15-251: Great Theoretical Ideas in Computer Science Fall 2016, Lecture 15
October 18, 2016

Approximation Algorithms

 is it satisfiable?

3SAT same, but F is a 3-CNF

Vertex-Cover

Clique

Max-Cut
given G and k ... are there k vertices which touch all edges?
are there k vertices all connected?
is there a vertex 2-coloring with at least k "cut" edges?

Hamiltonian- is there a cycle touching each Cycle vertex exactly once?

3SAT
... is NP-complete

Vertex-Cover ... is NP-complete

Clique
... is NP-complete

Max-Cut
... is NP-complete

Hamiltonian... is NP-complete

Cycle

INUENTS REAUTIFUL THEOBY OF AICORITHMIL COMPLEXITY

EVERYTHING IS NP-GOMPLETE

There is only one idea in this lecture:

Don't Give Up

Vertex-Cover

Given graph $G=(V, E)$ and number k, is there a size-k "vertex-cover" for G?
$\mathrm{S} \subseteq \mathrm{V}$ is a "vertex-cover" if it touches all edges.
(The "popular sets" on HW 5)

G has a vertex-cover of size 3.

Vertex-Cover

Given graph $G=(V, E)$ and number k, is there a size-k "vertex-cover" for G?
$\mathrm{S} \subseteq \mathrm{V}$ is a "vertex-cover" if it touches all edges.

G has no vertex-cover of size 2 .
(Because you need ≥ 1 vertex per matching edge.)

Vertex-Cover

Given graph $G=(V, E)$ and number k, is there a size-k "vertex-cover" for G ?
($\mathrm{S} \subseteq \mathrm{V}$ is a "vertex-cover" if it touches all edges.)

The Vertex-Cover problem is NP-complete. :
\therefore assuming " $\mathrm{P} \neq \mathrm{NP}$ ", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Don't Give Up

Subexponential-time algorithms:
Brute-force tries all 2^{n} subsets of n vertices. Maybe there's an $\mathrm{O}\left(1.5^{\mathrm{n}}\right)$-time algorithm.
Or $O\left(1.1^{n}\right)$ time, or $O\left(2^{n \cdot 1}\right)$ time, or...
Could be quite okay if $n=100$, say.
As of 2010: there is an $\mathrm{O}\left(1.28^{\mathrm{n}}\right)$-time algorithm.
\therefore assuming " $\mathrm{P} \neq \mathrm{NP}$ ", there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimum-size vertex-cover.

Don't Give Up

Special cases:
Solvable in poly-time for...
tree graphs,
bipartite graphs,
"series-parallel" graphs...
Perhaps for "graphs encountered in practice"?
\therefore assuming " $\mathrm{P} \neq \mathrm{NP}$ ", there is no algorithm
running in polynomial time which, fol all graphs G,
finds the minimum-size vertex-cover.

Don't Give Up

Approximation algorithms:
Try to find pretty small vertex-covers.
Still want polynomial time, and for all graphs.
\therefore assuming " $\mathrm{P} \neq \mathrm{NP}$ ", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Gavril's Approximation Algorithm

Easy Theorem (from 1976):

There is a polynomial-time algorithm that, given any graph $G=(V, E)$, outputs a vertex-cover $\mathrm{S} \subseteq \mathrm{V}$ such that

$$
|S| \leq 2\left|S^{*}\right|
$$

where S^{*} is the smallest vertex-cover.
"A factor 2-approximation for Vertex-Cover."

Another one of my favorite graph problems:

Max-Cut

Input: $\quad \mathrm{A}$ graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Output: A "2-coloring" of V: each vertex designated blue or gray

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.

Max-Cut

Input: $\quad \mathrm{A}$ graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Output: A "2-coloring" of V: each vertex designated blue or gray.

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.

Max-Cut

On one hand: Finding the MAX-Cut is NP-hard.
On the other hand:
Polynomial-time "Local Search" algorithm
guarantees cutting $\geq 1 / 2 \mid$ 티 edges.
(Start with arbitrary 2-coloring and repeatedly switch color of a vertex if it improves cut value, till there is no such vertex.)

In particular:
(\# cut by Local Search) $\geq 112($ max \# cuttable)
"A factor $1 / 2$-approximation for Max-Cut."

Max-Cut

By the way:
Goemans and Williamson (1994) gave a polynomial-time

0.87856-approximation
for Max-Cut.
It is very beautiful, but requires some machinery (semidefinite programming).

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems. This is for technical convenience.
Usually have natural 'optimization' version.

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given a 3-CNF formula, is it satisfiable?
Given G and k, are there k vertices which touch all edges?

Given G and k, are there k vertices which are all mutually connected?

