|5-251
Great Theoretical Ideas in Computer Science

Lecture |9:
Randomized Algorithms

November Ist, 2016

Where we are

Oct 24 [Oct 25 [Oct 26 Oct 27 Oct 28
Probability 1 hw7 w.s Probability 2

Oct 31 Nov 1 Nov 3 Nov 4
Randomized Algs. Markov Chains

Nov 7 Nov 10 Nov 11
Modular Arithmetic hw9 w.s Cryptography

Nov 14 Nov 15 Nov 16 Nov 17 Nov 18
Group Theory Midterm 2 Fields and Polys

Nov 21 Nov 22 Nov 23 Nov 24 Nov 25
Communication Comp. | THANKSGIVING THANKSGIVING THANKSGIVING

Nov 28 Nov 29 Nov 30 Dec 1 Dec 2
Err. Correcting Codes | hwi10 w.s. Generating Functions

Dec 5 Dec 6 Dec 7 Dec 8 Dec 9
Interactive Proofs hwi1 w.s. Epilogue

Randomness and the universe

Does the universe have true randomness?

Newtonian physics suggests that the
universe evolves deterministically.

Quantum physics says otherwise.

Randomness and the universe

Does the universe have true randomness?

Opinion |:

God does not play dice with the world.

- Albert Einstein

Opinion 2:

Einstein, don’t tell God what to do.
- Niels Bohr

Randomness and the universe

Does the universe have true randomness?

Even if it doesn’t, we can still model our uncertainty
using probability.

Randomness is an essential tool in
modeling and analyzing nature.

It also plays a key role in computer science.

Randomness in computer science

P Randomized algorithms

Does randomness speed up computation?

Statistics via sampling

e.g. election polls

Nash equilibrium in Game Theory

Nash equilibrium always exists if players can have
probabilistic strategies.

» Cryptography
A secret is only as good as the entropy/uncertainty in it.

Randomness in computer science

» Randomized models for deterministic objects

e.g. the www graph

Quantum computing

Randomness is inherent in quantum mechanics.

Machine learning theory

Data is generated by some probability distribution.

» Coding Theory

Encode data to be able to deal with random noise.

Topic of the Day:

Randomized Algorithms

Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:

(i) the input can be chosen randomly
(average-case analysis).

(i) the algorithm can make random choices
(randomized algorithm).

Which one will we focus on?

Randomness and algorithms

What is a randomized algorithm?

A randomized algorithm is an algorithm that is allowed to
flip a coin (i.e., has access to random bits).

In 15-251:

A randomized algorithm is an algorithm that is allowed
to call:

- RandInt(n)
- Bernoulli(p)

(we’'ll assume these take O(1) time)

Deterministic vs Randomized

Deterministic Randomized
def {(x): def {(x):
y=1 y = Bernoulli(0.5)
if(y ==0): if(y == 0):
while(x > 0): while(x > 0):
x=x-1 x=x-1
return x+y return x+y

For any fixed input (e.g. x = 3):

- the output is invariant - the output can vary

- the running time is invariant - the running time can vary

Deterministic vs Randomized

A deterministic algorithm A computes f:X" — X7
intime 7'(n) means:

- correctness: Vo € X%, A(z) = f(x).
- running time: Vx € X%, # steps A(x) takes is < T'(|z]).

Note: we require worst-case guarantees for
correctness and run-time.

Deterministic vs Randomized

A randomized algorithm A computes f:X" — X7
intime 7'(n) means:

- correctness: Vx € X, ?

- running time: Vx € X7, !

Deterministic vs Randomized
Try |

A randomized algorithm A computes f:X" — X7
intime 7'(n) means:

- correctness: Vz € ¥*, |A(z)|= f(x) .
- running time: Vx € X7, ‘# steps A(x) takes‘is < T(|x|).

these are random

Deterministic vs Randomized
Try 2

A randomized algorithm A computes f:X" — X7
intime 7'(n) means:
- correctness: Vr € X*, Pr[A(z) = f(z)]=1.

- running time: Vr € X7,
Pr|# steps A(x) takes is < T'(|z])] =1.

Is this interesting? No.

A randomized algorithm is allowed to gamble with either
correctness or running time.

Deterministic

Randomized

_Type 0
Type |
Type 2

Type 3

Vo € D°

Correctness Run-time
always always < T'(n)
always always < T'(n)
w.h.p. always < T'(n)
always w.h.p. <T(n)
w.h.p. w.h.p. <T(n)

Type 0: may as well be deterministic

Type |: “Monte Carlo algorithm”
Type 2: “Las Vegas algorithm”

Type 3: Can be converted to type |. (exercise)

Example

" In Input: An array B with n elements (n even). A
Half of the array contains Os, the other half contains Is.
LOutput: An index that contains a |. y

Deterministic

fori1=0 ton-1:
if B[1] = 1:
return i

correct: always

run-time: always O(n)

Randomized

Type | (Monte Carlo) Type 2 (Las Vegas)

repeat 300 times: repeat:
1 = RandInt(n) 1 = RandInt(n)
if B[1] = 1: if B[1] = 1:
return 1 return 1
return “Failed”

correct: w.h.p.

correct: always

run-time: always O(1) run-time: w.h.p. O(1)

Example

rInput: An array B with n elements (n even).
Half of the array contains Os, the other half contains Is.

kOutput: An index that contains a |.

