15-251: Great Theoretical Ideas in Computer Science Fall 2016 Lecture 18

October 27, 2016

# **Probability 2:**

#### **Random variables and Expectations**



#### E[X+Y] = E[X] + E[Y]

# Review Some useful sample spaces...



1) A fair coin

sample space  $\Omega = \{H, T\}$ Pr[H] =  $\frac{1}{2}$ , Pr[T] =  $\frac{1}{2}$ .

2) A "bias-p" coin

sample space  $\Omega = \{H, T\}$ Pr[H] = p, Pr[T] = 1-p.

#### 3) Two independent bias-p coin tosses

#### sample space $\Omega = \{HH, HT, TH, TT\}$

$$x \quad \Pr[x]$$

$$\langle T,T \rangle \quad (1-p)^2$$

$$\langle T,H \rangle \quad (1-p)p$$

$$\langle H,T \rangle \quad (1-p)p$$

$$\langle H,H \rangle \quad p^2$$

#### 3) n bias-p coins

sample space  $\Omega = \{H,T\}^n$ 

If outcome x in  $\Omega$  has k heads and n-k tails  $Pr[x] = p^k (1-p)^{n-k}$ 

Event  $E_k = \{x \in \Omega \mid x \text{ has } k \text{ heads}\}$  $Pr[E] = \sum_{k=1}^{n} Pr[x] = \binom{n}{k} n^k (1 - n^k)$ 

$$\Pr[E_k] = \sum_{x \in E_k} \Pr[x] = \binom{k}{k} p^k (1-p)^{n-k}$$

 $\Pr[k] = \binom{n}{k} p^k (1-p)^{n-k}$ 

"Binomial Distribution B(n,p) on {0,1,2,...,n}"

# An Infinite sample space...

•

•

#### The "Geometric" Distribution

A bias-p coin is tossed until the first time that a head turns up.

sample space  $\Omega = \{H, TH, TTH, TTTH, ...\}$ (shorthand  $\Omega = \{1, 2, 3, 4, ...\}$ )

 $Pr_{Geom}[k] = (1-p)^{k-1} p$ 

(sanity check)  $\sum_{k\geq 1} \Pr[k] = \sum_{k\geq 1} (1-p)^{k-1} p$ =  $p * (1 + (1-p) + (1-p)^2 + ...)$ = p \* 1/(1-(1-p)) = 1

### Independence of Events

#### def: We say events $\overline{A}$ , $\overline{B}$ are independent if $Pr[A \cap B] = Pr[A] Pr[B]$

Except in the pointless case of Pr[A] or Pr[B] is 0, equivalent to Pr[A | B] = Pr[A], or to Pr[B | A] = Pr[B]. Two fair coins are flipped A = {first coin is heads} B = {second coin is heads}

Are A and B independent?

Pr[A] = Pr[B] = Pr[A ∩B] =



Two fair coins are flipped A = {first coin is heads} C = {two coins have different outcomes}

Are A and C independent?

Pr[A] = Pr[C] = Pr[A | C] =



Two fair coins are flipped A = {first coin is heads} A = {first coin is tails}

Are A and A independent?



#### The Secret "Principle of Independence"

Suppose you have an experiment with two parts (eg. two non-interacting blocks of code).

Suppose A is an event that only depends on the first part, B only on the second part.



Suppose you prove that the two parts *cannot* affect each other. (E.g., equivalent to run them in opposite order.) Then A and B are independent. And you may deduce that Pr[A | B] = Pr[A].