Is there a vertex 2-coloring with at least k "cut" edges?

Is there a cycle touching each vertex exactly once?

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems. This is for technical convenience.

Usually have natural 'optimization' version.

3SAT

Vertex-Cover

Clique

Max-Cut

Given G , find the smallest $\mathrm{S} \subseteq \mathrm{V}$ touching all edges.

Given G, find the largest clique (set of mutually connected vertices).

Given G, find the largest number of edges 'cut' by some vertex 2 -coloring.

Hamiltonian-
Cycle

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems. This is for technical convenience.

Usually have natural 'optimization' version.

Max-3SAT

Vertex-Cover

Clique

Max-Cut

Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.

Given G , find the smallest $\mathrm{S} \subseteq \mathrm{V}$ touching all edges.

Given G , find the largest clique (set of mutually connected vertices).

Given G, find the largest number of edges 'cut' by some vertex 2 -coloring.

Hamiltonian-
Cycle

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems. This is for technical convenience.

Usually have natural 'optimization' version.

Max-3SAT

Vertex-Cover

Clique

Max-Cut

TSP

Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.

Given G , find the smallest $\mathrm{S} \subseteq \mathrm{V}$ touching all edges.

Given G , find the largest clique (set of mutually connected vertices).

Given G, find the largest number of edges 'cut' by some vertex 2 -coloring.

Given G with edge costs, find the cheapest cycle touching each vertex exactly once.

A technicality: Optimization vs. Decision

NP defined to be a class of decision problems.
This is for technical convenience.
Usually have natural 'optimization' version.
Technically, the 'optimization' versions can't be in NP, since they're not decision problems.

We often still say they are NP-hard.
This means: if you could solve them in poly-time, then you could solve any NP problem in poly-time.

Let's not worry about this terminology technicality!

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...
All of these problems are equally NP-hard.
(There's no poly-time algorithm to find the optimal solution unless $\mathrm{P}=\mathrm{NP}$.)

But from the point of view of finding approximately optimal solutions, there is an intricate, fascinating, and wide range of possibilities...

Today: A case study of

 approximation algorithms1. A somewhat good approximation algorithm for Vertex-Cover.
2. A pretty good approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

Today: A case study of

 approximation algorithms1. A somewhat good approximation algorithm for Vertex-Cover.
2. A pretty good approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

Vertex-Cover

Given graph $G=(V, E)$ try to find the smallest "vertex-cover" for G.
($\mathrm{S} \subseteq \mathrm{V}$ is a "vertex-cover" if it touches all edges.)

A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)
$S \leftarrow \emptyset$
while not all edges marked as "covered"
find $v \in V$ touching most unmarked edges
$S \leftarrow S \cup\{v\}$
mark all edges v touches

GreedyVC example

GreedyVC example

(Break ties arbitrarily.)

GreedyVC example

GreedyVC example

Done. Vertex-cover size 3 (optimal) ©

GreedyVC analysis

Correctness:
$\sqrt{ }$ Always outputs a valid vertex-cover.
Running time:
\checkmark Polynomial time (good enough).
Solution quality:
This is the interesting question.
There must be some graph G where it doesn't find the smallest vertex-cover.
Because otherwise... $P=N P!$

A bad graph for GreedyVC

Smallest?
3

A bad graph for GreedyVC

Smallest?
GreedyVC?

3
4

So GreedyVC is not even a 1.33-approximation.
(Because $1.33<4 / 3$.)

A worse graph for GreedyVC

Smallest?
GreedyVC?

Poll
21

So GreedyVC is not even a 1.74-approximation.
(Because 1.74 < 21/12.)

Even worse graph for GreedyVC

Well... it's a good homework problem.
We know GreedyVC is not a 1.74-approximation.
Fact: GreedyVC is not a 2-approximation.
Fact: GreedyVC is not a 3.14-approximation.
Fact: GreedyVC is not a 42-approximation.
Fact: GreedyVC is not a 999-approximation.

Greed is Bad (for Vertex-Cover)

Theorem: $\forall C$, GreedyVC is not a C-approximation.
In other words:
For any constant C, there is a graph G such that
|GreedyVC(G)| > C • |Min-Vertex-Cover(G)|.

Gavril's simple algorithm

GavrilVC(G)
$S \leftarrow \emptyset$
while not all edges marked as "covered"
let $\{v, w\}$ be any unmarked edge
$S \leftarrow S \cup\{v, w\}$
mark all edges v,w touch as covered

GavriIVC example

GavriIVC example

GavriIVC example

Smallest:
GavrilVC:
3
So GavrilVC is at best a 2-approximation.

