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Markov Model

Andrey Markov (1856 - 1922)

Russian mathematician.

Famous for his work on
random processes.

(Pr|X > ¢ E[X]] <1/c is Markov’s Inequality.)

A model for the evolution of a random system.

The future is independent of the past, given the present.



Cool things about the Markov model

- It is a very general and natural model.

Extraordinary number of applications in many
different disciplines:

computer science, mathematics, biology, physics,
chemistry, economics, psychology, music, baseball,...

- The model is simple and neat.

- A beautiful mathematical theory behind it.

Starts simple, goes deep.
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The future is independent of the past, given the present.



Some Examples of Markov Models



Example: Drunkard Walk

...... Salvador Dali (1922)
‘ The Drunkard
3
Home



Example: Diffusion Process
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Example: Weather

A very(!!) simplified model for the weather.

Probabilities on a daily basis: S = >unny
R = rainy
Pr[sunny to rainy] = 0.1 - R
Pr[sunny to sunny] = 0.9 s[09 0.1]
Pr[rainy to rainy] = 0.5 R[10.0 0.9

Pr[rainy to sunny] = 0.5

RO =04

Encode more information about current state
for a more accurate model.



Example: Life Insurance

Goal of life insurance company:

figure out how much to charge the clients.

Find 2 model for how long a client will live.

Probabilistic model of health on a monthly basis:

Pr[healthy to sick] = 0.3
Pr[sick to healthy] = 0.8
Pr[sick to death] = 0.1
Pr[healthy to death] = 0.01
Pr[healthy to healthy] = 0.69
Pr[sick to sick] = 0.1
Pr[death to death] = |
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Some Applications of Markov Models



Application: Algorithmic Music Composition

Nicholas Vasallo

Megalithic Copier #2:
Markov Chains
(2011)

written in Pure Data




Application: Image Segmentation
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Application: Automatic Text Generation

Random text generated by a computer
(putting random words together):

“While at a conference a few weeks back, | spent an
interesting evening with a grain of salt.”

Google: MarkV Shaney



Application: Speech Recognition

Speech recognition software programs use Markov
models to listen to the sound of your voice and
convert it into text.



Application: Google PageRank
1997: Web search was horrible
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Tip: To find an old friend or information abowt someone, try: Santa Claws or "Santa Claus
Using & capital letter ensures that only that capitalization will be found.

Hapoov Birthdav AltaVista Search! 14
@ Connect : Contacting host : www .altavista digital.com... =2

Sorts webpages by number of occurrences of keyword(s).



Application: Google PageRank

IFounders of Google

\ N

Larry Page Sergey Brin
$20Billionaires



Application: Google PageRank

Jon Kleinberg

Nevanlinna Prize



Application: Google PageRank

How does Google order the webpages displayed after
a search?

2 important factors:

- Relevance of the page.

- Reputation of the page.

v

The number and reputation of links pointing to that page.

Reputation is measured using PageRank.

PageRank is calculated using a Markov Chain.
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The Setting

There is a system with n possible states/values {l, 2, ..., n}.

At each time step, the state changes probabilistically.

1
Memoryless

1

|

The next state only depends
on the current state.

Evolution of the system: random walk on the graph.



The Definition

\_

self-loops allowed

sum to 1.

(" )
A Markov Chain is a directed graph with V = {1,2,... n}
such that:

- Each edge is labeled with a value in (0, 1]

(a positive probability).

- At each vertex, the probabilities on outgoing edges

(We usually assume the graph is strongly connected.

i.e. there is a directed path from i to j for any i and j.)

_J

—]

ne vertices of the graph are called states.

ne edges are cal

ne label of an ec

ed transitions.

ge is a transition probability.



Notation

Given some Markov Chain with n states:

Foreach t =0,1,2,3,... we have a random variable:

X; = the state we are in after ¢ steps.

| 2 n
Define m;|i] = Pr| X, =i]. T = [p1 P2 - Dn]
m[i] = probability of being in ) pi=1
state i after exactly t steps. z
We write X; ~ . (X; has distribution ;)

Note that someone has to provide 7.

Once this is known, we get the distributions 71,2, ...



Notation

I
Let’s say we start at state |,i.e., Xg ~ |1

Xo =1
X1 =14
Xo =3
X3 =14
X4 =2

Xo ~ T
X1~
Xo ~ To
X3 ~ T3

Xy ~ Ty



Notation
| 2 3 4
Let’s say we start at state |,ie, Xo~[1 0 0 0] =mg

> Pr[l — 2 in one step|
— :)I'Xt — 2 ‘ Xt—l — 1]




Notation

| 2 3 4

Let’s say we start at state |,ie, Xo~[1 0 0 0] =mg
1
1 PI‘[Xl — 2|X0 — 1] — 5
@ Pr[X, = 3[Xo=1] = 0
1 PriX, =4[ Xy = 1] = 1
9 2
Pr[Xl — 1‘X0 — 1] = (
1
Vit PI'[Xt — Z‘Xt_l — 4] — Z
vVt PI'[Xt — S‘Xt_l = 2] = 1



Notation

| 2 3 4
1o £ 0 %
210 0 1 O
3(]0 0 0O 1
410 1 2 0

Transition Matrix

A Markov Chain with n states
can be characterized by the n x n transition matrix K :

Vi,j€{1,2,...,n} Kli,j] =Pr[X; =i | X;_1 = i]

= Pr[¢ — j in one step]
Note: rows of K sum to |.



Some Fundamental and Natural Questions

What is the probability of being in state i after t steps
(given some initial state)?

|t =7

What is the expected time of reaching state i when
starting at state j !

What is the expected time of having visited every state
(given some initial state)?