### Independence of Multiple Events

- def:  $A_1, ..., A_5$  are independent if
- $Pr[A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}] = Pr[A_{1}] Pr[A_{2}] Pr[A_{3}] Pr[A_{4}] Pr[A_{5}]$   $Pr[A_{1} \cap A_{2} \cap A_{3} \cap A_{4}] = Pr[A_{1}] Pr[A_{2}] Pr[A_{3}] Pr[A_{4}]$   $Pr[A_{1} \cap A_{3} \cap A_{5}] = Pr[A_{1}] Pr[A_{3}] Pr[A_{5}]$

& in fact, the definition requires

 $\mathbf{Pr}\left[\bigcap_{i\in S}A_{i}\right] = \prod_{i\in S}\mathbf{Pr}[A_{i}] \text{ for all } S \subseteq \{1, 2, 3, 4, 5\}$ 

### Independence of Multiple Events

def:  $A_1, ..., A_5$  are independent if

$$\mathbf{Pr}\left[\bigcap_{i\in S}A_{i}\right] = \prod_{i\in S}\mathbf{Pr}[A_{i}] \text{ for all } S \subseteq \{1, 2, 3, 4, 5\}$$

Similar 'Principle of Independence' holds (5 blocks of code which don't affect each other)

Consequence: anything like  $\mathbf{Pr}[A_1 | (A_2 \cup A_3) \cap (A_4^c \cup A_5)] = \mathbf{Pr}[A_1]$ 

### **A little exercise**

Can you give an example of a sample space and 3 events  $A_1, A_2, A_3$  in it such that each pair of events  $A_i, A_j$  are independent, but  $A_1, A_2, A_3$  together aren't independent? Feature Presentation: Random Variables

# **Random Variable**

Let  $\Omega$  be sample space in a probability distribution A Random Variable is a function from  $\Omega$  to reals

Examples:

F = value of first die in a two-dice roll  $F(3,4) = 3, \qquad F(1,6) = 1$  X = sum of values of the two dice  $X(3,4) = 7, \qquad X(1,6) = 7$ 



# **Two Coins Tossed**

**Z**: {TT, TH, HT, HH}  $\rightarrow$  {0, 1, 2} counts # of heads



 $Pr[\mathbf{Z}=a] = Pr[\{t \in \Omega \mid \mathbf{Z}(t) = a\}]$ 

Pr[Z = 1]= Pr[{t  $\in \Omega | Z(t) = 1$ }] = Pr[{TH, HT}] =  $\frac{1}{2}$ 

#### Two Views of Random Variables Input to the function is random

A function from sample space to the reals R

Or think of the induced distribution on R

Randomness is "pushed" to the values of the function

Given a distribution on some sample space  $\Omega$ , a random variable transforms it into a distribution on reals

## Two dice

I throw a white die and a black die. X = sum of both dice

#### Sample space =

| { (1,1), | (1,2), | (1,3), | (1,4), | (1,5), | (1,6),  |
|----------|--------|--------|--------|--------|---------|
| (2,1),   | (2,2), | (2,3), | (2,4), | (2,5), | (2,6),  |
| (3,1),   | (3,2), | (3,3), | (3,4), | (3,5), | (3,6),  |
| (4,1),   | (4,2), | (4,3), | (4,4), | (4,5), | (4,6),  |
| (5,1),   | (5,2), | (5,3), | (5,4), | (5,5), | (5,6),  |
| (6,1),   | (6,2), | (6,3), | (6,4), | (6,5), | (6,6) } |



function with X(1,1) = 2, X(1,2) = 3, ..., X(6,6)=12

#### Random variables: two viewpoints

It is a function on the sample space

It is a variable with a probability distribution on its values

You should be comfortable with both views

#### Random Variables: introducing them

**Retroactively:** 

"Let **D** be the random variable given by subtracting the first roll from the second." D((1,1)) = 0, ..., D((5,3)) = -2, etc.

#### Random Variables: introducing them

In terms of other random variables:

"Let  $\mathbf{Y} = \mathbf{X}^2 + \mathbf{D}$ ."  $\Rightarrow \mathbf{Y}((5,3)) = 62$ 

"Suppose you win \$30 on a roll of double-6, and you lose \$1 otherwise. Let **W** be the random variable representing your winnings."

> $W = 30 \cdot I + (-1) (1 - I) = 31 \cdot I - 1$ Where I((6,6))=1 and I((x,y))=0 otherwise

#### Random Variables: introducing them

By describing its distribution:

- "Let X be a Bernoulli(1/3) random variable."
  - Means Pr[**X**=1]=1/3, Pr[**X**=0]=2/3

"Let Y be a Binomial(100,1/3) random variable."

