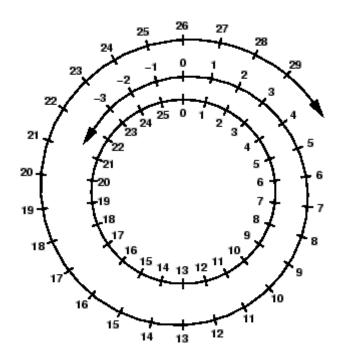


November 8th, 2016



Next 3 lectures

Modular arithmetic

+

Group theory (a more abstract and general framework)

Cryptography (in particular, "public-key" cryptography)

Main goal of this lecture

Goal:

Understanding modular arithmetic: theory + algorithms

Why:

- I. When we do addition or multiplication, the universe is infinite (e.g. Z, Q, R.)
 Sometimes we prefer to restrict ourselves to a finite universe (e.g. the modular universe).
- 2. Some hard-to-do arithmetic operations in \mathbb{Z} or \mathbb{Q} are easy in the modular universe.
- 3. Some easy-to-do arithmetic operations in $\ensuremath{\mathbb{Z}}$ or $\ensuremath{\mathbb{Q}}$ seem to be hard in the modular universe.

And this is great for cryptography applications!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
 - I. addition
 - 2. subtraction
 - 3. multiplication
 - 4. division
 - 5. exponentiation
 - 6. taking roots
 - 7. logarithm

theory + algorithms (efficient (?))

Start with algorithms on good old integers.

Then move to the modular universe.

Integers

Algorithms on numbers involve **<u>BIG</u>** numbers.

B = 5693030020523999993479642904621911725098567020556258102766251487234031094429 $B \approx 5.7 \times 10^{75}$ (5.7 quattorvigintillion)

 $B\,$ is roughly the number of atoms in the universe

Definition:
$$len(B) = \#$$
 bits to write B
 $\approx log_2 B$

For B= 5693030020523999993479642904621911725098567020556258102766251487234031094429 $\mathrm{len}(B)=251$

(for crypto purposes, this is way too small)

Integers: Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing string-manipulation.

The number of steps is measured with respect to the <u>length of the input numbers</u>.

I. Addition in integers

- **36185027886661311069865932815214971104** *A*
- + 65743021169260358536775932020762686101 B
 - 101928049055921669606641864835977657205 C

Grade school addition is linear time:

if
$$len(A), len(B) \le n$$

number of steps to produce C is $O(n)$

2. Subtraction in integers

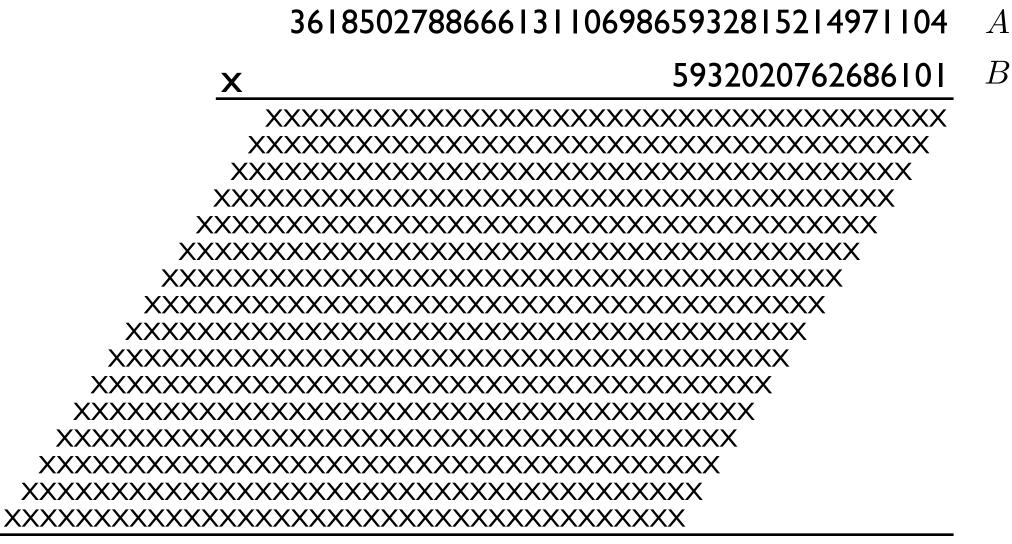
- 101928049055921669606641864835977657205 A
- 36185027886661311069865932815214971104 B
 - 65743021169260358536775932020762686101 C

Grade school subtraction is linear time:

if
$$len(A), len(B) \le n$$

number of steps to produce C is $O(n)$

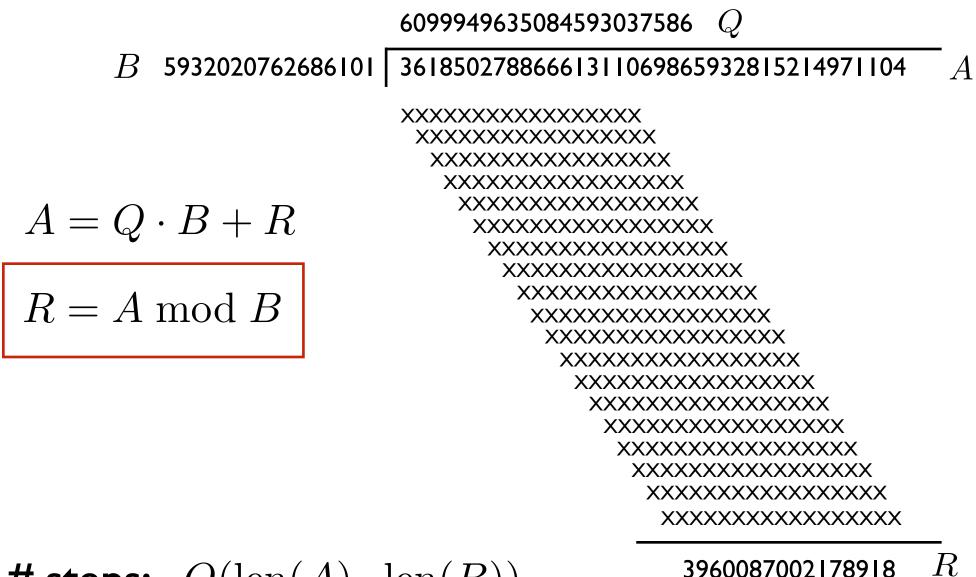
3. Multiplication in integers



214650336722050463946651358202698404452609868137425504

steps: $O(\operatorname{len}(A) \cdot \operatorname{len}(B))$ = $O(n^2)$ if $\operatorname{len}(A), \operatorname{len}(B) \le n$

4. Division in integers



steps: $O(\operatorname{len}(A) \cdot \operatorname{len}(B))$

5. Exponentiation in integers

Given as input B, compute 2^B .

lf

B = 5693030020523999993479642904621911725098567020556258102766251487234031094429

len(B) = 251but $len(2^B) \sim 5.7$ quattorvigintillion

(output length exceeds number of particles in the universe)

exponential in input length

6. Taking roots in integers

Given as input A, E , compute $A^{1/E}$.

