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Where we are



Randomness and the universe

Newtonian physics suggests that the 
universe evolves deterministically.

Does the universe have true randomness?

Quantum physics says otherwise.



Randomness and the universe

Does the universe have true randomness?

God does not play dice with the world.

- Albert Einstein

Einstein, don’t tell God what to do.

- Niels Bohr

Opinion 1:

Opinion 2:



Randomness and the universe

Does the universe have true randomness?

Even if it doesn’t,  we can still model our uncertainty
using probability.

Randomness is an essential tool in 
modeling and analyzing nature. 

It also plays a key role in computer science.



Randomness in computer science

Statistics via sampling

e.g. election polls

Nash equilibrium in Game Theory

Nash equilibrium always exists if players can have 
probabilistic strategies.

Randomized algorithms

Does randomness speed up computation?

Cryptography

A secret is only as good as the entropy/uncertainty in it.



Randomness in computer science

Randomized models for deterministic objects

e.g. the www graph

Quantum computing

Randomness is inherent in quantum mechanics.

…

Machine learning theory

Data is generated by some probability distribution.

Coding Theory

Encode data to be able to deal with random noise.



Topic of the Day:

Randomized Algorithms



Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:

(i) the input can be chosen randomly 
    (average-case analysis).

(ii) the algorithm can make random choices
     (randomized algorithm).

Which one will we focus on?



Randomness and algorithms

A randomized algorithm is an algorithm that is allowed to 
flip a coin (i.e., has access to random bits).

What is a randomized algorithm?

In 15-251:

A randomized algorithm is an algorithm that is allowed 
to call:

- RandInt(n)
- Bernoulli(p)

(we’ll assume these take          time)O(1)



Deterministic vs Randomized

For any fixed input (e.g. x = 3):

def f(x): 
     y = 1 
     if(y == 0): 
          while(x > 0): 
               x = x - 1 
     return x+y

Deterministic

- the output is invariant

- the running time is invariant

- the output can vary

- the running time can vary

def f(x): 
     y = Bernoulli(0.5) 
     if(y == 0): 
          while(x > 0): 
               x = x - 1 
     return x+y

Randomized



Deterministic vs Randomized

- correctness:                

- running time:                        

A deterministic algorithm       computes     
in time              means:

A f : ⌃⇤ ! ⌃⇤

T (n)

Note:  we require worst-case guarantees for
           correctness and run-time.

8x 2 ⌃⇤,
A(x) = f(x) .

# steps A(x) takes is  T (|x|).8x 2 ⌃⇤,



- running time:                       

Deterministic vs Randomized

A randomized algorithm       computes     
in time              means:

A f : ⌃⇤ ! ⌃⇤

T (n)

?

?

A f : ⌃⇤ ! ⌃⇤

T (n)

- correctness:                                      8x 2 ⌃⇤,

8x 2 ⌃⇤,



Deterministic vs Randomized

A randomized algorithm       computes     
in time              means:

A f : ⌃⇤ ! ⌃⇤

T (n)

- correctness:                 ,                       .

- running time:               ,         

8x 2 ⌃⇤
A(x) = f(x)

8x 2 ⌃⇤ # steps A(x) takes is  T (|x|).

these are random

Try 1



Deterministic vs Randomized

A randomized algorithm       computes     
in time              means:

A f : ⌃⇤ ! ⌃⇤

T (n)

- correctness:                 ,                                .                       

- running time:               ,         

8x 2 ⌃⇤

8x 2 ⌃⇤
Pr[A(x) = f(x)] = 1

Try 2

Pr[# steps A(x) takes is  T (|x|)] = 1 .

Is this interesting?

A randomized algorithm is allowed to gamble with either 
correctness or running time.

No.



Deterministic

Type 1

Type 2

Correctness Run-time

Type 3

Randomized

always  T (n)always

w.h.p.  T (n)always

always w.h.p.  T (n)

w.h.p. w.h.p.  T (n)

always  T (n)alwaysType 0

Type 0:  may as well be deterministic

Type 1:  “Monte Carlo algorithm”

Type 2:  “Las Vegas algorithm”

Type 3:  Can be converted to type 1. (exercise)

8x 2 ⌃⇤



Example

repeat: 
    i = RandInt(n) 
    if B[i] = 1:  
        return i

repeat 300 times: 
    i = RandInt(n) 
    if B[i] = 1:  
        return i 
return “Failed”

Input:  An array B with n elements (n even).
Half of the array contains 0s,  the other half contains 1s.