"Let **T** be a random variable which is uniformly distributed (= each value equal probability) on the set {0,2,4,6,8}."

#### **Random Variables to Events**

E.g.: **S** = sum of two dice

"Let A be the event that  $S \ge 10$ ."

 $A = \{ (4,6), (5,5), (5,6), (6,4), (6,5), (6,6) \}$ 

**Pr**[**S** ≥ 10] = 6/36 = 1/6Shorthand notation for the **event** {  $\ell : S(\ell) \ge 10$  }.

### **Events to Random Variables**

#### **Definition:**

Let A be an event. The indicator of A is the random variable X which is 1 when A occurs and 0 when A doesn't occur.

 $\mathbf{X}: \Omega \to \mathbb{R} \qquad \mathbf{X}(\ell) = \begin{cases} 1 & \text{if } \ell \in \mathsf{A} \\ 0 & \text{if } \ell \notin \mathsf{A} \end{cases}$ 

Notational Conventions Use letters like A, B, C for events Use letters like X, Y, f, g for R.V.'s R.V. = random variable

#### **Independence of Random Variables**

#### **Definition:**

Random variables **X** and **Y** are independent if the events "X = u" and "Y = v" are independent for all  $u, v \in \mathbb{R}$ .

(And similarly for more than 2 random variables.)

Random variables  $X_1, X_2, ..., X_n$  are independent if *for all* reals  $a_1, a_2, ..., a_n$ 

$$\Pr(X_1 = a_1 \cap X_2 = a_2 \cap \dots \cap X_n = a_n) = \prod_{i=1}^n \Pr(X_i = a_i)$$

#### Examples: Independence of r.v's

Two random variables X and Y are said to be independent if *for all* reals a, b,  $Pr[X = a \cap Y = b] = Pr[X=a] Pr[Y=b]$ 

A coin is tossed twice.  $X_i = 1$  if the i<sup>th</sup> toss is heads and 0 otherwise. Are  $X_1$  and  $X_2$  independent R.Vs ? Yes.

Let  $\mathbf{Y} = \mathbf{X}_1 + \mathbf{X}_2$ . Are  $\mathbf{X}_1$  and  $\mathbf{Y}$  independent? No.

## Expectation

# aka Expected Value aka Mean

### Expectation

Intuitively, expectation of **X** is what its average value would be if you ran the experiment millions and millions of times.

**Definition:** 

Let **X** be a random variable in experiment with sample space  $\Omega$ . Its expectation is:

 $\mathbf{E}[\mathbf{X}] = \sum_{\ell \in \Omega} \mathbf{Pr}[\ell] \cdot \mathbf{X}(\ell)$ 

#### **Expectation** — examples

Let **R** be the roll of a standard die.

$$\mathbf{E}[\mathbf{R}] = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6$$
$$= 3.5$$

Question: What is Pr[R = 3.5]?

Answer: 0. Don't always expect the expected!

#### **Expectation** — examples

"Suppose you win \$30 on a roll of double-6, and you lose \$1 otherwise. Let **W** be the random variable representing your winnings."

$$\mathbf{E}[\mathbf{W}] = \frac{1}{36} \cdot (-1) + \frac{1}{36} \cdot (-1) + \dots + \frac{1}{36} \cdot (-1) + \frac{1}{36} \cdot 30$$

 $= -5/36 \approx -13.9 \phi$ 

#### Expectation — examples

Let  $\mathbf{R}_1$  = Throw of die 1,  $\mathbf{R}_2$  = Throw of die 2  $\mathbf{S} = \mathbf{R}_1 + \mathbf{R}_2$ .

$$\mathbf{E}[\mathbf{S}] = \frac{1}{36} \cdot (1+1) + \frac{1}{36} \cdot (1+2) + \dots + \frac{1}{36} \cdot (6+6)$$

= lots of arithmetic  $\otimes$ 

= 7 (eventually)

### One of the top tricks in probability...
## Linearity of Expectation

#### Given an experiment, let **X** and **Y** be any random variables.

# Then E[X+Y] = E[X] + E[Y]

#### X and Y do *not* have to be independent!!

# Linearity of Expectation

$$\mathbf{E}[\mathbf{X}+\mathbf{Y}] = \mathbf{E}[\mathbf{X}] + \mathbf{E}[\mathbf{Y}]$$

