A63% (1-1/e) approximation algorithm
for the "k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.



Today: A case study of
approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A63% (1-1/e) approximation algorithm
for the “k-Coverage Problem”.

3. Some very good approximation algorithms
for TSP.



TSP
(Traveling Salesperson Problem)

Many variants. Most common is “Metric-TSP”:
(distance between two nodes is shortest path in graph)

Input: A graph G=(V,E) with edge costs.

Output: A “tour”: i.e., a walk that visits each
vertex at least once, and starts and
ends at the same vertex.

Goal: Minimize total cost of tour.
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TSP Is probably the most
famous NP-complete problem.

It has inspired many things...
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Salesman Problem

David L. Applegate,

Robert E. Bixby, Vasek Chvatal,
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“Popular” books
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(Advice: do not watch this movie)



'60s sitcom-themed household-goods
conglomerate ad/contests




People genuinely want to solve large instances.

Applications In:
« School bus routing
* Moving farm equipment
« Package delivery
« Space interferometer scheduling
« Circult board drilling
« (Genome seguencing



Basic Approximation Algorithm:
The MST Heuristic

Given G with edge costs...

1. Compute an MST T for G, rooted at any seV.
2. Visit the vertices via DFS from s.




MST Heuristic example

Step 1: MST
Step 2: DFS

Valid tour?
Poly-time?

Cost?

2 X MST Cost

(84 in this case)



MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.
Key Claim: Optimal TSP cost = MST Cost always.

This implies the Theorem, since
MST Heuristic Cost = 2 x MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution.

They form a connected graph on all |V| vertices.
Take any spanning tree from within these edges.

Its cost Is at least the MST Cost.

Therefore the original TSP tour’s cost is = MST Cost.




Can we do better?

Nicos Christofides, Tepper faculty, 1976:

There Is a polynomial-time,
factor 1.5-approximation
algorithm for (Metric) TSP.

Proof is not too hard. Ingredients:
 MST Heuristic
» Eulerian Tours
* Cheapest Perfect Matching algorithm



Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.1

approximation algorithm.




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.01
approximation algorithm.




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a
polynomial-time factor 1.001
approximation algorithm.




Even better in a special case

In the important special case “Euclidean-TSP”,
vertices are points in R?,
costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a

polynomial-time factor 1+€

approximation algorithm , for any € > 0.

(Running time is like O(n (log n)¥/¢).)



Euclidean-TSP:
NP-hard, but not that hard

n> 10,000
IS feasible




Today: A case study of
approximation algorithms

. A 2-approximation algorithm for Vertex-Cover.

. A63% (1-1/e) approximation algorithm
for the “k-Coverage Problem”.

. A 1.5-approximation algorithm for Metric-TSP.

. A (1+€)-approximation alg. for Euclidean-TSP.



Can we do better?

. A 2-approximation algorithm for Vertex-Cover.

. A63% (1-1/e) approximation algorithm
for the “k-Coverage Problem”.

. A 1.5-approximation algorithm for Metric-TSP.

. A (1+€)-approximation alg. for Euclidean-TSP.



Can we do better?

What more do you want?!

4. A (1+e€)-approximation alg. for Euclidean-TSP.



Can we do better?

3. A 1.5-approximation algorithm for Metric-TSP.

On one hand:
No improvement in the last 40 years.

On the other hand:
Researchers strongly believe we
can improve the factor of 1.5.

Lots of progress on special cases and
related problems in the last 5 years.

| predict an improvement within next 6 years.



CUANTA S

Computer Scientists Take Road Less Traveled

After decades without progress, new shortcuts are discovered in the
traveling salesman problem.

3y Erica Klarreich




Can we do better?

2. A63% (1-1/e) approximation algorithm
for the “k-Coverage Problem”.

We cannot do better. (Unless P=NP.)

Theorem: Forany > 1-1/e, it is NP-hard
to factor B-approximate k-Coverage.

Proved in 1998 by Feige,
building on many prior works.

Unwound proof length of reduction: = 100 pages. = *° -



Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.
It IS open If we can do better.

Theorem (Dinur & Safra, 2002, Annals of Math.):

For any B < 10v/5 — 21 = 1.36
it iIs NP-hard to 3-approximate Vertex-Cover.




Approximating Vertex-Cover

Approximation Factor

NP-hard (Dinur—Safra) Poly-time (Gauvril)
| P —
1 1.36 2

Between 1.36 & 2: unknown.
But a barrier called “Unique Games Conjecture”
has been identified against improving factor 2 approximation



Unique Games Conjecture

Conjecture made by Subhash Khot
In 2002 on intractabllity of certain
approximation problem:

_ _ _ 2016 MacArthur Fellow
Given linear equations of (among long list of major honors)

form Xi — Xj — a;j (mOd p)

such that there is an assignment of x;s with values
in {0,1, ...,p — 1} satisfying 0.999* of the equations,

it Is hard to find assignment satisfying y,, fraction
of the equations, for some y, > 0asp —» »

*0.999 is really (1-¢) for arbitrary £>0



The Unique Games Conjecture
has many striking consequences

No (2-¢)-approximation algo for Vertex Cover [khot-Regev'03]

No (0.87856+¢)-approx. algo. for Max-Cut!
[Khot-Kindler-Mossel-O’'Donnell’05]

Single unified algorithm (semidefinite programming)
gives optimal approximation for all constraint satisfaction
problems (like Max-Cut, Max-3SAT, etc.) [Raghavendra’08]

And many more implications...

Unlike P vs. NP, no consensus opinion on UGC's validity.
A fascinating chapter in current algorithms & complexity research



Study Guide

Definitions:

Approximation algorithm.

The idea of “greedy”
algorithms.

Algorithms and analysis:

Gauvril algorithm for

Vertex-Cover.

MST Heuristic for TSP.