Output:  An index that contains a 1.

for i = 0 to n-1: 
    if B[i] = 1:  
        return i

Deterministic Randomized
Type 1 (Monte Carlo) Type 2 (Las Vegas)

correct:

run-time:

always

O(1)w.h.p.

correct:

run-time: always

always

O(n)

correct:

run-time:

w.h.p.

O(1)always



Example

Input:  An array B with n elements (n even).
Half of the array contains 0s,  the other half contains 1s.

Output:  An index that contains a 1.

Deterministic

Monte Carlo

Las Vegas

Correctness Run-time

always

always

w.h.p. O(1)

O(1)w.h.p.

always O(n)

always



Formal definition:  deterministic algorithm

8x 2 ⌃⇤
, # steps A(x) takes is  T (|x|).

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that deterministic algorithm      
computes      in time           if:

A
T (n)f

8x 2 ⌃⇤
,

A(x) = f(x)



Formal definition:  Monte Carlo algorithm

8x 2 ⌃⇤
,

Pr[A(x) 6= f(x)]  ✏

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm      
is a          -time Monte Carlo algorithm for 
with     error probability if:

A
T (n) f
✏

8x 2 ⌃⇤
, # steps A(x) takes is  T (|x|).

(no matter what the random choices are)



Formal definition:  Las Vegas algorithm

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm      
is a          -time Las Vegas algorithm for     if:

A
T (n) f

8x 2 ⌃⇤
, E[# steps A(x) takes]  T (|x|)

(this implies run-time is               w.h.p.) O(T (n))

8x 2 ⌃⇤
,

A(x) = f(x)
(no matter what the random choices are)



Monte Carlo Algorithm for Min Cut

CASE STUDY

Gambles with correctness. 
Doesn’t gamble with run-time.



Cut Problems

S V � S

red blue

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph                    , 
color the vertices red and blue so that the number of
edges with two colors (e = {u,v}) is maximized.

G = (V,E)



Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph                    , 
find a non-empty subset            such that
number of edges from       to             is maximized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut  =  # edges from       to            .S V � S



Cut Problems

Min Cut Problem (my favorite problem):
Given a connected graph                    , 
find a non-empty subset            such that
number of edges from       to             is minimized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut  =  # edges from       to            .S V � S



Contraction algorithm for min cut

Let’s see a simple randomized algorithm for Min-Cut.



Contraction algorithm for min cut

a

c

b

e

d

Select an edge randomly:

Green edge selected.

Contract that edge.

Size of min-cut: 2

Example run
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Select an edge randomly:

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2

Example run
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge.

When two vertices remain, you have your cut:

S = {a, b, c, d} V\S = {e} size:  2

(delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d

S

V \S



Contraction algorithm for min cut

G = G0 �! G1 �! G2 �! · · · �! Gn�2

verticesn vertices2

contract contract contract contract

n� 2 iterations



Contraction algorithm for min cut

a

c

b
e

d

Gi a

c

b

e

d

G

For any   :  A cut in       of size     corresponds exactly to  Gi k

a cut in       of size    .kG

i

Observation:



Select an edge randomly:

a

c

b

e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge.

When two vertices remain, you have your cut:

S = {a} V\S = {b,c,d,e} size: 3

(delete self loops)

Example run 2
a

c

b

e

d

V \SS



Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2



Pre-proof Poll

Let     be the size of a minimum cut.k

Which of the following are true (can select more than one):

For every       ,Gi k  min
v

degGi
(v)

For               ,G = G0 k  min
v

degG(v)

For               ,G = G0 k � min
v

degG(v)

For every       ,Gi k � min
v

degGi
(v)



Pre-proof Poll  Answer

For every       ,Gi k  min
v

degGi
(v)

i.e., for every        and every              ,Gi v 2 Gi k  degGi
(v)

Why?

Same cut exists in original graph.

This cut has size                    .deg(a) = 3

A single vertex     forms a cut of size             .v deg(v)

k  3.So

a

c

b
e

d
Gi



Proof of theorem

|F| = k
|V| = n
|E| = m

Pr[algorithm outputs F ] � 1/n2Will show

(Note                                                              )Pr[success] � Pr[algorithm outputs F ]

Fix some minimum cut. S V � S

F



Proof of theorem

Fix some minimum cut. S V � S

F

When does the algorithm output F ?

