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Proving the famous

“Gödel Incompleteness Theorems”

is easy if you use computer science.

It’s a Great Application of Theoretical

Computer Science to mathematics.



Euclid’s Elements (ca. 300 BCE),

on plane geometry.

Canonized the idea of giving

a rigorous, axiomatic deduction 

for all theorems.

Formalization of proofs



1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and radius.

4. That all right angles are equal to one another.

5. “Parallel postulate” That, if a straight line falling on two straight lines make 

the interior angles on the same side less than two right angles, the two 

straight lines, if produced indefinitely, meet on that side on 

which are the angles less than the two right angles.

Euclid’s 5 axioms of plane geometry:

Formalization of proofs

His proofs were not 100% formal, either.

At least he was trying!

Let the following be postulated:



Formalization of proofs

19th century:  True rigor developed.

Culminated in the understanding that

all math proofs can be completely formalized 

using the language of First Order Logic

and an associated Deductive Calculus.



First Order Logic

• Includes basic Boolean connectives ∧, ∨, ¬, →

• Variables like x stand for objects, not true/false

• Also has ∀ (for all), ∃ (there exists), = (equals)

• You get to invent your own vocabulary, 

meaning function names (like School), relation 

names (like Better), and constant names (like cmu).

• You always have in mind a real-world / math-world 

interpretation of the vocabulary.

FOL:∀x ∀y (((School(x)= cmu) ∧ ¬(School(y)=cmu))→Better(x,y))

A formal language for logical modeling.

English:   “CMU has the best students.”



First Order Logic

Deductive Calculus:  

A textbook set of fixed rules that lets you 

deduce new FOL statements from older ones.

+ Deductive Calculus

• If you have S and S→T, you can deduce T

• If you have IsCool(a), can deduce ∃x IsCool(x)

• If you have S, and S does not contain the 

variable name x, you can deduce ∀x S

• Plus 9 more rules like this (or more or fewer, 

depending on whose textbook you look in)



Important Note:

Deductive Calculus is 

100% syntactic string manipulation.  

You can write a 50-line computer program

that checks if a sequence of deductions is valid.

First Order Logic

+ Deductive Calculus



1. Take some area of math you want to reason about.

2. Invent an appropriate vocabulary 

(function, relation, and constant names).

3. Specify some axioms which are true under 

the interpretation you have in mind.

4. See what theorems you can deduce from the

axioms using Deductive Calculus!

Using FOL to formalize parts of math



Example 1:  Arithmetic for 6-year-olds

Mojżesz Presburger

1929



Example 1:  Arithmetic for 6-year-olds

More precisely:     A theory of ℕ and +.

Constant names:   0 and 1

Function name: Plus(∙,∙)

Axioms:

#1:   ∀x ¬(0 = Plus(x,1))

#2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y)

#3:   ∀x Plus(x,0) = x

#4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1)

#5:   for any sentence S with free variable x, 

( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y)



Example 1:  Arithmetic for 6-year-olds

More precisely:     A theory of ℕ and +.

Constant names:   0 and 1

Function name: Plus(∙,∙)

Axioms:

#1:   ∀x ¬(0 = Plus(x,1))

#2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y)

#3:   ∀x Plus(x,0) = x

#4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1)

#5:   for any sentence S with free variable x, 

( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y)

This is actually an infinite

“axiom schema”.  That’s OK!



Example 1:  Arithmetic for 6-year-olds

Fact:  Starting from these 5 axioms (/schema),

and using only the purely syntactic rules

of Deductive Calculus, you can…

• Prove addition is associative!

∀x ∀y ∀z Plus(Plus(x,y),z) = Plus(x,Plus(y,z))

• Prove addition is commutative!

∀x ∀y Plus(x,y) = Plus(y,x)

• Prove every number is even or odd!

∀x (∃y Plus(y,y) = x ∨ Plus(Plus(y,y),1) = x)



Example 1:  Arithmetic for 6-year-olds

You can also build up new concepts that

are not part of the formal vocabulary:

“x is even”… ∃y Plus(y,y) = x

“x < y”… ∃z (¬(z=0) ∧ Plus(x,z) = y)



Example 2: Plane geometry done right

Alfred Tarski

1959



Example 2: Plane geometry done right

Relation names:   IsBetween(x,y,z)

IsSameLength(x1,x2,y1,y2)

Axioms:

#1:  ∀x1 ∀x2  IsSameLength(x1,x2,x2,x1)

#2:  ∀x ∀y ∀z IsSameLength(x,y,z,z)→(x=y)

#3:  ∀x ∀y  IsBetween(x,y,x)→(y=x)

#4:  (“Segment Extension”) 

∀x1,x2,y1,y2 ∃z IsBetween(x1,x2,z)∧IsSameLength(x2,z,y1,y2)

#5−21:  I won’t bother to write them.



