
15-251
Great Theoretical Ideas in Computer Science

Lecture 19:
Randomized Algorithms

November 1st, 2016

Where we are

Randomness and the universe

Newtonian physics suggests that the
universe evolves deterministically.

Does the universe have true randomness?

Quantum physics says otherwise.

Randomness and the universe

Does the universe have true randomness?

God does not play dice with the world.

- Albert Einstein

Einstein, don’t tell God what to do.

- Niels Bohr

Opinion 1:

Opinion 2:

Randomness and the universe

Does the universe have true randomness?

Even if it doesn’t, we can still model our uncertainty
using probability.

Randomness is an essential tool in
modeling and analyzing nature.

It also plays a key role in computer science.

Randomness in computer science

Statistics via sampling

e.g. election polls

Nash equilibrium in Game Theory

Nash equilibrium always exists if players can have
probabilistic strategies.

Randomized algorithms

Does randomness speed up computation?

Cryptography

A secret is only as good as the entropy/uncertainty in it.

Randomness in computer science

Randomized models for deterministic objects

e.g. the www graph

Quantum computing

Randomness is inherent in quantum mechanics.

…

Machine learning theory

Data is generated by some probability distribution.

Coding Theory

Encode data to be able to deal with random noise.

Topic of the Day:

Randomized Algorithms

Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:

(i) the input can be chosen randomly
 (average-case analysis).

(ii) the algorithm can make random choices
 (randomized algorithm).

Which one will we focus on?

Randomness and algorithms

A randomized algorithm is an algorithm that is allowed to
flip a coin (i.e., has access to random bits).

What is a randomized algorithm?

In 15-251:

A randomized algorithm is an algorithm that is allowed
to call:

- RandInt(n)
- Bernoulli(p)

(we’ll assume these take time)O(1)

Deterministic vs Randomized

For any fixed input (e.g. x = 3):

def f(x):
 y = 1
 if(y == 0):
 while(x > 0):
 x = x - 1
 return x+y

Deterministic

- the output is invariant

- the running time is invariant

- the output can vary

- the running time can vary

def f(x):
 y = Bernoulli(0.5)
 if(y == 0):
 while(x > 0):
 x = x - 1
 return x+y

Randomized

Deterministic vs Randomized

- correctness:

- running time:

A deterministic algorithm computes
in time means:

A f : ⌃⇤ ! ⌃⇤

T (n)

Note: we require worst-case guarantees for
 correctness and run-time.

8x 2 ⌃⇤,
A(x) = f(x) .

steps A(x) takes is  T (|x|).8x 2 ⌃⇤,

- running time:

Deterministic vs Randomized

A randomized algorithm computes
in time means:

A f : ⌃⇤ ! ⌃⇤

T (n)

?

?

A f : ⌃⇤ ! ⌃⇤

T (n)

- correctness: 8x 2 ⌃⇤,

8x 2 ⌃⇤,

Deterministic vs Randomized

A randomized algorithm computes
in time means:

A f : ⌃⇤ ! ⌃⇤

T (n)

- correctness: , .

- running time: ,

8x 2 ⌃⇤
A(x) = f(x)

8x 2 ⌃⇤ # steps A(x) takes is  T (|x|).

these are random

Try 1

Deterministic vs Randomized

A randomized algorithm computes
in time means:

A f : ⌃⇤ ! ⌃⇤

T (n)

- correctness: , .

- running time: ,

8x 2 ⌃⇤

8x 2 ⌃⇤
Pr[A(x) = f(x)] = 1

Try 2

Pr[# steps A(x) takes is  T (|x|)] = 1 .

Is this interesting?

A randomized algorithm is allowed to gamble with either
correctness or running time.

No.

Deterministic

Type 1

Type 2

Correctness Run-time

Type 3

Randomized

always  T (n)always

w.h.p.  T (n)always

always w.h.p.  T (n)

w.h.p. w.h.p.  T (n)

always  T (n)alwaysType 0

Type 0: may as well be deterministic

Type 1: “Monte Carlo algorithm”

Type 2: “Las Vegas algorithm”

Type 3: Can be converted to type 1. (exercise)

8x 2 ⌃⇤

Example

repeat:
 i = RandInt(n)
 if B[i] = 1:
 return i

repeat 300 times:
 i = RandInt(n)
 if B[i] = 1:
 return i
return “Failed”

Input: An array B with n elements (n even).
Half of the array contains 0s, the other half contains 1s.