From midterm I: binary search.

7. Taking logarithms in integers

Given as input A, B, compute $\log_B A$.

i.e., find X such that $B^X = A$.

From Homework 4, Q3b: Try X = 1, 2, 3, ...Stop when $B^X \ge A$.

Bonus problem 1: integer factorization

A = 5693030020523999993479642904621911725098567020556258102766251487234031094429

<u>Goal</u>: find one (non-trivial) factor of A

for
$$B = 2, 3, 4, 5, ...$$

test if A mod $B = 0$.

It turns out:

A = 68452332409801603635385895997250919383 X

```
83 6780 8864529 7478 24266362673045 63
```

Each factor \approx age of the universe in Planck time.

Worst case: \sqrt{A} iterations.

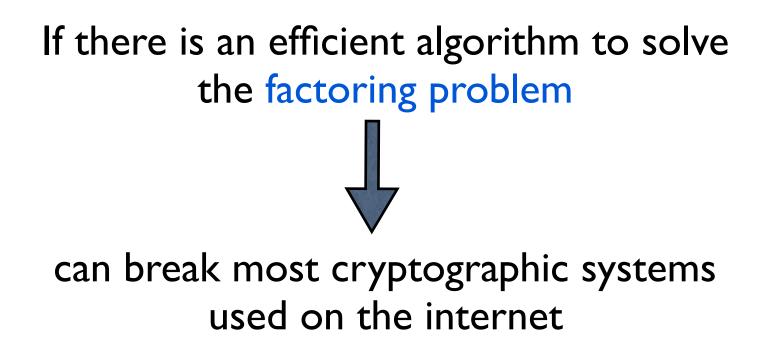
$$\sqrt{A} = \sqrt{2^{\log_2 A}} = \sqrt{2^{\ln(A)}} = 2^{\ln(A)/2}$$

exponential in input length

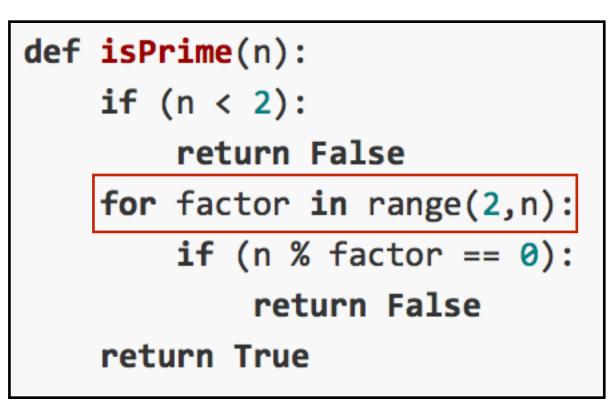
Bonus problem I: integer factorization

Fastest known algorithm is exponential time!

That turns out to be a good thing:



Your favorite function from 15-112



iterations: $\approx n$

$$n = 2^{\log_2 n} = 2^{\operatorname{len}(n)}$$

EXPONENTIAL IN input length

```
def fasterIsPrime(n):
    if (n < 2):
        return False
    if (n == 2):
        return True
    if (n % 2 == 0):
        return False
    maxFactor = round(n**0.5)
    for factor in range(3,maxFactor+1,2):
        if (n % factor == 0):
            return False
    return True
```

Exercise: Show that this is still exponential time.

Amazing result from 2002:

There is a poly-time algorithm for isPrime.

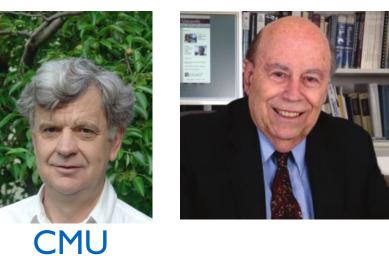
Agrawal, Kayal, Saxena

undergraduate students at the time

However, best known implementation is $\sim O(n^6)$ time. Not feasible when n = 2048. (n = len(input))

So that's not what we use in practice.

Everyone uses the Miller-Rabin algorithm (1975).



Professor

The running time is ~ $O(n^2)$.

It is a Monte Carlo algorithm with tiny error probability (say $1/2^{300}$)

Bonus problem 3: generating a prime number

<u>**Task</u>:** Given n, generate n-bit prime number (in poly(n) time)</u>

repeat: let A be a random n-bit number test if A is prime

Prime Number Theorem (informal):

About I/n fraction of n-bit numbers are prime.

 \implies expected run-time of the above algorithm ~ $O(n^3)$.

No poly-time deterministic algorithm is known!!

Start with algorithms on good old integers.

Then move to the modular universe.

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
 - I. addition
 - 2. subtraction
 - 3. multiplication
 - 4. division
 - 5. exponentiation
 - 6. taking roots
 - 7. logarithm

theory + algorithms (efficient (?))

Modular Operations: Basic Definitions and Properties

Modular universe: How to view the elements

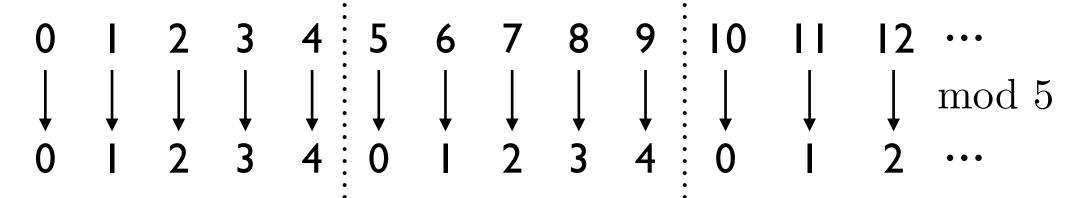
Hopefully everyone already knows:

Any integer can be reduced mod N.