Example 2: Plane geometry done right

“m is the midpoint of ab”…

IsBetween(a,m,b) ∧ IsSameLength(a,m,m,b)

“ab is parallel to cd”…

(¬∃z IsBetween(a,b,z) ∧ IsBetween(c,d,z))

∧ (¬∃z IsBetween(z,a,b) ∧ IsBetween(z,c,d))

“x is on the circle that has center o 

and radius the same length as ab”…

IsSameLength(x,o,a,b)



Fact:  Starting from Tarski’s 21 axioms, using only

the purely syntactic rules of Deductive 

Calculus, you can prove many many things.

E.g.:   “In any triangle abc, the line joining the

midpoint of ab and the midpoint of bc

is parallel to bc.”

In fact:  Every theorem about plane 

geometry in Euclid’s book Elements

can be so deduced!

Example 2: Plane geometry done right



More examples

Giuseppe Peano

1889

Gave a very successful list of

7 axioms/schema for

arithmetic of ℕ,

including multiplication.

Ernst Zermelo++

~1910’s

Gave a very successful list of

9 axioms/schema for set theory.

Came to be known as “ZFC”.



Peano Arithmetic

∀x ¬(Successor(x)=0)

∀x ∀y (Successor(x)=Successor(y))→(x=y)

∀x Plus(x,0)=x

∀x ∀y Plus(x,Successor(y))=Successor(Plus(x,y))

∀x Times(x,0)=0

∀x ∀y Times(x,Successor(y))=Plus(Times(x,y),x)

“Induction:”  For any parameterized formula F(x),

(F(0)∧(∀x F(x)→F(Successor(x)))) → ∀x F(x)

function-names: Successor(x)

Plus(x,y)

Times(x,y)
extra axioms:

constant-name: 0



ZFC axioms of set theory

∀x ∀y ( (∀z   z∈x ↔ z∈y)  →  x = y )

∀x ∀y ∃z (x∈z ∧ y∈z)

… 7 more (computable) axioms & schemas … 

constant-names, function-names: none

relation-name: IsElementOf(x,y)

[“x∈y”]

extra axioms: 



Say you are trying to axiomatize

your favorite branch of math.

Some goals you should shoot for:

1. Computable axioms

2. Consistency

3. Soundness

4. Completeness



Computable axioms

It’s nice if you have a finite number of axioms.

But often you need infinite families of axioms,

like the Induction axiom schema in arithmetic:

“Computable axioms” means:

L = { strings A : A is an axiom} is decidable.

An axiom system without this property is ridiculous!

for any sentence S with free variable x, have axiom

( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y)



Consistency

Let A1, …, Am be some axioms.

Suppose that using Deductive Calculus, 

we can deduce from them some sentence S

and we can also deduce the sentence ¬S.

Then the axiom system is called inconsistent.

And you really screwed up!



Consistency

In fact, if your axiom system is inconsistent,

then every statement is provable.

Theorem: Blahblahblah.

AFSOC ¬Blahblahblah.

[Derive S from the axioms.]

[Derive ¬S from the axioms.]

Thus we have a contradiction.

Therefore Blahblahblah holds.

Proof:



Consistency

Frege, 1893:

Proposes axioms for set theory.

Spends 10 years writing two

thick books about the system.

Russell, 1903: “Your axioms 

allow me to define D = {x : x∉x}.  

Now if D∈D then D∉D.  

And if D∉D then D∈D.

Inconsistency, boom!”



Consistency

Frege, 1893:

Proposes axioms for set theory.

Spends 10 years writing two

thick books about the system.

Russell, 1903: “Your axioms 

allow me to define D = {x : x∉x}.  

Now if D∈D then D∉D.  

And if D∉D then D∈D.

Inconsistency, boom!”



Soundness

Let A1, …, Am be some axioms that model

some branch of math you have in mind.

If every S that you can deduce is actually true

(within the branch of math you have in mind)

then the system is called sound.

Note 1: Sound ⇒ Consistent   

Note 2: Consistency is a totally syntactic concept.