Correctness Run-time
Deterministic always always O(n)
Monte Carlo w.h.p. always O(1)

Las Vegas always w.h.p. O(1)

Formal definition: deterministic algorithm

Let f: X" — ™ be a computational problem.

We say that deterministic algorithm A
computes f intime T'(n) if:

Ve e X*| A(zx) = f(x)

Ve € X, 4 steps A(x) takes is < T'(|x]).

Formal definition: Monte Carlo algorithm

Let f: X" — ™ be a computational problem.

We say that randomized algorithm A
isa 1'(n)-time Monte Carlo algorithm for f
with € error probability if:

vz e X% PrlA(z) # f(z)] <€

Ve € X5, 4 steps A(x) takes is < T'(|z]).

(no matter what the random choices are)

Formal definition: Las Vegas algorithm

Let f: X" — ™ be a computational problem.

We say that randomized algorithm A
isa 7'(n)-time Las Vegas algorithm for f if:

Ve eX*| A(z) = f(x)

(no matter what the random choices are)

Ve e X7, E|# steps A(x) takes| < T'(|z])
(this implies run-time is O(T'(n)) w.h.p.)

CASE STUDY

Monte Carlo Algorithm for Min Cut

Gambles with correctness.
Doesn’t gamble with run-time.

Cut Problems

Given a connected graph G = (V, F),
color the vertices red and blue so that the number of
Ledges with two colors (e = {u,v}) is maximized.

~

Max Cut Problem (Ryan O’Donnell’s favorite problem):

J

S V-5

/

T

red blue

Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):\

Given a connected graph G = (V, FE),
find a non-empty subset S C V such that
number of edges from S to V — S is maximized.

_ /

S V-5

/

T

size of the cut = #edgesfrom S to V — 5.

Cut Problems

Min Cut Problem (my favorite problem):

Given a connected graph G = (V, E),
find a non-empty subset S C V such that
number of edges from S to V — § is minimized.

_

S V-5

/

T

size of the cut = #edgesfrom S to V — 5.

Contraction algorithm for min cut

Let’s see a simple randomized algorithm for Min-Cut.

Contraction algorithm for min cut

Example run

a b a b
[WS
C d C d
Select an edge randomly: Size of min-cut: 2

Green edge selected.

Contract that edge.

Contraction algorithm for min cut

Example run

a a b
b
[WS
d
C C d
Select an edge randomly: Size of min-cut: 2

Green edge selected.

Contract that edge. (delete self loops)

Contraction algorithm for min cut

Example run

a a b
b
[WS
d
C C d
Select an edge randomly: Size of min-cut: 2

Purple edge selected.

Contract that edge. (delete self loops)

Contraction algorithm for min cut

Example run

a b
ab
2 ? [WS
d
C C d
Select an edge randomly: Size of min-cut: 2

Purple edge selected.

Contract that edge. (delete self loops)

Contraction algorithm for min cut

Example run

a b
ab
2 ? [WS
d
C C d
Select an edge randomly: Size of min-cut: 2

Blue edge selected.

Contract that edge. (delete self loops)

Contraction algorithm for min cut

Example run

a b
ab
o oc
cd
C d
Select an edge randomly: Size of min-cut: 2

Blue edge selected.

Contract that edge. (delete self loops)

Contraction algorithm for min cut

Example run S
.,O‘é_‘ B"‘o

VAS
ab NG ‘ .‘.
o oc : P ree:
cd ' 2N
<, d-
Select an edge randomly: Size of min-cut: 2

Blue edge selected.
Contract that edge. (delete self loops)

When two vertices remain, you have your cut:
S={ab,c,d} V\S={e} size: 2

Contraction algorithm for min cut

contract contract contract contract

G=Gg—G1 — Gy — - —>G,_9

v v

N vertices 2 vertices

n — 2 iterations

Contraction algorithm for min cut

Observation:

Forany 2: A cutin (G; of size k£ corresponds exactly to

acutin G ofsize k.

Contraction algorithm for min cut

Example run 2
a b a b

®cC

C d C d

Select an edge randomly:
Green edge selected.

Contract that edge. (delete self loops)

®cC

Contraction algorithm for min cut

Example run 2

a a b

®cC

C C d

Select an edge randomly:
Green edge selected.