 $A \mod N$ = remainder when you divide A by N

Example

N = 5



Modular universe: How to view the elements

We write
$$A \equiv B \mod N$$
 or $A \equiv_N B$
when $A \mod N = B \mod N$.
(In this case, we say A is congruent to B modulo N .)

Examples

- $5 \equiv_5 100$
- $13 \equiv_7 27$

Exercise

 $A \equiv_N B \iff N \text{ divides } A - B$

Modular universe: How to view the elements

2 Points of View

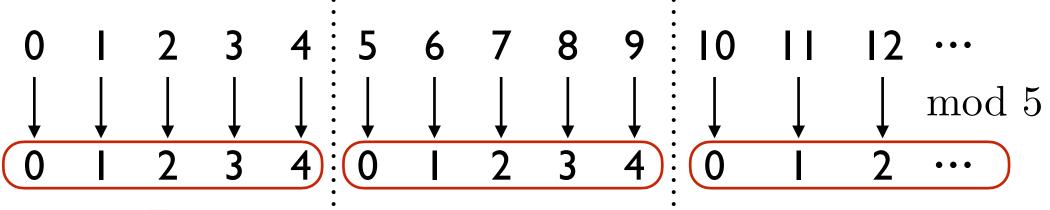
View I

The universe is $\ensuremath{\mathbb{Z}}$.

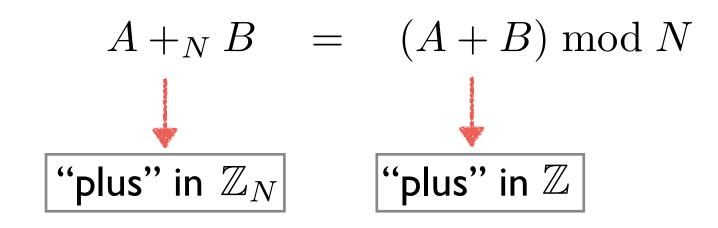
Every element has a "mod N" representation.

View 2

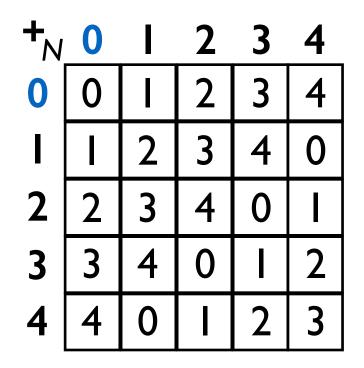
The universe is the finite set $\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\}$.



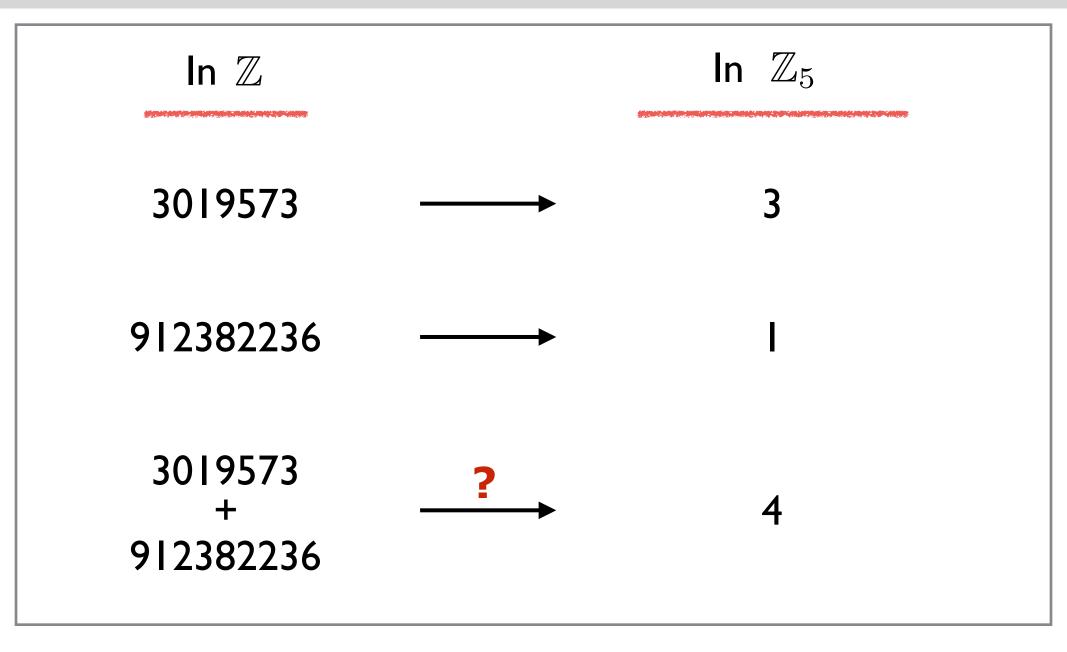
Can define a "plus" operation in \mathbb{Z}_N :