But soundness relies on your ability 

to judge mathematical truth.



Presburger’s arithmetic for 6-year-olds

More precisely:     A theory of ℕ and +.

Constant names:   0 and 1

Function name: Plus(∙,∙)

Axioms:

#1:   ∀x ¬(0 = Plus(x,1))

#2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y)

#3:   ∀x Plus(x,0) = x

#4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1)

#5:   for any sentence S with free variable x, 

( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y)



Presburger’s arithmetic for 6-year-olds

More precisely:     A theory of ℕ and +.

Constant names:   0 and 1

Function name: Plus(∙,∙)

Axioms:

#1:   ∃x 0 = Plus(x,1)

#2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y)

#3:   ∀x Plus(x,0) = x

#4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1)

#5:   for any sentence S with free variable x, 

( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y)

Poll



Presburger’s arithmetic for 6-year-olds

More precisely:     A theory of ℕ and +.

Constant names:   0 and 1

Function name: Plus(∙,∙)

Axioms:

#1:   ∃x 0 = Plus(x,1)

#2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y)

#3:   ∀x Plus(x,0) = x

#4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1)

#5:   for any sentence S with free variable x, 

( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y)

Still consistent: 

it’s validly modeling

integers mod 2!



Completeness

Let A1, …, Am be some axioms.

If, for every sentence S,

either S or ¬S is deducible from the axioms,

we say the system is complete.

If you have a branch of math in mind

that you’re modeling, then…

Complete ⇔ Every true statement

can be deduced from the axioms



Completeness

Completeness, like consistency, is a

completely syntactic property.

Completeness:    

For any S, at least one of 

“S” or “¬S” can be deduced.

Consistency:    

For any S, at most one of 

“S” or “¬S” can be deduced.



Completeness

When you’re messing around trying to

axiomatize your favorite branch of math,

it’s quite common to suffer from

“incompleteness”.

It’s, like, you didn’t put in “enough” axioms.



Example: Tarski’s plane geometry

Relation names:   IsBetween(x,y,z)

IsSameLength(x1,x2,y1,y2)

Axioms:

#1:  ∀x1 ∀x2  IsSameLength(x1,x2,x2,x1)

#2:  ∀x ∀y ∀z IsSameLength(x,y,z,z)→(x=y)

#3:  ∀x ∀y  IsBetween(x,y,x)→(y=x)

#4:  (“Segment Extension”) 

∀x1,x2,y1,y2 ∃z IsBetween(x1,x2,z)∧IsSameLength(x2,z,y1,y2)

#5−21:  I won’t bother to write them.



Example: Tarski’s plane geometry

One of the 21 axioms says, 

“If wxyz is a quadrilateral, then the 

diagonals wy and xz must intersect.”

w

x

y

z

Historically, people tried hard

to prove this statement

using only the other axioms.

But, in fact, you can’t!

(We can prove that!)

So fine, you add it as an axiom.



Say you are trying to axiomatize

your favorite branch of math.

Some goals you should shoot for:

1. Computable axioms

2. Consistency

3. Soundness

4. Completeness



Presburger’s arithmetic for 6-year-olds

More precisely:     A theory of ℕ and +.

Constant names:   0 and 1

Function name: Plus(∙,∙)

Axioms:

#1:   ∀x ¬(0 = Plus(x,1))

#2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y)

#3:   ∀x Plus(x,0) = x

#4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1)

#5:   for any sentence S with free variable x, 

( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y)

It has computable axioms.

It’s consistent.

Indeed, it’s sound.

And…  

Presburger proved it’s complete.

Hooray!  We have perfectly

axiomatized arithmetic for 6-year-olds!



Example: Tarski’s plane geometry

Relation names:   IsBetween(x,y,z)

IsSameLength(x1,x2,y1,y2)

Axioms:

#1:  ∀x1 ∀x2  IsSameLength(x1,x2,x2,x1)

#2:  ∀x ∀y ∀z IsSameLength(x,y,z,z)→(x=y)

#3:  ∀x ∀y  IsBetween(x,y,x)→(y=x)

#4:  (“Segment Extension”) 

∀x1,x2,y1,y2 ∃z IsBetween(x1,x2,z)∧IsSameLength(x2,z,y1,y2)

#5−21:  I won’t bother to write them.

It has computable axioms.

It’s consistent.

Indeed, it’s sound.

And…  

Tarski proved it’s complete.

Hooray!  We have perfectly

axiomatized basic Euclidean geoetry!