**Proof:** Let  $\mathbf{Z} = \mathbf{X} + \mathbf{Y}$  (another random variable).

# Then $\mathbf{E}[\mathbf{Z}] = \sum_{\ell \in \Omega} \mathbf{Pr}[\ell] \cdot \mathbf{Z}(\ell)$ $= \sum_{\ell \in \Omega} \mathbf{Pr}[\ell] \cdot (\mathbf{X}(\ell) + \mathbf{Y}(\ell))$ $= \sum_{\ell \in \Omega} \mathbf{Pr}[\ell] \cdot \mathbf{X}(\ell) + \sum_{\ell \in \Omega} \mathbf{Pr}[\ell] \cdot \mathbf{Y}(\ell)$ $= \mathbf{E}[\mathbf{X}] + \mathbf{E}[\mathbf{Y}]$

# Linearity of Expectation





 $\mathbf{E}[a\mathbf{X}+b] = a\mathbf{E}[\mathbf{X}]+b$  for any  $a,b\in\mathbb{R}$ .

### By Induction

$$\mathbf{E}[\mathbf{X}_1 + \dots + \mathbf{X}_n] = \mathbf{E}[\mathbf{X}_1] + \dots + \mathbf{E}[\mathbf{X}_n]$$

# Remember...

 $E[X_{1} + X_{2} + ... + X_{n}] =$  $E[X_{1}] + E[X_{2}] + .... + E[X_{n}], always$ 

The expectation of the sum

The sum of the expectations

# Linearity of Expectation example

Let  $\mathbf{R}_1$  = Throw of die 1,  $\mathbf{R}_2$  = Throw of die 2  $\mathbf{S} = \mathbf{R}_1 + \mathbf{R}_2$ .

 $E[S] = E[R_1] + E[R_2]$ = 3.5 + 3.5 = 7

## **Expectation of an Indicator**

Fact: Let A be an event, let X be its indicator r.v. Then E[X] = Pr[A].

Proof:  $\mathbf{E}[\mathbf{X}] = \sum_{\ell \in \Omega} \mathbf{Pr}[\ell] \cdot \mathbf{X}(\ell)$  $= \sum_{\ell \in A} \mathbf{Pr}[\ell] \cdot 1 + \sum_{\ell \notin A} \mathbf{Pr}[\ell] \cdot 0$  $= \sum_{\ell \in A} \mathbf{Pr}[\ell]$  $= \mathbf{Pr}[A]$ 

# Linearity of Expectation + Indicators

## = best friends forever

### Linearity of Expectation + Indicators

There are 251 students in a class.

The TAs randomly permute their midterms before handing them back.

Let **X** be the number of students getting their own midterm back.

What is **E**[**X**]?

## Let's try 3 students first

|          | Student 1 | Student 2 | Student 3 | Prob | # getting<br>own<br>midterm |
|----------|-----------|-----------|-----------|------|-----------------------------|
| t        | 1         | 2         | 3         | 1/6  | 3                           |
| y go     | 1         | 3         | 2         | 1/6  | 1                           |
| the      | 2         | 1         | 3         | 1/6  | 1                           |
| )<br>Srm | 2         | 3         | 1         | 1/6  | 0                           |
| lidte    | 3         | 1         | 2         | 1/6  | 0                           |
| 2        | 3         | 2         | 1         | 1/6  | 1                           |

 $\therefore E[X] = (1/6)(3+1+1+0+0+1) = 1$ 

#### Now let's do 251 students

|  | Um |  |
|--|----|--|
|  |    |  |
|  |    |  |
|  |    |  |

#### Now let's do 251 students

Let A<sub>i</sub> be the event that i<sup>th</sup> students gets own midterm.

Let  $X_i$  be the indicator of  $A_i$ .