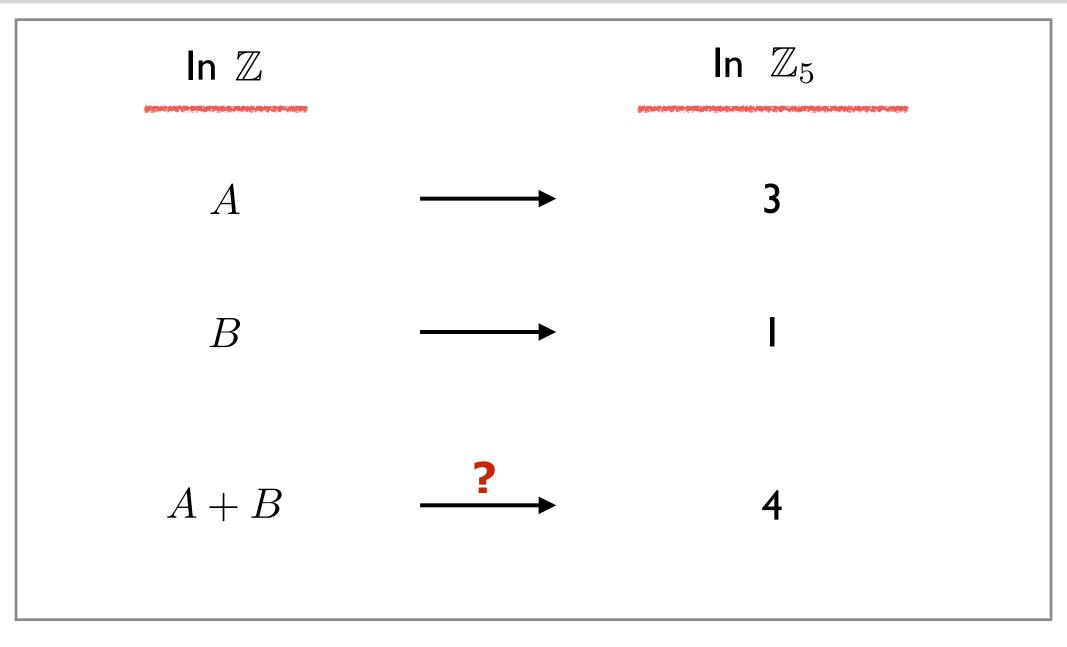


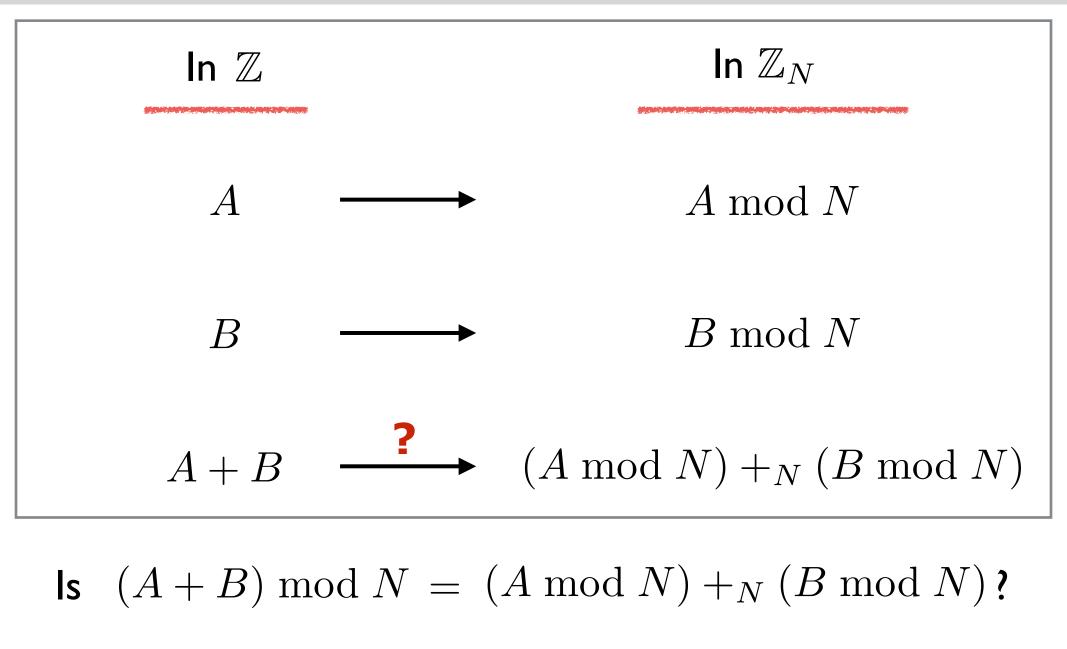
Addition table for \mathbb{Z}_5



0 is called the (additive) identity: **0** +_NA = A +_N**0** = A for any A







YES!

Modular universe: Subtraction

How about subtraction in \mathbb{Z}_N ?

What does A - B mean? It is actually addition in disguise: A + (-B)Then what does -B mean in \mathbb{Z}_N ?

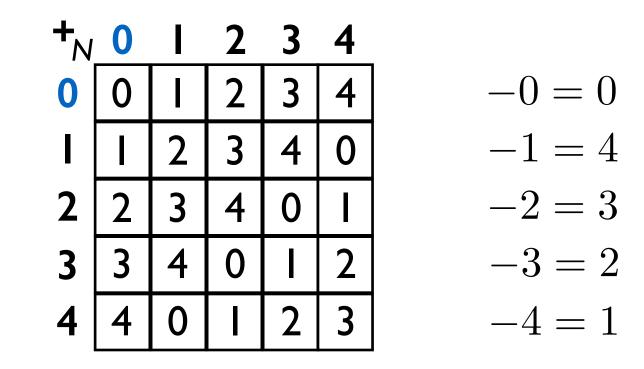
Definition:

Given $B \in \mathbb{Z}_N$, its additive inverse, denoted by -B, is the element in \mathbb{Z}_N such that $B +_N - B = 0$.

$$A - {}_N B = A + {}_N - B$$

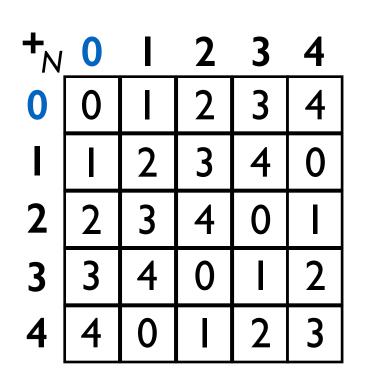
Modular universe: Subtraction

Addition table for \mathbb{Z}_5



Modular universe: Subtraction

Addition table for \mathbb{Z}_5



Note:

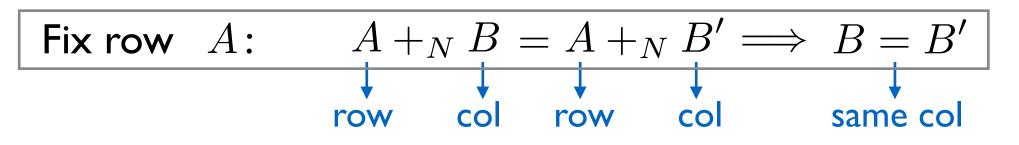
For every $A \in \mathbb{Z}_N$, -A exists.