A dream from the early 20th century



Axiomatizing all the things

After playing around, people realized you

could seemingly do 100% of math

using just the notions from set theory.

(Define natural numbers in terms of sets, ordered pairs in terms of sets, 

functions in terms of sets, sequences in terms of sets, 

real numbers, graphs, strings, automata, everything in terms of sets…)

They fixed the 9 “ZFC” axioms/schema for 

set theory and proceeded to go to town.



Bertrand Russell Alfred Whitehead

Principia Mathematica, ca. 1912

Purely by combining set theory axioms

with Deductive Calculus, they developed tons

of number theory and some real analysis.



Axiomatizing all the things?

It was a huge pain (think, 500-page books…)

but it was going great.

By the end of the 1920’s, mathematicians

were all pretty satisfied.

Empirical conclusion: Seemed you could formally

prove anything in math you wanted,

just from ZFC and syntactic Deductive Calculus.

By the way, all theorems in 15-251 can be so proved.



Hey, can I cut in for

a second and remind people 

about my theorem?

Fine.



The Halting Problem is Undecidable

Turing’s Theorem:

Let HALTS ⊆ {0,1}* be the language

{ ⟨M,x⟩ : M is a TM which halts on input x }.

Then HALTS is undecidable.

It’s not: “we don’t know how to solve it efficiently”.

It’s not: “we don’t know if it’s a solvable problem”.

We know that it is unsolvable by any algorithm.



Proof

Here is the description of another TM called D,

which uses MHALTS as a subroutine:

Given as input ⟨M⟩, the encoding of a TM M:

D executes MHALTS( ⟨M, ⟨M⟩⟩ ).

If this call accepts, D enters an infinite loop.

If this call rejects,  D halts        (say, it accepts).

D:

Assume MHALTS is a decider TM which decides HALTS.

By definition, D(⟨D⟩) loops if it halts and halts if it loops.

Contradiction. 



Suppose you just really cannot believe we

proved that HALTS is undecidable.

Sample input:

M = “for k = 4, 6, 8, 10, 12, 14, …

check if k is the sum of 2 primes; if not, HALT”

x = ϵ (empty string)

How would you try to write a program H which,

on input ⟨M,x⟩, decides if M(x) eventually halts?



Sample input:

How would you try to write a program H which,

on input ⟨M,x⟩, decides if M(x) eventually halts?

Dunno.  Best idea I can think of is:  

Let H simulate M(x).  If M(x) halts

after 1,000,000,000 steps, output

“it halts”.  If M(x) still hasn’t halted after 

1,000,000,000 steps, um…

M = “for k = 4, 6, 8, 10, 12, 14, …

check if k is the sum of 2 primes; if not, HALT”

x = ϵ (empty string)



I have a crazy and sort 

of awesome idea for how 

to write H.

Kurt, you 

mathematicians 

always make things 

too complicated.  

Let me explain it.



How would you try to write a program H which,

on input ⟨M,x⟩, decides if M(x) eventually halts?

Idea for H:

“ for k = 1, 2, 3, …

for all strings P of length k, 

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually halts’

If so, let H halt and output “yes, M(x) halts”

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually loops’

If so, let H halt and output “no, M(x) loops”    ”



Idea for H:

By my theorem:  this TM H, like 

all algorithms, does not decide 

the Halting Problem.

“ for k = 1, 2, 3, …

for all strings P of length k, 

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually halts’

If so, let H halt and output “yes, M(x) halts”

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually loops’

If so, let H halt and output “no, M(x) loops”    ”



Conclusion:

There is some TM M and some string x such that

ZFC+FOL Deductive Calculus cannot prove either of

‘M(x) eventually halts’ or ‘M(x) eventually loops’.

But M(x) either halts or it loops!

One of these two statements is true!

∴ There is a true mathematical statement

that cannot be proved (in ZFC+FOL Deductive Calculus).



This is basically

Gödel’s First Incompleteness Theorem.



“ for k = 1, 2, 3, …

for all strings P of length k, 

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually halts’

If so, let H halt and output “yes, M(x) halts”

•  Check if P is a valid ZFC+FOL Deductive Calculus

proof of the statement ‘M(x) eventually loops’

If so, let H halt and output “no, M(x) halts”    ”

Conclusion:

There is some TM M and some string x such that

ZFC+FOL Deductive Calculus cannot prove either of

‘M(x) eventually halts’ or ‘M(x) eventually loops’.