Output: An index that contains a 1.

for i = 0 to n-1:
 if B[i] = 1:
 return i

Deterministic Randomized
Type 1 (Monte Carlo) Type 2 (Las Vegas)

correct:

run-time:

always

O(1)w.h.p.

correct:

run-time: always

always

O(n)

correct:

run-time:

w.h.p.

O(1)always

Example

Input: An array B with n elements (n even).
Half of the array contains 0s, the other half contains 1s.

Output: An index that contains a 1.

Deterministic

Monte Carlo

Las Vegas

Correctness Run-time

always

always

w.h.p. O(1)

O(1)w.h.p.

always O(n)

always

Formal definition: deterministic algorithm

8x 2 ⌃⇤
, # steps A(x) takes is  T (|x|).

Let be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that deterministic algorithm
computes in time if:

A
T (n)f

8x 2 ⌃⇤
,

A(x) = f(x)

Formal definition: Monte Carlo algorithm

8x 2 ⌃⇤
,

Pr[A(x) 6= f(x)]  ✏

Let be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm
is a -time Monte Carlo algorithm for
with error probability if:

A
T (n) f
✏

8x 2 ⌃⇤
, # steps A(x) takes is  T (|x|).

(no matter what the random choices are)

Formal definition: Las Vegas algorithm

Let be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm
is a -time Las Vegas algorithm for if:

A
T (n) f

8x 2 ⌃⇤
, E[# steps A(x) takes]  T (|x|)

(this implies run-time is w.h.p.) O(T (n))

8x 2 ⌃⇤
,

A(x) = f(x)
(no matter what the random choices are)

Monte Carlo Algorithm for Min Cut

CASE STUDY

Gambles with correctness.
Doesn’t gamble with run-time.

Cut Problems

S V � S

red blue

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph ,
color the vertices red and blue so that the number of
edges with two colors (e = {u,v}) is maximized.

G = (V,E)

Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph ,
find a non-empty subset such that
number of edges from to is maximized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut = # edges from to .S V � S

Cut Problems

Min Cut Problem (my favorite problem):
Given a connected graph ,
find a non-empty subset such that
number of edges from to is minimized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut = # edges from to .S V � S

Contraction algorithm for min cut

Let’s see a simple randomized algorithm for Min-Cut.

Contraction algorithm for min cut

a

c

b

e

d

Select an edge randomly:

Green edge selected.

Contract that edge.

Size of min-cut: 2

Example run
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

Select an edge randomly:

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2

Example run
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge.

When two vertices remain, you have your cut:

S = {a, b, c, d} V\S = {e} size: 2

(delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run
a

c

b

e

d

S

V \S

Contraction algorithm for min cut

G = G0 �! G1 �! G2 �! · · · �! Gn�2

verticesn vertices2

contract contract contract contract

n� 2 iterations

Contraction algorithm for min cut

a

c

b
e

d

Gi a

c

b

e

d

G

For any : A cut in of size corresponds exactly to Gi k

a cut in of size .kG

i

Observation:

Select an edge randomly:

a

c

b

e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d

Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d

Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d

Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d

Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d

Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d

Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge.

When two vertices remain, you have your cut:

S = {a} V\S = {b,c,d,e} size: 3

(delete self loops)

Example run 2
a

c

b

e

d

V \SS

Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~)2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let be a graph with n vertices.
The probability that the contraction algorithm will
output a min-cut is .

Theorem:
G = (V,E)

� 1/n2

Pre-proof Poll

Let be the size of a minimum cut.k

Which of the following are true (can select more than one):

For every ,Gi k  min
v

degGi
(v)

For ,G = G0 k  min
v

degG(v)

For ,G = G0 k � min
v

degG(v)

For every ,Gi k � min
v

degGi
(v)

Pre-proof Poll Answer

For every ,Gi k  min
v

degGi
(v)

i.e., for every and every ,Gi v 2 Gi k  degGi
(v)

Why?

Same cut exists in original graph.

This cut has size .deg(a) = 3

A single vertex forms a cut of size .v deg(v)

k  3.So

a

c

b
e

d
Gi

Proof of theorem

|F| = k
|V| = n
|E| = m

Pr[algorithm outputs F] � 1/n2Will show

(Note)Pr[success] � Pr[algorithm outputs F]

Fix some minimum cut. S V � S

F

Proof of theorem

Fix some minimum cut. S V � S

F

When does the algorithm output F ?

What if the algorithm picks an edge in to contract?F
Then it cannot output F.