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its $|S|=2 T$. Say it picked edges $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{T}} \in \mathrm{E}$.
Key claim: $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{T}}\right\}$ is a matching.
Because... when e_{j} is picked, it's unmarked,
so its endpoints are not among $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{j}-1}$.
So any vertex-cover must have ≥ 1 vertex from each e_{j}.

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its $|S|=\quad \underline{2 T}$. Say it picked edges $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{T}} \in \mathrm{E}$.
Key claim: $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{T}}\right\}$ is a matching.
Because... when e_{j} is picked, it's unmarked,
so its endpoints are not among $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{j}-1}$.
So any vertex-cover must have ≥ 1 vertex from each e_{j}. Including the minimum vertex-cover S^{*}, whatever it is.
Thus $\left|S^{*}\right| \geq \mathrm{T}$.
So for Gavril's final vertex-cover S,

$$
|S|=2 T \leq 2\left|S^{*}\right|
$$

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A pretty good approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A pretty good approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

"k-Coverage" problem

"Pokémon-Coverage" problem

Let's say you have some Pokémon, and some trainers, each having a subset of Pokémon.

Given k, choose a team of k trainers to maximize the \# of distinct Pokémon.

"Pokémon-Coverage" problem

This problem is NP-hard. :
Approximation algorithm?
We could try to be greedy again...

GreedyCoverage()
for $\mathrm{i}=1 . . . \mathrm{k}$
add to the team the trainer bringing in the most new Pokémon, given the team so far

Example with $\mathrm{k}=3$:

Optimum: 27
GreedyCoverage:
21

So Greedy is at best

a 77.7\%-approximation.

Greed is Pretty Good (for k-Coverage)

Theorem:

GreedyCoverage is a 63\%-approximation
 for k-Coverage.

More precisely, 1-1/e where e $\approx 2.718281828 \ldots$

Proof: (Don't read if you don't want to.)

Let P^{*} be the Pokémon covered by the best k trainers.
Define $r_{i}=\left|P^{*}\right|-\#$ Pokémon covered after i steps of Greedy.
We'll prove by induction that $r_{i} \leq(1-1 / k)^{i} \cdot\left|P^{*}\right|$.
The base case $\mathrm{i}=0$ is clear, as $r_{0}=\left|\mathrm{P}^{*}\right|$.
For the inductive step, suppose Greedy enters its ith step.
At this point, the number of uncovered Pokémon in P^{*} must be $\geq r_{i-1}$.
We know there are some k trainers covering all these Pokémon.
Thus one of these trainers must cover at least r_{i-1} / k of them.
Therefore the trainer chosen in Greedy's i'th step will cover $\geq r_{i-1} / k$ Pokémon.
Thus $r_{i} \leq r_{i-1}-r_{i-1} / k=(1-1 / k) \cdot r_{i-1} \leq(1-1 / k) \cdot(1-1 / k)^{i-1} \cdot\left|P^{*}\right|$ by induction.
Thus we have completed the inductive proof that $r_{i} \leq(1-1 / k)^{i} \cdot\left|P^{*}\right|$.
Therefore the Greedy algorithm terminates with $r_{k} \leq(1-1 / k)^{k} \cdot\left|P^{*}\right|$.
Since $(1-1 / k)^{k} \leq 1 / e$, we get $r_{k} \leq\left|P^{*}\right| / e$
Thus Greedy covers at least $\left|P^{*}\right|-\left|P^{*}\right| / e=(1-1 / e) \cdot\left|P^{*}\right|$ Pokémon.
This completes the proof that Greedy is a (1-1/e)-approximation algorithm.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A $63 \%(1-1 / \mathrm{e})$ approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A $63 \%(1-1 / \mathrm{e})$ approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

TSP

(Traveling Salesperson Problem)

Many variants. Most common is "Metric-TSP":
(distance between two nodes is shortest path in graph)

Input: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with edge costs.
Output: A "tour": i.e., a walk that visits each vertex at least once, and starts and ends at the same vertex.

Goal: Minimize total cost of tour.

TSP example

Cheapest tour:

$$
\begin{array}{r}
3 \\
+\quad 5 \\
+\quad 5 \\
+\quad 16 \\
+\quad 26 \\
+\quad 4 \\
+\quad 12 \\
+\quad 2 \\
+\quad 2 \\
=
\end{array}
$$

TSP is probably the most famous NP-complete problem.

It has inspired many things...

Textbooks

"Popular" books

Movies

(Advice: do not watch this movie)

'60s sitcom-themed household-goods conglomerate ad/contests

People genuinely want to solve large instances.

Applications in:

- School bus routing
- Moving farm equipment
- Package delivery
- Space interferometer scheduling
- Circuit board drilling
- Genome sequencing

Basic Approximation Algorithm: The MST Heuristic

Given G with edge costs...