Why? -A = N - A

This implies:

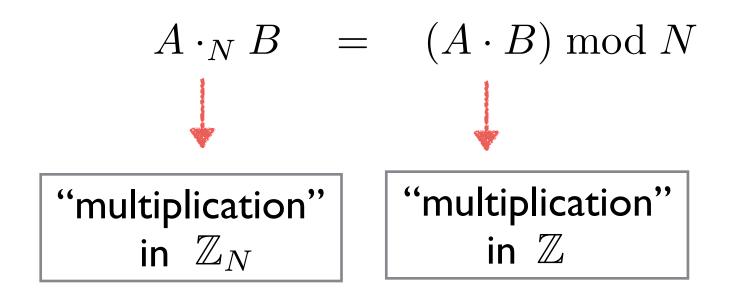
A row contains distinct elements.

i.e. every row is a permutation of \mathbb{Z}_N .



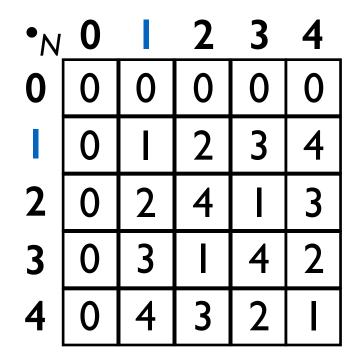
Modular universe: Multiplication

Can define a "multiplication" operation in \mathbb{Z}_N :



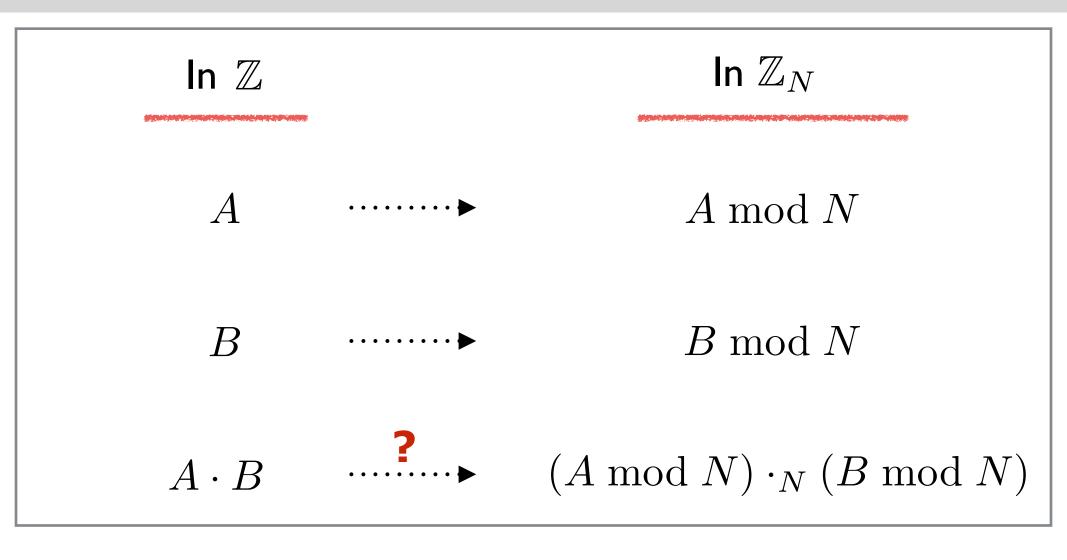
Modular universe: Multiplication

Multiplication table for \mathbb{Z}_5



I is called the (multiplicative) identity: $[\cdot_N A = A \cdot_N] = A$ for any A

Modular universe: Multiplication



Is $(A \cdot B) \mod N = (A \mod N) \cdot_N (B \mod N)$?

YES!

How about division in \mathbb{Z}_N ?

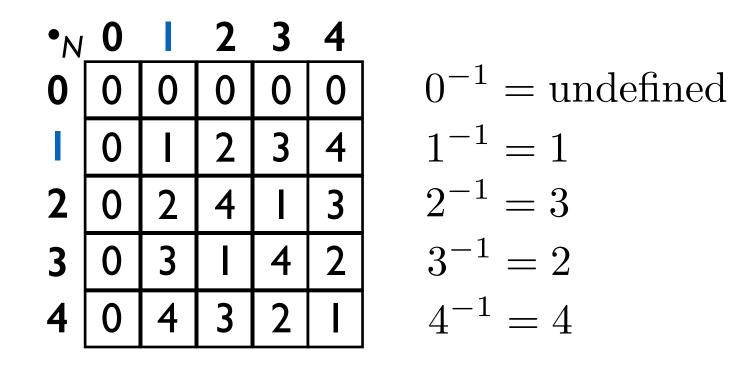
What does A/B mean? It is actually multiplication in disguise: $A \cdot \frac{1}{B} = A \cdot B^{-1}$ Then what does B^{-1} mean in \mathbb{Z}_N ?

Definition:

Given $B \in \mathbb{Z}_N$, its multiplicative inverse, denoted by B^{-1} , is the element in \mathbb{Z}_N such that $B \cdot_N B^{-1} = 1$.

$$A/_N B = A \cdot_N B^{-1}$$

Multiplication table for \mathbb{Z}_5



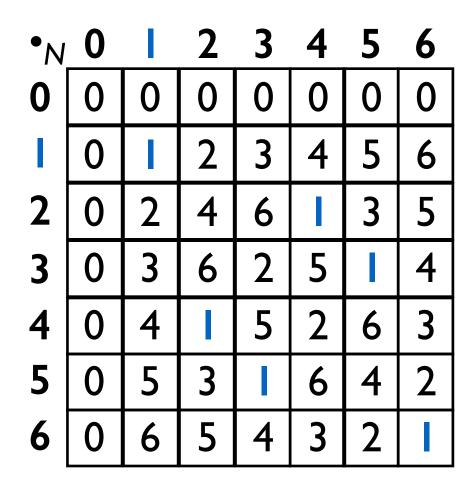
Multiplication table for \mathbb{Z}_6

•N	0		2	3	4	5
0	0	0	0	0	0	0
Т	0	Ι	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	Ι