What if it never picks an edge in to contract?F
Then it will output F.

|F| = k
|V| = n
|E| = m

Proof of theorem

Pr[algorithm outputs F] =

Pr[algorithm never contracts an edge in F]

Pr[E1 \ E2 \ · · · \ En�2]

=

Fix some minimum cut. S V � S

F

|F| = k
|V| = n
|E| = m

 = “an edge in F is contracted in iteration .”Ei i

Pr[success] �

Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

= Pr[E1] · Pr[E2|E1] · Pr[E3|E1 \ E2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

· · ·

 = “an edge in F is contracted in iteration .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

want to write in terms of k and n

chain
rule

Pr[E1] Pr[E1]= 1�
= 1� # edges in F

total # edges

= 1� k

m

Proof of theorem

Recall:
X

v2V

deg(v) = 2m =) 2m � kn

Observation: 8v 2 V : k  deg(v)
S

V � S

v

� kn =) m � kn

2

Pr[E1] = 1� k

m
=

✓
1� 2

n

◆
� 1� k

kn/2

 = “an edge in F is contracted in iteration .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

·Pr[E2|E1] · Pr[E3|E1 \ E2] · · ·�
✓
1� 2

n

◆

Pr[E2|E1] = 1� Pr[E2|E1]= 1� k

remaining edges

want to write in terms of k and n

 = “an edge in F is contracted in iteration .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

Proof of theorem

Let be the graph after iteration 1. G0 = (V 0, E0)

Observation: 8v 2 V 0 : k  degG0(v)

X

v2V 0

degG0(v) = 2|E0|

� k(n� 1)

=) 2|E0| � k(n� 1)

=) |E0| � k(n� 1)

2

Pr[E2|E1] = 1� k

|E0| =

✓
1� 2

n� 1

◆
� 1� k

k(n� 1)/2

 = “an edge in F is contracted in iteration .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

�
✓
1� 2

n

◆
·
✓
1� 2

n� 1

◆
· Pr[E3|E1 \ E2] · · ·

 = “an edge in F is contracted in iteration .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

�
✓
1� 2

n

◆✓
1� 2

n� 1

◆✓
1� 2

n� 2

◆
· · ·

✓
1� 2

n� (n� 4)

◆✓
1� 2

n� (n� 3)

◆

=

✓
n� 2

n

◆✓
n� 3

n� 1

◆✓
n� 4

n� 2

◆✓
n� 5

n� 3

◆
· · ·

✓
2

4

◆✓
1

3

◆

=
2

n(n� 1)
� 1

n2

 = “an edge in F is contracted in iteration .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

Interlude: how can you generate random bits?

radioactive
decay

atmospheric
noise

photons
measurement

Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~)2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let be a graph with n vertices.
The probability that the contraction algorithm will
output a min-cut is .

Theorem:
G = (V,E)

� 1/n2

Boosting Phase

Boosting phase

Run the algorithm t times using fresh random bits.
Output the smallest cut among the ones you find.

G G G G

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

…

…

…F1 F2 FtF3

Output the minimum among ’s.Fi

larger better success probabilityt =)

What is the relation between and success probability?t

Boosting phase

Let = “in the i’th repetition, we don’t find a min cut.”Ai

= Pr[A1] Pr[A2] · · ·Pr[At]

= Pr[A1]
t 

✓
1� 1

n2

◆t

Pr[error]

= Pr[A1 \A2 \ · · · \At]
ind.

events

= Pr[don’t find a min cut]

What is the relation between and success probability?t

Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

World’s most useful inequality: 8x 2 R : 1 + x  e

x

Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

x = �1/n2Let

t = n3
=) Pr[error]  e�n3/n2

= 1/en

 (ex)t = ext = e�t/n2

Pr[success] � 1� 1

en

=)

Pr[error]  (1 + x)

t

World’s most useful inequality: 8x 2 R : 1 + x  e

x

Conclusion for min cut

We have a polynomial-time algorithm that solves
the min cut problem with probability .1� 1/en

Theoretically, not equal to 1.
Practically, equal to 1.

We can boost the success probability of
Monte Carlo algorithms via repeated trials.

Important Note

Boosting is not specific to Min-cut algorithm.

Final remarks

Another (morally) million dollar question:

P = BPPIs ?

Randomized algorithms can be faster and more elegant
than their deterministic counterparts.

There are some interesting decision problems for which:
 - there is a poly-time randomized algorithm,
 - we can’t find a poly-time deterministic algorithm.

Randomness adds an interesting dimension to
computation.