Then  $\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n$ 

Thus  $E[X] = E[X_1] + E[X_2] + \dots + E[X_n]$ by linearity of expectation

 $\mathbf{E}[\mathbf{X}_i] = \mathbf{Pr}[\mathbf{A}_i]$ , and  $\mathbf{Pr}[\mathbf{A}_i] = 1/251$  for each i.

 $\therefore \mathbf{E}[\mathbf{X}] = 251 \cdot (1/251) = 1$ 

So, in expectation, 1 student will receive his/her midterm.

Pretty neat: it doesn't depend on how many students!

Question: were the X<sub>i</sub> independent?

No! E.g., think of n=2



Remarks:

- range(X) = the set of real numbers X may take on
- "**X** = u" is an event
- some people (not us) take this as the *definition*

# Expectation in two ways

# $E[\mathbf{X}] = \sum_{t \in \Omega} Pr(t) \mathbf{X}(t) = \sum_{u} u Pr[\mathbf{X} = u]$

**X** is a function on the sample space

X has an associated prob. distribution on its values

(assuming X takes discrete values)

$$\mathbf{E}[\mathbf{X}] = \sum_{u \in range(\mathbf{X})} \mathbf{Pr}[\mathbf{X} = u] \cdot u$$

Proof by "counting two ways":  $\mathbf{E}[\mathbf{X}] = \sum \mathbf{Pr}[\ell] \cdot \mathbf{X}(\ell)$  $\ell \in \Omega$ =  $\sum$   $\sum$   $\Pr[\ell] \cdot X(\ell)$  $u \in range(\mathbf{X}) \quad \ell: \mathbf{X}(\ell) = u$  $\sum \sum Pr[\ell] \cdot u$  $u \in range(\mathbf{X}) \quad \ell: \mathbf{X}(\ell) = u$  $\sum u \cdot \sum Pr[\ell]$  $u \in range(\mathbf{X})$   $\ell: \mathbf{X}(\ell) = u$  $\sum u \cdot \mathbf{Pr}[\mathbf{X} = u]$ u∈range(**X**)

Example

## Question: Let X be a uniformly random integer between 1 and 10. Let $Y = X \mod 3$ .

What is **E[Y]**? Poll

range(**Y**) =  $\{0, 1, 2\}$ 

 $E[Y] = Pr[Y = 0] \cdot 0 + Pr[Y = 1] \cdot 1 + Pr[Y = 2] \cdot 2$ 

E[Y] = Pr[Y = 1] + 2 Pr[Y = 2]

E[Y] = 4/10 + 2(3/10) = 1

 $E[Y] = Pr[\{1, 4, 7, 10\}] + 2 Pr[\{2, 5, 8\}]$ 



# Question: Let X be a uniformly random integer between 1 and 10. Let Y = X mod 3.

#### What is **E[Y]**?

range(**Y**) =  $\{0, 1, 2\}$ 

 $E[Y] = Pr[Y = 0] \cdot 0 + Pr[Y = 1] \cdot 1 + Pr[Y = 2] \cdot 2$ 

Note: We didn't really care how **Y** was created. We only needed  $\Pr[Y=u]$  for each  $u \in range(Y)$ . If I return 251 randomly permuted midterms to 251 students, on average how many students get their back their own midterm?

Hmm...

 $\sum_k k \cdot \Pr[\text{exactly k letters end}]$ up in correct envelopes]

 $=\sum_{k} k \cdot (\dots \text{aargh!!} \dots)$ 

Thank you, Linearity of Expectation!

# **Type Checking**



## **Operations on R.V.s**

You can sum them, take differences, or do most other math operations (they are just functions!)

E.g., (X + Y)(t) = X(t) + Y(t)(X\*Y)(t) = X(t) \* Y(t) $(X^Y)(t) = X(t)^{Y(t)}$ 

# Expectation of a Sum of r.v.s = Sum of their Expectations

even when r.v.s are not independent!

Expectation of a Product of r.v.s vs. Product of their Expectations ?

# **Multiplication of Expectations**

A coin is tossed twice.

 $X_i = 1$  if the i<sup>th</sup> toss is heads and 0 otherwise.