Contract that edge. (delete self loops)

®cC

Contraction algorithm for min cut

Example run 2

a a b

®cC

C C d

Select an edge randomly:

Contract that edge. (delete self loops)

®cC

Contraction algorithm for min cut

Example run 2

a a b

Select an edge randomly:

Contract that edge. (delete self loops)

®cC

Contraction algorithm for min cut

Example run 2

a a b

Select an edge randomly:
Red edge selected.
Contract that edge. (delete self loops)

®cC

Contraction algorithm for min cut

a
DN
e
Cd

Select an edge randomly:

Example run 2
a b

Red edge selected.
Contract that edge. (delete self loops)

®cC

Contraction algorithm for min cut

Example run 2 ¢ L VAS
d .'.“ ‘a.-..“. "““‘ b ’.'«
b .
€ ®cC :
cd :

Select an edge randomly:
Red edge selected.
Contract that edge. (delete self loops)

When two vertices remain, you have your cut:
S={a} V\S=/{b,cde} size:3

Contraction algorithm for min cut

/Theorem:

o

Let G = (V, F) be a graph with n vertices.
The probability that the contraction algorithm will
output a min-cut is > 1/n?.

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (= 2")

- There is a way to boost the probability of success to

1
1 — — (and still remain in polynomial time)
en

Pre-proof Poll

Let k£ be the size of 2 minimum cut.

Which of the following are true (can select more than one):
For G = Gy, k< mvin deg(v)
For G = Gy, k> mvin deg(v)
Forevery G;, k< mvin degq. (v)

Forevery G;, k> mindegg, (v)

Pre-proof Poll Answer

Forevery G;, k < mindegg, (v)

ie, forevery G; andevery v € Gy, k <degg (v)

Why?

A single vertex v forms a cut of size deg(v).

This cut has size deg(a) = 3.

Same cut exists in original graph.

So k£ < 3.

Proof of theorem

Fix some minimum cut.

FI =
V| =n
El =m

S

/.

V-5

7

Will show Prlalgorithm outputs F| > 1/n°

(Note Pr|success| > Pr|algorithm outputs F])

Proof of theorem

Fix some minimum cut. S V=5

- %

V| =n @‘ ‘
El =m

When does the algorithm output F ?

What if it never picks an edge in F to contract!
Then it will output F.

What if the algorithm picks an edge in F to contract?
Then it cannot output F.

Proof of theorem

Fix some minimum cut. S V=5

- %

V| =n @‘ ‘
El =m

Pr|success| >
Pr[algorithm outputs F| =

Prlalgorithm never contracts an edge in F'| =

PrlEiNEsN---NE,_

E; ="an edge in [is contracted in iteration .

Proof of theorem

= “an edge in F is contracted in iteration .

E;
Goal: PrlEiNE;N---NE, 5] >1/n°

Pr[E1 N EyN -+ N Ey,_o]
e Pr(Ey) - Pr(By|Ey] - Pr(E| By N By -+
Pr(E, o|E1NE;N---NE,_3]

— # edges in F k
=1-Pr[E4] =1 =1 — =
Pr[El] I'[1] total # edgeS ':.7_7_?,':

want to write in terms of k and n

Proof of theorem

= “an edge in F is contracted in iteration .

E;
Goal: PrlEiNE;N---NE, 5] >1/n°

S
Observation: Vv € V : k < deg(v)

¢ HEl I I = = = =H = I = =),

Proof of theorem

= “an edge in F is contracted in iteration .

E;
Goal: PrlEiNE;N---NE, 5] >1/n°

PrlEi\NEsN---NE,_

2
> (1 —~ —> -Pr[E|E1] - Pr[E3| By N By - -
n —_—
Pr[En_2|E1 M EQ AREERE En_g]

PI’[EQ‘Eﬂ =1 PT[EQ‘E_l] =] — ‘

<

want to write in terms of k and n

Proof of theorem

= “an edge in F is contracted in iteration .

E;
Goal: PrlEiNE;N---NE, 5] >1/n°

Let G’ = (V', E’) be the graph after iteration I.

Observation: Vv €V’ : k < degq (v)

N dege (v)i=2|E| = 2|E'| > k(n— 1)

L pEV :
e e e e , kin—1
> k(n—1) — ‘EI‘Z ()
k k 2
Pr|Es|E 1 —
rE2|] B =T k1)) (n— 1

Proof of theorem

= "an edge in F is contracted in iteration 7.’

E;
Goal: PrlEiNE;N---NE, 5] >1/n°

PrlEi\NEsN---NE,_»
2 2
Z(l_—>(1)’PI’[Eg‘ElmEQ]“°
n n—1

Pr[En_2|E1 M E_2 AREERD En_g]

Proof of theorem

= "an edge in F is contracted in iteration .’