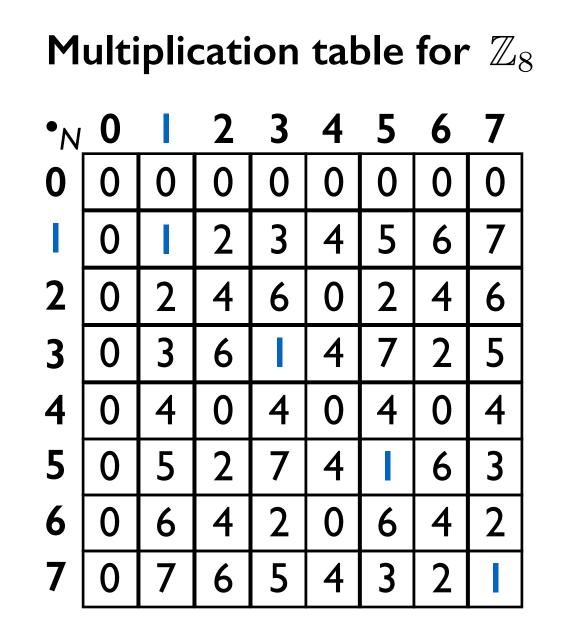
$$0^{-1} =$$
undefined
 $1^{-1} = 1$
 $2^{-1} =$ undefined
 $3^{-1} =$ undefined
 $4^{-1} =$ undefined
 $5^{-1} = 5$

WTF?

Multiplication table for \mathbb{Z}_7



Every number except 0 has a multiplicative inverse.



 $\{1, 3, 5, 7\}$ have inverses. Others don't.

Fact:
$$A^{-1} \in \mathbb{Z}_N$$
 exists if and only if $gcd(A, N) = 1$.

gcd(a, b) = greatest common divisor of a and b.

Examples:

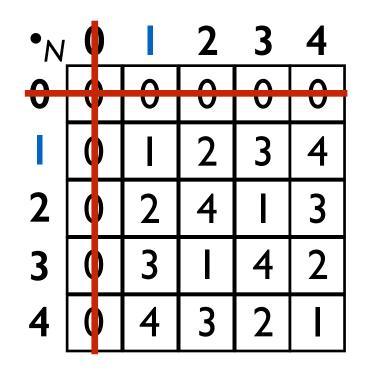
$$gcd(12, 18) = 6$$
$$gcd(13, 9) = 1$$
$$gcd(1, a) = 1 \quad \forall a$$
$$gcd(0, a) = a \quad \forall a$$

If gcd(a, b) = 1, we say a and b are relatively prime.

Fact:
$$A^{-1} \in \mathbb{Z}_N$$
 exists if and only if $gcd(A, N) = 1$.Definition: $\mathbb{Z}_N^* = \{A \in \mathbb{Z}_N : gcd(A, N) = 1\}.$ Definition: $\varphi(N) = |\mathbb{Z}_N^*|$

Note that \mathbb{Z}_N^* is "closed" under multiplication, i.e., $A, B \in \mathbb{Z}_N^* \implies A \cdot_N B \in \mathbb{Z}_N^*$

(Why?)



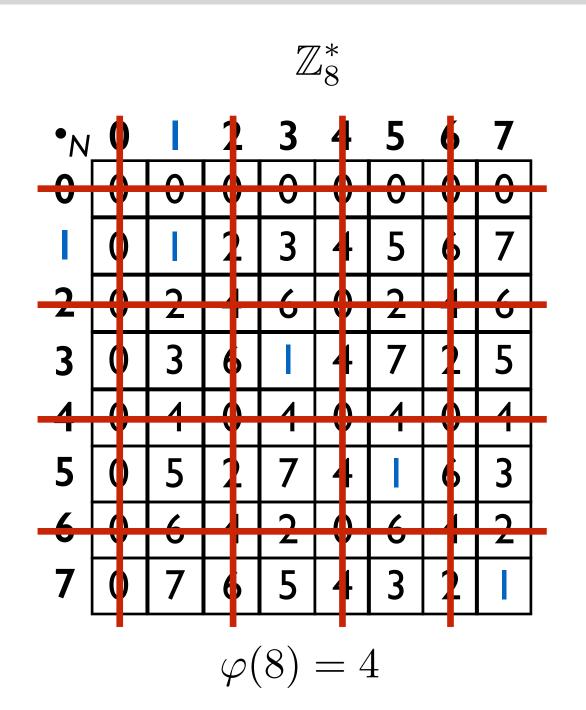
 $\varphi(5) = 4$

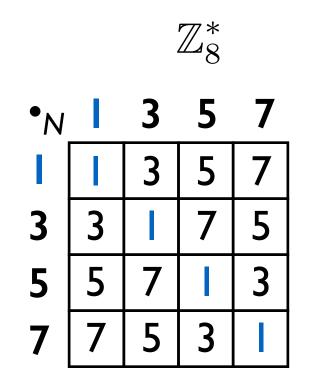
•N		2	3	4
	Ι	2	3	4
2	2	4	Ι	3
3	3	Ι	4	2
4	4	3	2	

 $\varphi(5) = 4$

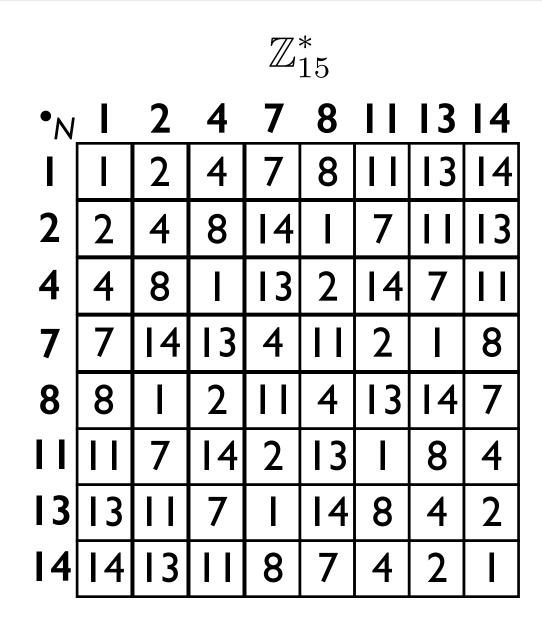
•N		2	3	4
Ι	Ι	2	3	4
2	2	4	Ι	3
3	3	Ι	4	2
4	4	3	2	

For P prime, $\varphi(P) = P - 1$.