 $E[X_1] = E[X_2] = 1/2$ 

 $E[X_1 X_2] = 1/4$   $E[X_1] E[X_2] = 1/4$ 

<u>Lemma</u>: E[XY] = E[X] E[Y] if X and Y are *independent* random variables. (And similar statement for > 2 r.v's)

Proof left as exercise.

# **Multiplication of Expectations**

Consider a single toss of a coin. **X** = 1 if heads turns up and 0 otherwise.

Set Y = 1 - XX and Y are<br/>notE[X] = E[Y] = 1/2independent

## $\mathsf{E}[\mathsf{X} \mathsf{Y}] \neq \mathsf{E}[\mathsf{X}] \mathsf{E}[\mathsf{Y}]$

since X Y = 0 with probability 1

# More examples of Computing Expectations

We flip n coins of bias p. What is the expected number of heads H? We could do this by summing  $\sum_{k} k \operatorname{Pr}(\mathbf{H} = k) = \sum_{k} k \begin{bmatrix} n \\ k \end{bmatrix} p^{k} (1-p)^{n-k}$ np

But we know a better way!

## **Use Linearity of Expectation**

General approach:

View thing you care about as expected value of some RV

Write this RV as sum of simpler RVs (often indicator RVs)

Solve for their expectations and add them up!

# **Back to example:**

Let **H** = number of heads when n independent coins of bias p are flipped

Break **H** into n simpler RVs:

 $\mathbf{H_i} = \begin{cases} 1 & \text{if the i}^{\text{th}} \text{ coin is heads} \\ 0 & \text{if the i}^{\text{th}} \text{ coin is tails} \end{cases}$ 

 $E[H_i] = p$ 

Note  $\mathbf{H} = \sum_{i} \mathbf{H}_{i}$ E[**H**] = E[ $\sum_{i} \mathbf{H}_{i}$ ] =  $\sum_{i}$  E[**H**<sub>i</sub>] = np

## **Geometric Random Variables**

#### **X** ~ Geometric(p)

#### What is **E[X]**?

Average number of p-biased coin flips until you get Heads: you might guess 1/p. **Proof: Direct calculation**  $E[X] = \sum_{k>1} k \cdot \Pr[X = k] = \sum_{k>1} k p (1-p)^{k-1}$  $= p \sum_{k \ge 1} k (1-p)^{k-1} = p \cdot \frac{1}{p^2} = \frac{1}{p}$ 

An approach: Generating Functions

There are n different kinds of coupons.



## On each day, you get a random coupon. (You may get duplicates.)

Let **X** be the # of days till you have them all.

What is **E[X**]?

Let **X** be the # of days till you have them all.

What is **E**[**X**]?

Key idea: Let **X**<sub>i</sub> be # of days it took you to go from i-1 to i coupons.

Key idea:  $X = X_1 + X_2 + \dots + X_n$ 

 $\therefore \mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}_1] + \mathbf{E}[\mathbf{X}_2] + \dots + \mathbf{E}[\mathbf{X}_n]$ So we need to figure out  $\mathbf{E}[\mathbf{X}_i]$ .

Key idea: Let X<sub>i</sub> be # of days it took you to go from i-1 to i coupons.

When sitting on i-1 distinct coupons, each day you have probability  $\frac{n-(i-1)}{n}$ of getting a new one.

 $\therefore \mathbf{X}_{i} \sim \text{Geometric}(\frac{n-(i-1)}{n}) \quad \therefore \mathbf{E}[\mathbf{X}_{i}] = \frac{n}{n-(i-1)}$ for example, $\mathbf{E}[\mathbf{X}_{1}] = \frac{n}{n} = 1, \quad \mathbf{E}[\mathbf{X}_{2}] = \frac{n}{n-1}, \quad \cdots, \quad \mathbf{E}[\mathbf{X}_{n}] = \frac{n}{1} = n$ 

 $\therefore \mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}_1] + \mathbf{E}[\mathbf{X}_2] + \dots + \mathbf{E}[\mathbf{X}_n]$ 

 $= \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$  $= n(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n})$ 

 $\therefore \mathbf{E}[\mathbf{X}] = \mathbf{n} \cdot \mathbf{H}_{\mathbf{n}} \qquad \therefore \mathbf{E}[\mathbf{X}] \approx \mathbf{n} \ln \mathbf{n}$ 

where  $H_n =$  "the nth harmonic number" =  $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \approx \ln n$  Using linearity of expectations in unexpected places...