1. Compute an MST T for G, rooted at any seV.
2. Visit the vertices via DFS from s.

MST Heuristic example

Step 1: MST Step 2: DFS

Valid tour?

Poly-time? $\sqrt{ }$
Cost?
$2 \times$ MST Cost
(84 in this case)

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.
Key Claim: Optimal TSP cost \geq MST Cost always.
This implies the Theorem, since
MST Heuristic Cost $=2 \times$ MST Cost.
Proof of Claim:
Take all edges in optimal TSP solution.
They form a connected graph on all |V| vertices.
Take any spanning tree from within these edges.
Its cost is at least the MST Cost.
Therefore the original TSP tour's cost is \geq MST Cost.

Can we do better?

Nicos Christofides, Tepper faculty, 1976:
There is a polynomial-time, factor 1.5-approximation algorithm for (Metric) TSP.

Proof is not too hard. Ingredients:

- MST Heuristic
- Eulerian Tours
- Cheapest Perfect Matching algorithm

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.1 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.01
 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.001
 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor $\quad 1+\epsilon$

approximation algorithm , for any $\epsilon>0$.
(Running time is like $O\left(n(\log n)^{1 / \epsilon}\right)$.)

Euclidean-TSP:

NP-hard, but not that hard

$n>10,000$ is feasible

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A $63 \%(1-1 / \mathrm{e})$ approximation algorithm for the "k-Coverage Problem".
3. A 1.5-approximation algorithm for Metric-TSP.
4. $\mathrm{A}(1+\epsilon)$-approximation alg. for Euclidean-TSP.

Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.
2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".
3. A 1.5-approximation algorithm for Metric-TSP.
4. $\mathrm{A}(1+\epsilon)$-approximation alg. for Euclidean-TSP.

Can we do better?

What more do you want?!
4. $\mathrm{A}(1+\epsilon)$-approximation alg. for Euclidean-TSP.

Can we do better?

3. A 1.5-approximation algorithm for Metric-TSP.

On one hand:
No improvement in the last 40 years.
On the other hand:
Researchers strongly believe we can improve the factor of 1.5 .

Lots of progress on special cases and related problems in the last 5 years.

I predict an improvement within next 6 years.

Computer Scientists Take Road Less Traveled

After decades without progress, new shortcuts are discovered in the traveling salesman problem.

Federal Highway Administration
\square
\square
\square
\square©

Can we do better?

2. A 63\% (1-1/e) approximation algorithm for the "k-Coverage Problem".

We cannot do better. (Unless P=NP.)
Theorem: For any $\beta>1-1 / e$, it is NP-hard to factor β-approximate k-Coverage.

Proved in 1998 by Feige, building on many prior works.
Unwound proof length of reduction: ≈ 100 pages.

Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.

It is open if we can do better.
Theorem (Dinur \& Safra, 2002, Annals of Math.):
For any $\beta<10 \sqrt{5}-21 \approx 1.36$
it is NP-hard to β-approximate Vertex-Cover.

Approximating Vertex-Cover

Approximation Factor

NP-hard (Dinur-Safra) Poly-time (Gavril)

Between 1.36 \& 2: unknown.
But a barrier called "Unique Games Conjecture"
has been identified against improving factor 2 approximation

Unique Games Conjecture

Conjecture made by Subhash Khot in 2002 on intractability of certain approximation problem:

2016 MacArthur Fellow (among long list of major honors)
Given linear equations of form $x_{i}-x_{j} \equiv \alpha_{i j}(\bmod p)$
such that there is an assignment of $x_{i}^{\prime} s$ with values in $\{0,1, \ldots, p-1\}$ satisfying 0.999^{*} of the equations,
it is hard to find assignment satisfying γ_{p} fraction of the equations, for some $\gamma_{p} \rightarrow 0$ as $p \rightarrow \infty$

* 0.999 is really $(1-\varepsilon)$ for arbitrary $\varepsilon>0$

The Unique Games Conjecture has many striking consequences

No (2- ε)-approximation algo for Vertex Cover [Khot-Regev'03]
No (0.87856+ $)$-approx. algo. for Max-Cut!
[Khot-Kindler-Mossel-O'Donnell'05]
Single unified algorithm (semidefinite programming) gives optimal approximation for all constraint satisfaction problems (like Max-Cut, Max-3SAT, etc.) [Raghavendra'08]

And many more implications...

Unlike P vs. NP, no consensus opinion on UGC's validity. A fascinating chapter in current algorithms \& complexity research

Study Guide

Definitions:

Approximation algorithm.
The idea of "greedy" algorithms.

Algorithms and analysis:

Gavril algorithm for
Vertex-Cover.

MST Heuristic for TSP.