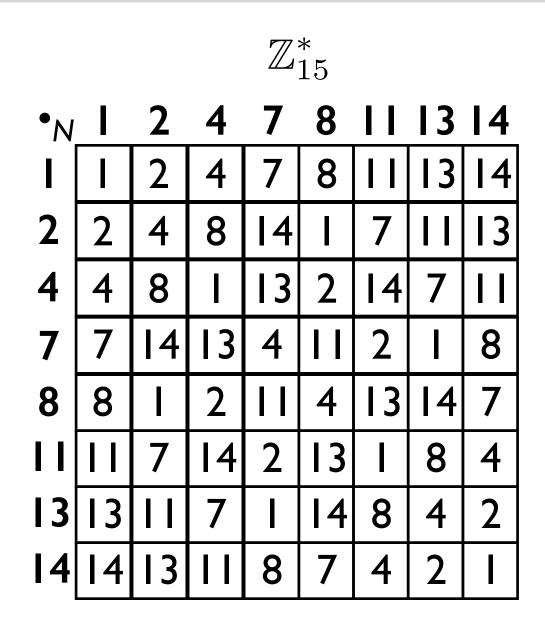




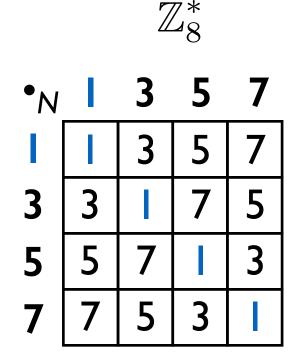
= 48



 $\varphi(15) = 8$



Exercise: For P, Q distinct primes, $\varphi(PQ) = (P-1)(Q-1)$.



 $\varphi(8) = 4$

For every $A \in \mathbb{Z}_N^*$, A^{-1} exists.

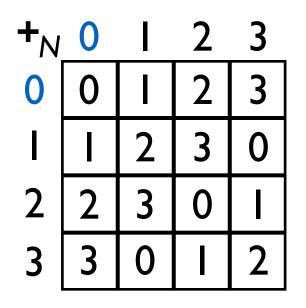
This implies:

A row contains distinct elements.

i.e. every row is a permutation of \mathbb{Z}_N^* .

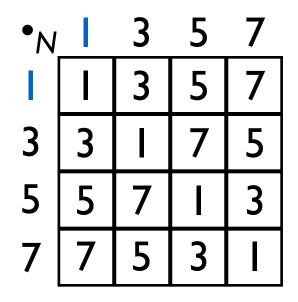
$$A \cdot_N B = A \cdot_N B' \implies B = B'$$

Summary so far



 \mathbb{Z}_N

behaves nicely with respect to <u>addition / subtraction</u>



 \mathbb{Z}_N^*

behaves nicely with respect to <u>multiplication / division</u>

Exponentiation in \mathbb{Z}_N

Notation:

For $A \in \mathbb{Z}_N$, $E \in \mathbb{N}$,

$$A^E = \underbrace{A \cdot_N A \cdot_N \cdots \cdot_N A}_{E \text{ times}}$$

Exponentiation in \mathbb{Z}_N^*

(Same as before)

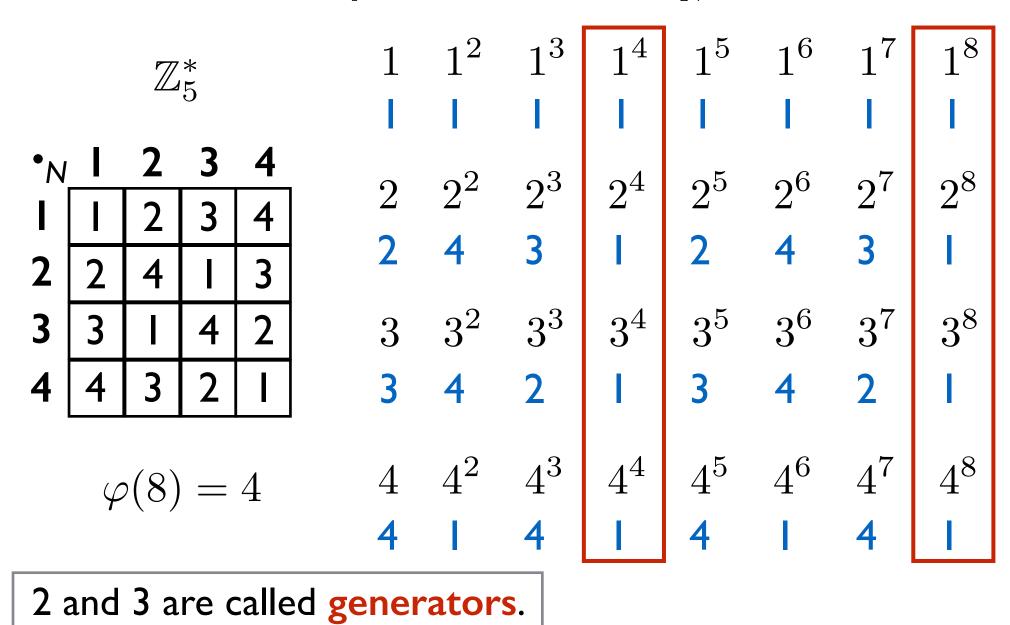
Notation:

For $A \in \mathbb{Z}_N^*$, $E \in \mathbb{N}$,

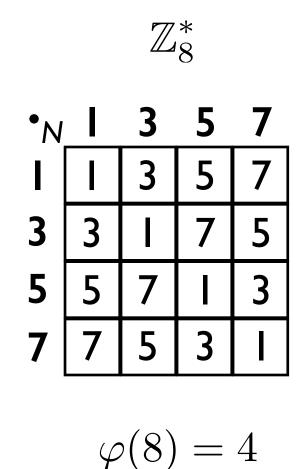
$$A^E = \underbrace{A \cdot_N A \cdot_N \cdots \cdot_N A}_{E \text{ times}}$$

There is more though...

Exponentiation in \mathbb{Z}_N^*



Exponentiation in \mathbb{Z}_N^*



1	1^2	1^3	1^4	1^5	1^6	1^7	1^{8}
	I	Ι	Т	I.	I.	Т	Т
3	3^2	3^3	3^4	3^5	3^6	3^7	3^{8}
3	1	3	1	3	1	3	Т
5	5^2	5^3	5^4	5^5	5^6	5^7	<u>58</u>
\mathbf{O}	0	С	0	J		Э	С
5 5	5 	5 5	.) 	5	.) 	5 5	C I
	$\frac{1}{7^2}$						${5 \\ I \\ 7^8$

Euler's Theorem:

For any $A \in \mathbb{Z}_N^*$, $A^{\varphi(N)} = 1$.