How do you answer such questions?



Mathematical representation of the evolution

Suppose we start at state | and let the system evolve.

How can we mathematically represent the evolution?
1
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Mathematical representation of the evolution

| 2 3 4
1o 2 0 3
210 0 1 0
310 0 0 1
410 7 2 0

Given 7.
What is 71! m1j] = Pr| X, = j]

(law of total

probability) — Z Pr Xl = ‘ Xo = Z] PI"[X() — Z]

1=1

matrix mult.

4
This is true o | t |
for any j. :ZK[ZJ]'WO[Z]:(WO'K)[J]




Mathematical representation of the evolution
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Mathematical representation of the evolution

| 2 3 4
1fo 3 0 3
210 0 1 0
310 0 0 1
410 7 2 0

The probability of states after 2 steps:

0

0

0
0
0

= O ON-

-
L

_ 1 7
0 1|7 0 5 g O
3. 2
4 _ the new state

(probabilistic)

=



Mathematical representation of the evolution

| 2 3 4
1o 2 0 3
210 0 1 0
310 0 0 1
410 z+ 2 0

So mo=(my-K) K



Mathematical representation of the evolution

In general:

I the initial probabilistic state is |P1 P2

p; = probability of being in state |,
p1+p2+---+pp =1,

after t steps, the probabilistic state is:
- 117

p1 p2 -+ pu) | Transition — T,
Matrix

pn} — 70



Remarkable Property of Markov Chains

What happens in the long run?

i.e., can we say anything about m; for large ¢ ?

Suppose the Markov chain is “aperiodic”.

Then, as the system evolves, the probabilistic state
converges to a limiting probabilistic state.

[pl D2

As t— oo, forany my = |p1

Pn]

Transition
Matrix

P2

Dn :
{

—> T




Remarkable Property of Markov Chains

In other words:

T — T asS 1 — 00.

Note:

Transition
T = m

Matrix
}

stationary/invariant
distribution

This 7 is unique.



Remarkable Property of Markov Chains

RO =04

Stationary distribution is [% %]
o 09 0.1 TR
° 0110.5 0.5 6 6

In the long run, it is Sunny 5/6 of the time,
it is Rainy 1/6 of the time.



Remarkable Property of Markov Chains

How did | find the stationary distribution!?

2

0.9 0.1]° [0.86 0.14]

05 05 |07 03

0.9 011" [0.8376 0.1624°
0.5 05| — [0812 0.188
0.9 0.1]° _ [0.833443 0.166557
0.5 0.5 — [0.832787 0.167213

Exercise: Why do the rows converge to 7 ?




Remarkable Property of Markov Chains

We needed the Markov chain to be “aperiodic”.

What is a “periodic” Markov chain!?
I

oW O

I}_\ oI

Io HI

o =1[1 O There is still a stationary distribution.
m =0 1] T=11/2 1/2]

o = 1 O 'O 1'

m—l0 1 /2 172 | =0/2 172

But it is not a limiting distribution.



Things to remember

Markov Chains can be characterized by the
transition matrix K.

Kli, 7] =Pr[X: = j | Xo_q = ]

= Pr|¢ — j in one step

What is the probability of being in state i after t steps!?
m = mo - K meli] = (7o - K°)]i]



Things to remember

Theorem (Fundamental Theorem of Markov Chains):

Consider a Markov chain that is strongly connected and aperiodic.

- There is a unique invariant/stationary distriution 7 such that
™ =mK.

- For any initial distribution ¢,

lim oKt =7
t— 00

- Let I, be the number of steps it takes to reach state j
provided we start at state 7. Then,

.
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How are Markov Chains applied ?

2 common types of applications:

|. Build a Markov chain as a statistical model of a
real-world process.

Use the Markov chain to simulate the process.

e.g. text generation, music composition.

2. Use a measure associated with a Markov chain
to approximate a quantity of interest.

e.g. Google PageRank, image segmentation



Automatic Text Generation

Generate a superficially real-looking text given a
sample document.

ldea:

From the sample document, create a Markov chain.

Use a random walk on the Markov chain to generate
text.

Example:

Collect speeches of Obama, create a Markov chain.

Use a random walk to generate new speeches.



Automatic Text Generation

The Markov Chain:

|. For each word in the document, create a node/state.

2. Put an edge word| ---> word?2
if there is a sentence in which word2 comes after word|.

3. Edge probabilities reflect frequency of the pair of
words.

like a 3 times

like the 4 times

like to 2 times




Automatic Text Generation

“I jumped up. | don't know what's going on so | am coming
down with a road to opportunity. | believe we can agree on
or do about the major challenges facing our country.”



Automatic Text Generation

Another use:

Build a Markov chain based on speeches of Obama.

Build a Markov chain based on speeches of Bush.

Given a new quote, can predict if it is by
Obama or Bush.

(by testing which Markov model the quote fits best)



Google PageRank

PageRank is a measure of reputation:

The number and reputation of links pointing to you.

The Markov Chain:

N AR T
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Google PageRank

PageRank is a measure of reputation:

The number and reputation of links pointing to you.

The Markov Chain:

|. Every webpage is a node/state.

2. Each hyperlink is an edge:
if webpage A has a link to webpage B, A --->B

3a. If A has m outgoing edges, each gets label |/m.

3b. If A has no outgoing edges, put edge A --->B VB
(jump to a random page)



Google PageRank

A little tweak:

Random surfer jumps to a random page with 5% prob.

Stationary distribution:
probability of being at webpage A in the long run

PageRank of webpage A

The stationary probability of A






Google PageRank

Google:

“PageRank continues to be the heart of our software.”



How are Markov Chains applied ?
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to approximate a quantity of interest.
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