Actually, this is not a 100% correct conclusion,

because there’s another possibility:

ZFC+FOL Deductive Calculus might have a proof

that ‘M(x) eventually halts’ even though it loops,

or ‘M(x) eventually loops’ even though it halts.

Conclusion:

There is some TM M and some string x such that

ZFC+FOL Deductive Calculus cannot prove either of

‘M(x) eventually halts’ or ‘M(x) eventually loops’.



Actually, this is not a 100% correct conclusion,

because there’s another possibility:

ZFC+FOL Deductive Calculus might have a proof

that ‘M(x) eventually halts’ even though it loops,

or ‘M(x) eventually loops’ even though it halts.

I.e., ZFC might be unsound: 

it might prove some false statements.

This would kind of upend all of mathematics.

Essentially everyone believes ZFC is sound.

But theoretically, it’s a possibility.



What we’ve actually proven so far:

ZFC + FOL Deductive Calculus cannot be both

complete

and sound.

Complete:

for every sentence S, either S or ¬S is provable.

Sound:

for every S, if S is provable then S is true.



Question: 

What did this proof use about ZFC?

Answer:        Not too much.

• You can define TM’s and TM computation in it.

• Its axioms/axiom schemas are computable.

What we’ve actually proven so far:

ZFC + FOL Deductive Calculus cannot be both

complete

and sound.



Any mathematical proof system which is

“sufficiently expressive” (can define TM’s)

and has computable axioms

cannot be both complete and sound.

Gödel’s First Incompleteness Theorem:

Side remark:     

Even Peano Arithmetic is “sufficiently expressive”.  

You can define TM’s and TM computation in it,

though it is a pain in the neck.



A smart-aleck’s attempt to circumvent

Gödel’s First Incompleteness Theorem:

“Let’s assume ZFC is sound.  Gödel’s Theorem

says that there’s some true statement S 

which can’t be proved in ZFC.  Let’s just

upgrade ZFC by adding S as an axiom!”

Doesn’t help:

ZFC+S is a sufficiently expressive system

with computable axioms.  So by Gödel’s

Theorem, there’s still some other S/

which is true but can’t be proved.



A smart-aleck’s attempt to circumvent

Gödel’s First Incompleteness Theorem:

“Maybe add in S/ as another axiom?”

Still doesn’t help:

Apply Gödel’s Theorem to ZFC+S+S/,

get yet another true statement S// which

is true but cannot be proved.

“Maybe add in all true statements as axioms?”

Okay fine, but now the set of axioms is not

computable.  So it’s a ridiculous system.



Gödel’s First Incompleteness Theorem:

How can you say a 

statement is true if 

you can’t prove it?

Any mathematical proof system which is

“sufficiently expressive” (can define TM’s)

and has computable axioms

cannot be both complete and sound.

Equivalently, if it is sound, there are true statements 

that are not provable within the system



Gödel Take 2

Just so that nobody gets confused,

I’ll prove an even stronger version

which doesn’t mention “truth”.



Any mathematical proof system which is

“sufficiently expressive” (can define TM’s)

and has computable axioms

cannot be both complete and consistent.

Gödel’s 1st:  full version
(with strengthening by J. Barkley Rosser)

Complete:

for every sentence S, either S or ¬S is provable.

Consistent:

for every S, you can’t prove both S and ¬S.



Not only will we prove this,

there will be a bonus plot twist at the end!

For simplicity, we fix the mathematical

proof system to be ZFC.



Outline of previous proof:

1. Assume ZFC sound.

2.  Reason about a certain TM.

3. Deduce that ZFC is incomplete.

Outline of upcoming stronger proof:

1. Assume ZFC consistent.

2.  Reason about a certain TM.

3. Deduce that ZFC is incomplete.



We’re going to need a lemma.

Some statements are so simple that,

assuming they’re true,

they definitely do have a proof in ZFC.

Example:  “There are 25 primes less than 100.”

This definitely has a proof:

the brute-force, brain-dead enumeration proof!



Lemma:  

If a particular TM has a particular t-step execution trace, 

then there is a proof of this fact (in ZFC).

Why?  Can always write (in ZFC) proofs that look like:

“Initially M in the starting state/head/tape configuration.

After 1 step, M is in state/head/tape configuration blah.

After 2 steps, M is in state/head/tape configuration blah.

After 3 steps, M is in state/head/tape configuration blah.

… After t steps, M is in state/head/tape configuration blah.