10% of the surface of a sphere is colored green, and the rest is colored blue. Show that now matter how the colors are arranged, it is possible to inscribe a cube in the sphere so that all of its vertices are blue.



# Solution

Pick a random cube. (Note: any particular vertex is uniformly distributed over surface of sphere).

Let  $X_i = 1$  if i<sup>th</sup> vertex is blue, 0 otherwise (indicator r.v.)

Let 
$$X = X_1 + X_2 + ... + X_8$$
  
 $E[X_i] = Pr[X_i=1] = \frac{9}{10}$   
 $E[X] = 8 \cdot \frac{9}{10} > 7$ 

So, must have some cubes where X = 8 !!

The general principle we used in this example:

Show the expected value of some random variable is "high"

Hence, there must be an outcome in the sample space where the random variable takes on a "high" value.

(Not everyone can be below the average.) called "the probabilistic method" (a very powerful & important tool)

## **Conditional expectations**

Just like probabilities, we can also talk about expectations *conditioned on some event.* 

E[X | A] = expectation of X conditioned on event A <u>It's just the expectation according to the</u> conditional distribution!

$$E[\mathbf{X} \mid A] = \sum_{\mathbf{t} \in \mathbf{A}} \mathbf{X}(\mathbf{t}) \quad \frac{\Pr[t]}{\Pr[A]} = \sum_{\mathbf{k} \in \text{range}(\mathbf{X})} k \Pr[\mathbf{X} = \mathbf{k} \mid A]$$

Law of total expectation:

 $\mathsf{E}[\mathsf{X}] = \mathsf{Pr}[A] \: \mathsf{E}[\mathsf{X} \mid A] + \mathsf{Pr}[\overline{A}] \: \mathsf{E}[\mathsf{X} \mid \overline{A}]$ 

More generally, if  $A_1, A_2, ..., A_n$  partition the sample space  $E[\mathbf{X}] = E[\mathbf{X}|A_1] \Pr[A_1] + E[\mathbf{X}|A_2] \Pr[A_2] + \dots + E[\mathbf{X}|A_n] \Pr[A_n]$
### Simple example: Law of total expectation

49.8% of population male Average height: 5'11" (men) 5'5" (female)

What's the average height of the whole population?

$$E[\mathbf{H}] = E[\mathbf{H} | \mathbf{M}] \Pr[\mathbf{M}] + E[\mathbf{H} | \overline{\mathbf{M}}] \Pr[\overline{\mathbf{M}}]$$
$$= 5\frac{11}{12} \cdot 0.498 + 5\frac{5}{12} \cdot 0.502$$

## Markov's inequality

"Not too many people can be well above the average."

- Suppose X is a non-negative r.v. with E[X] = 10How often can X be 20 or higher? i.e., How high can Pr [  $X \ge 20$  ] be?
- $E[X] = E[X | X \ge 20] Pr[X \ge 20] + E[X | X < 20] Pr[X < 20]$

 $\geq E[X \mid X \geq 20] \text{ Pr}[X \geq 20] \geq 20 \text{ Pr}[X \geq 20]$ So Pr[X \geq 20]  $\leq E[X]/20 = \frac{1}{2}$ .

<u>Markov's inequality</u>: For a non-negative r.v. **X**,  $\Pr[\mathbf{X} \ge a] \le \frac{E[\mathbf{X}]}{a}$  for every a > 0.



- Basic sample spaces
- Binomial & Geometric dist.
- Random variables
  - their dual views
- Independence of R.Vs
- Expectation of R.Vs
- Linearity of Expectation
- Basic use of the probabilistic method

Supplementary material [Another linearity of expectation example and Birthday paradox]



www.enemybook.org



Enemybook is an **anti-social utility** that **disconnects you** to the socalled friends around you.