What if the algorithm picks an edge in     to contract?F
Then it cannot output F.

What if it never picks an edge in     to contract?F
Then it will output F.

|F| = k
|V| = n
|E| = m



Proof of theorem

Pr[algorithm outputs F ] =

Pr[algorithm never contracts an edge in F ]

Pr[E1 \ E2 \ · · · \ En�2]

=

Fix some minimum cut. S V � S

F

|F| = k
|V| = n
|E| = m

      = “an edge in  F  is contracted in iteration   .”Ei i

Pr[success] �



Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

= Pr[E1] · Pr[E2|E1] · Pr[E3|E1 \ E2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

· · ·

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

want to write in terms of k and n 

chain
rule

Pr[E1] Pr[E1]= 1�
= 1� # edges in F

total # edges

= 1� k

m



Proof of theorem

Recall: 
X

v2V

deg(v) = 2m =) 2m � kn

Observation: 8v 2 V : k  deg(v)
S

V � S

v

� kn =) m � kn

2

Pr[E1] = 1� k

m
=

✓
1� 2

n

◆
� 1� k

kn/2

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

·Pr[E2|E1] · Pr[E3|E1 \ E2] · · ·�
✓
1� 2

n

◆

Pr[E2|E1] = 1� Pr[E2|E1]= 1� k

# remaining edges

want to write in terms of k and n 

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Proof of theorem

Let                         be the graph after iteration 1. G0 = (V 0, E0)

Observation: 8v 2 V 0 : k  degG0(v)

X

v2V 0

degG0(v) = 2|E0|

� k(n� 1)

=) 2|E0| � k(n� 1)

=) |E0| � k(n� 1)

2

Pr[E2|E1] = 1� k

|E0| =

✓
1� 2

n� 1

◆
� 1� k

k(n� 1)/2

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

�
✓
1� 2

n

◆
·
✓
1� 2

n� 1

◆
· Pr[E3|E1 \ E2] · · ·

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

�
✓
1� 2

n

◆✓
1� 2

n� 1

◆✓
1� 2

n� 2

◆
· · ·

✓
1� 2

n� (n� 4)

◆✓
1� 2

n� (n� 3)

◆

=

✓
n� 2

n

◆✓
n� 3

n� 1

◆✓
n� 4

n� 2

◆✓
n� 5

n� 3

◆
· · ·

✓
2

4

◆✓
1

3

◆

=
2

n(n� 1)
� 1

n2

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Interlude: how can you generate random bits?

radioactive
decay

atmospheric
noise

photons
measurement



Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2



Boosting Phase



Boosting phase

Run the algorithm t times using fresh random bits.
Output the smallest cut among the ones you find.

G G G G

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

…

…

…F1 F2 FtF3

Output the minimum among      ’s.Fi

larger                 better success probabilityt =)

What is the relation between    and success probability?t



Boosting phase

Let        =  “in the i’th repetition, we don’t find a min cut.”Ai

= Pr[A1] Pr[A2] · · ·Pr[At]

= Pr[A1]
t 

✓
1� 1

n2

◆t

Pr[error]

= Pr[A1 \A2 \ · · · \At]
ind.

events

= Pr[don’t find a min cut]

What is the relation between    and success probability?t



Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

World’s most useful inequality: 8x 2 R : 1 + x  e

x



Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

x = �1/n2Let

t = n3
=) Pr[error]  e�n3/n2

= 1/en

 (ex)t = ext = e�t/n2

Pr[success] � 1� 1

en

=)

Pr[error]  (1 + x)

t

World’s most useful inequality: 8x 2 R : 1 + x  e

x



Conclusion for min cut

We have a polynomial-time algorithm that solves 
the min cut problem with probability               .1� 1/en

Theoretically, not equal to 1.
Practically, equal to 1.



We can boost the success probability of 
Monte Carlo algorithms via repeated trials.

Important Note

Boosting is not specific to Min-cut algorithm.



Final remarks

Another (morally) million dollar question:

P = BPPIs                 ?

Randomized algorithms can be faster and more elegant 
than their deterministic counterparts.

There are some interesting decision problems for which: 
   - there is a poly-time randomized algorithm,
   - we can’t find a poly-time deterministic algorithm.

Randomness adds an interesting dimension to 
computation.