E;
Goal: PrlEiNE;N---NE, 5] >1/n°

PrlEi\NEsN---NE,_»

(=) 0mamn) (ams) - (i) ()
(9= 6 -

2 1

| DO
N—_
VRN
$i=

Interlude: how can you generate random bits?

GO gle true random bits n

Web Shopping Videos Images News More v Search tools

About 2,790,000 results (0.51 seconds) rad i O acti ve

RANDOM.ORG - True Random Number Service
https://www.random.org/ ¥ Random.org ~

ORG offers true random numbers to anyone on the Internet. The randomness comes d e C ay

... ORG has generated 1.19 trillion random bits for the Internet community.
List Randomizer - Integer Generator - Lottery Quick Pick - Dice Roller

Introduction to Randomness and Random Numbers
https://www.random.org/randomness/ ¥ Random.org ~

ORG is a true random number service that generates randomness via which
gathers random bits from a variety of sources including HotBits and RANDOM.

How To Generate Truly Random Bits
openfortress.org/cryptodoc/random/ v
A guide to generate cryptographically acceptable true random bits.

[]
HotBits: Genuine Random Numbers - Fourmilab atm O S P h e rl C
https://www.fourmilab.ch/hotbits/ v
Genuine random numbers, generated by radioactive decay. ... People working with
computers often sloppily talk about their system's “random number generator” and the °
“random numbers” it produces. ... HotBits are generated by timing successive pairs of n O I S e
radioactive decays detected by ...
HotBits Hardware Description - HotBits Hardware - How HotBits Works

Hardware random number generator - Wikipedia, the free ...
https://en.wikipedia.org/.../Hardware_random_number_genera... ¥ Wikipedia v
In computing, a hardware random number generator (TRNG, True Random ... number
generators generally produce a limited number of random bits per second.

Random number generation - Wikipedia, the free ...
https://en.wikipedia.org/wiki/Random_number_generation ¥ Wikipedia ~

Jump to "True" vs. pseudo-random numbers - True" vs. pseudo-random numbers[edit]
... as filling a hard disk drive with random bits, ...

Pseudorandom number generator - Wikipedia, the free ...

https://en.wikipedia.org/wiki/Pseudorandom_number_generator ¥ Wikipedia ~ P h Oto n S

The PRNG-generated sequence is not truly random, because it is completely ... The
period is bounded by the number of the states, usually measured in bits.

Quantum Random Bit Generator Service m ea-s u re m e nt

random.irb.hr/ v
of used random numbers. Since true random numbers are impossible to aenerate with

Contraction algorithm for min cut

/Theorem:

Let G = (V, F) be a graph with n vertices.
The probability that the contraction algorithm will
output a min-cut is > 1/n?.

o

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (= 2")

*-There is a way to boost the probability of success to

1
1 — — (and still remain in polynomial time)
en

Boosting Phase

Boosting phase

Run the algorithm t times using fresh random bits.

Output the smallest cut among the ones you find.

G

Contraction
Algorithm

v

Fy

v

G

Contraction
Algorithm

Fs

\4

G

Contraction
Algorithm

F3

Output the minimum among Fj’s.

larger

—> better success probability

G

Contraction
Algorithm

v

I

What is the relation between ¢ and success probability?

Boosting phase

What is the relation between ¢ and success probability?

Let A; = “in the i’th repetition, we don’t find a min cut.”

Prlerror] = Pr|don’t find a min cut]

— I’r[le_fW./lg AREENA fqt]

ind.
events

= Pr|A{| Pr|As] - - - Pr|A;]
p— I)r[fil]t fE; <?1 — ;%§:>

Boosting phase
1 t
Prlerror| < (1 — —>

n2

World’s most useful inequality: Vr e R: 14+ <e”

fFi{x)=e"x
g(x)=1+x

—
——
——
e

Boosting phase
1 t
Prlerror| < <1 — —>

n2

World’s most useful inequality: Vxr c R: 1+ <e”

let == —1/n"
Prlerror] < (14 2)" < (e®)! =¢e** = o= t/n”

t =n®> = Prlerror] < e~/ = 1/e" =

Prlsuccess] > 1 — —
6?7/

Conclusion for min cut

We have a polynomial-time algorithm that solves
the min cut problem with probability 1 — 1/¢".

l

Theoretically, not equal to |I.
Practically, equal to |.

Important Note

Boosting is not specific to Min-cut algorithm.

We can boost the success probability of
Monte Carlo algorithms via repeated trials.

Final remarks

Randomness adds an interesting dimension to
computation.

Randomized algorithms can be faster and more elegant
than their deterministic counterparts.

There are some interesting decision problems for which:
- there is a poly-time randomized algorithm,
- we can't find a poly-time deterministic algorithm.

Another (morally) million dollar question:
s P =BPP?