QED.”  

In particular, if M(x) halts, there is a proof of ‘M(x) halts’.



Outline of upcoming proof of the

“truth”-free stronger version of Gödel’s 1st:

1. Assume ZFC consistent.

2.  Reason about a certain TM.

3. Deduce that ZFC is incomplete.



Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.

What can ZFC prove about D(⟨D⟩)?  What can ZFC prove about D(⟨D⟩)?  By consistency,

at most one of ‘D(⟨D⟩) halts’ or ‘D(⟨D⟩) loops’.

Perhaps ZFC can prove ‘D(⟨D⟩) loops’?

Then D on input ⟨D⟩ will find this proof, and thus halt.

But if D(⟨D⟩) halts then ZFC can prove ‘D(⟨D⟩) halts’

(by the Lemma).  This contradicts consistency.



Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

What can ZFC prove about D(⟨D⟩)?  What can ZFC prove about D(⟨D⟩)?  By consistency,

at most one of ‘D(⟨D⟩) halts’ or ‘D(⟨D⟩) loops’.

Perhaps ZFC can prove ‘D(⟨D⟩) halts’?

Then D(⟨D⟩) will run for some t steps, find this proof, and then 

enter the ‘go right forever’ state. But by the execution trace lemma, 

there’s a proof of this fact (the t+1 step execution trace). 

Thus ZFC can prove ‘D(⟨D⟩) loops’, contradicting consistency.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.



Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC can prove neither

‘D(⟨D⟩) loops’ nor ‘D(⟨D⟩) halts’.  So ZFC is incomplete.

Incidentally… does D(⟨D⟩) actually halt or loop?

It loops. It does not find a proof of either statement.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.



Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC can prove neither

‘D(⟨D⟩) loops’ nor ‘D(⟨D⟩) halts’.  So ZFC is incomplete.

It loops. It does not find a proof of either statement.

Wait a minute.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.



Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC can prove neither

‘D(⟨D⟩) loops’ nor ‘D(⟨D⟩) halts’.  So ZFC is incomplete.

Wait a minute. We just showed that D(⟨D⟩) loops!

If we formalize the last 3 slides in ZFC,

we get a proof of ‘D(⟨D⟩) loops’.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.



Did we just find a

contradiction in mathematics?



Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC cannot prove either

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete.

Wait a minute. We just showed that D(⟨D⟩) loops.

If we formalize the last 3 slides in ZFC,

we get a proof of ‘D(⟨D⟩) loops’.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.



Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC cannot prove either

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete.

If we formalize the last 3 slides in ZFC,

we get a proof of ‘ZFC consistent → D(⟨D⟩) loops’.

for all strings P of length 1, 2, 3, …

• If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state.

• If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt.



Proof of stronger Incompleteness Theorem

Assume ZFC consistent.

Let D be the TM which on input ⟨M⟩ does:

Great!  We just showed ZFC can prove neither

‘D(⟨D⟩) loops’ nor ‘D(⟨D⟩) halts’. So ZFC is incomplete.

for all strings P of length 1, 2, 3, …

•  If P is a valid ZFC proof of ‘M(⟨M⟩) halts’, then do ‘infinite loop’.

•  If P is a valid ZFC proof of ‘M(⟨M⟩) loops’, then halt.

If we formalize the last 3 slides in ZFC,

we get a proof of ‘ZFC consistent → D(⟨D⟩) loops’.

The only way to avoid a contradiction:

ZFC cannot prove ‘ZFC consistent’ 



Assume ZFC is consistent.  

Then not only is it incomplete,

here’s a true statement it cannot prove:

“ZFC is consistent”.

Gödel’s Second Incompleteness Theorem
(proved independently by von Neumann)

The only (sufficiently expressive) mathematical 

theories pompous enough to prove their own 

consistency are the ones that don’t have any 

consistency to begin with.

Same holds for PA (or any “sufficiently expressive” proof system)



Assuming ZFC is consistent, here’s

another statement which 

cannot be proved or disproved in ZFC:

There is a set A with |ℕ| < |A| < |ℝ|.

Paul Cohen  (1963)

Continuum hypothesis: 
There is no set whose 

cardinality is strictly between 

that of the integers and 

that of the real numbers.

+ Gödel (1940)



For Homework:

The statement and proof

of Gödel’s First and Second

Incompleteness Theorems.

Study Guide

For Exams:

Nil

You’ll not be tested on this material!

Enjoy the mini 

Fall break