On Enemybook, Enemyships connect pairs of people

Suppose there are n students with m enemyships between them



### **Enemybook Schism**

Suppose there are n students with m enemyships between them

We would like to devise a schism in enemybook. i.e., split the students into two teams so that many enemyships are broken.

Prove that, no matter what the enemybook network, we can always do this in a way that breaks at least m/2 enemyships

### **Enemybook Schism**

Prove that, no matter what the enemybook network, we can always devise a partition into two teams that breaks at least  $\frac{1}{2}$  the enemyships

Here's a simple (almost dumb) thing to try: For each student, place him/her in team 1 or 2 randomly (independent of other students)

Let **X** = number of enemyships broken



### Indicators + Linearity to the rescue

For each of the m enemyships e, let B<sub>e</sub> be the event that it's broken, let X<sub>e</sub> be the indicator r.v for B<sub>e</sub>.



Indicators + Linearity to the rescue For each of the m enemyships e, let  $B_e$  be the event that it's broken, let  $X_e$  be the indicator rv for  $B_e$ .

# $\mathbf{X} = \sum_{\text{enemyships e}} \mathbf{X}_{\text{e}} \quad \therefore \ \mathbf{E}[\mathbf{X}] = \sum_{\text{e}} \mathbf{E}[\mathbf{X}_{\text{e}}] = \sum_{\text{e}} \mathbf{Pr}[B_{\text{e}}]$ $\mathbf{Pr}[B_{\text{e}}] = 1/2 \qquad \therefore \ \mathbf{E}[\mathbf{X}] = (1/2)\mathbf{m}$

By the probabilistic method, there must exist schisms that separate *at least* m/2 pairs.



## **Birthday Problem**

### Question:

There are m students in a room (m  $\leq$  365). What's the probability they all have different birthdays?

#### Modeling:

Ignore Feb. 29. Assume days equally likely. Assume no twins in the class.

# for i = 1...m student[i].bday ← RandInt(365)

Let A<sub>i</sub> be event that student i's bday differs from the bday of all *previous* students.

Let D be event that all bdays are different.

$$D = A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_m$$

Chain rule:

 $Pr[D] = Pr[A_1] Pr[A_2|A_1] Pr[A_3|A_1 \cap A_2] Pr[A_4| \cdots etc.]$ So what is  $Pr[A_i | A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$ ?

Let A<sub>i</sub> be event that student i's bday differs from the bday of all previous students.

So what is  $Pr[A_i | A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$ ?

 $A_1 \cap A_2 \cap \cdots \cap A_{i-1}$  means first i-1 students all had different birthdays.

i-1 out of 365 occupied when ith bday chosen.  $Pr[A_i | A_1 \cap A_2 \cap \dots \cap A_{i-1}] = \frac{365 - (i-1)}{365} = 1 - \frac{i-1}{365}$ 

Let A<sub>i</sub> be event that student i's bday differs from the bday of all previous students.

Let D be event that all bdays are different.

$$Pr[D] = Pr[A_1] Pr[A_2|A_1] Pr[A_3|A_1 \cap A_2] Pr[A_4| \cdots etc.]$$

$$=1\cdot\left(1-\frac{1}{365}\right)\cdot\left(1-\frac{2}{365}\right)\cdots\left(1-\frac{m-1}{365}\right)$$

This is the final answer.

Pr[all m students have different bdays]

$$=1\cdot\left(1-\frac{1}{365}\right)\cdot\left(1-\frac{2}{365}\right)\cdots\left(1-\frac{m-1}{365}\right)$$



Pr[in m students, some pair share a bday]

$$= 1 - 1 \cdot \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdots \left(1 - \frac{m - 1}{365}\right)$$



### Birthday Problem —

Sometimes called the Birthday "Paradox", because 23 seems surprisingly small.

What if there are N possible "birthdays"?

Pr[in m students, some pair share a "bday"]

$$= 1 - 1 \cdot \left(1 - \frac{1}{N}\right) \cdot \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{m - 1}{N}\right)$$

For what value of m is this  $\approx 1/2$  ?

I'll just tell you: for  $m \approx \sqrt{N}$