Equivalently, for $A\in\mathbb{Z},N\in\mathbb{N}$ with $\gcd(A,N)=1$, $A^{\varphi(N)}\equiv 1 \bmod N$

When N is a prime, this is known as:

Fermat's Little Theorem:

Let P be a prime. For any $A \in \mathbb{Z}_P^*$, $A^{P-1} = 1$. Equivalently, for any A not divisible by P,

 $A^{P-1} \equiv 1 \bmod P$

Poll

What is $213^{248} \mod 7$?

- 0
- |
- 2
- 3
- 4
- 5
- 6
- Beats me.

Poll Answer

Euler's Theorem:

For any $A \in \mathbb{Z}_N^*$, $A^{\varphi(N)} = 1$.

In other words, the exponent can be reduced $\mod \varphi(N)$.

$$213^{248} \equiv_7 3^{248}$$

$$3^{248} \equiv_7 3^2 = 2$$

IMPORTANT!!!

When exponentiating elements $A \in \mathbb{Z}_N^*$

can think of the exponent living in the universe $\mathbb{Z}_{\varphi(N)}$.

Modular Operations: Computational Complexity

Complexity of Addition

Input: $A, B \in \mathbb{Z}_N$ **Output**: $A +_N B$

Compute $(A+B) \mod N$.

Poly-time

Complexity of Subtraction

Input: $A, B \in \mathbb{Z}_N$ Output: A - N B

Compute $(A + (N - B)) \mod N$.

Poly-time

Complexity of Multiplication

<u>Input</u>: $A, B \in \mathbb{Z}_N$ **<u>Output</u>**: $A \cdot_N B$

Compute $(A \cdot B) \mod N$.

Poly-time

Input: $A, B \in \mathbb{Z}_N$

<u>Output</u>: $A/_NB$ (if the answer exists)

Now things get interesting.

$$A/_N B = A \cdot_N B^{-1}$$

Questions:

- I. Does B^{-1} exist?
- 2. If it does, how do you compute it?

<u>**Recall</u>: B^{-1} exists iff gcd(B, N) = 1.</u>**

So to determine if B has an inverse, we need to compute $\gcd(B,N)$.

Euclid's Algorithm finds gcd in polynomial time. Arguably the first ever algorithm. ~ 300 BC

Euclid's Algorithm

```
gcd(A, B):

if B == 0, return A

return gcd(B, A mod B)
```

Recitation or Homework or Practice Why does it work? Why is it polynomial time?

Major open problem in Computer Science

Is gcd computation efficiently parallelizable?

i.e., is there a circuit family of
poly(n) size
polylog(n) depth
that computes gcd?

Ok, Euclid's Algorithm tells us whether an element has an inverse. How do you find it if it exists?

<u>Claim</u>: An extension of Euclid's Algorithm gives us the inverse. First, a definition:

Definition: We say that C is a mix of A and B if $C = k \cdot A + \ell \cdot B$ not a real term \bigcirc for some $k, \ell \in \mathbb{Z}$.

Examples:

- 2 is a mix of 14 and 10: $2 = (-2) \cdot 14 + 3 \cdot 10$
- 7 is not a miix of 55 and 40. (why?)

Complexity of Division

Fact: C is a mix of A and B if and only if C is a multiple of gcd(A, B).

So
$$gcd(A, B) = k \cdot A + \ell \cdot B$$

Exercise: The coefficients k and ℓ can be found by slightly modifying Euclid's Algorithm (in poly-time).

Finding B^{-1} :If gcd(B,N) = 1, we can find $k, \ell \in \mathbb{Z}$ such that $1 = \begin{matrix} k \cdot B + \ell \cdot N \\ || \\ B^{-1} \end{matrix}$ Therefore found

Complexity of Division

Summary for the complexity of division

To compute $A/_N B = A \cdot_N B^{-1}$, we need to compute B^{-1} (if it exists).

 B^{-1} exists iff gcd(B, N) = 1 (can be computed with Euclid).

Extension of Euclid gives us (in poly-time) $k, \ell \in \mathbb{Z}$ such that $\gcd(B,N) = 1 = k \cdot B + \ell \cdot N$

 $B^{-1} = k \bmod N$

Input: $A, E, N \in \mathbb{N}$ **Output**: $A^E \mod N$

In the modular universe, length of output not an issue.

Can we compute this efficiently?

Example

Compute $2337^{32} \mod 100$.

Naïve strategy:

2337 x 2337 = 5461569 2337 x 5461569 = 12763686753 2337 x 12763686753 = ...

: (30 more multiplications later)

Example

Compute $2337^{32} \mod 100$.

2 improvements:

- Do mod 100 after every step.
- Don't multiply 32 times. Square 5 times.

 $2337 \longrightarrow 2337^2 \longrightarrow 2337^4 \longrightarrow 2337^8 \longrightarrow 2337^{16} \longrightarrow 2337^{32}$

(what if the exponent is 53?)

Example

Compute $2337^{53} \mod 100$.

(what if the exponent is 53?)

Multiply powers 32, 16, 4, 1. (53 = 32 + 16 + 4 + 1)

$$2337^{53} = 2337^{32} \cdot 2337^{16} \cdot 2337^4 \cdot 2337^1$$

53 in binary = 110101

Input: $A, E, N \in \mathbb{N}$ (each at most n bits)Output: $A^E \mod N$

<u>Algorithm</u>:

- Repeatedly square A, always mod N. Do this n times.
- Multiply together the powers of A corresponding to the binary digits of E (again, always mod N).

Running time: a bit more than $O(n^2 \log n)$.

Complexity of Log

Input: A, B, P such that

- P is prime
- $A \in \mathbb{Z}_P^*$
- $B \in \mathbb{Z}_P^*$ is a generator.

<u>Output</u>: X such that $B^X \equiv_P A$.

Note: $\{B^0, B^1, B^2, B^3, \cdots, B^{P-2}\} = \mathbb{Z}_P^*$

Which one corresponds to A?

It is like we want to compute $\log_B A$ in \mathbb{Z}_P^* .

Complexity of Log

Find X such that
$$B^X \equiv_P A$$
.

What do you think of this algorithm:

```
DiscreteLog(A, B, P):

for X = 0, 1, 2, ..., P-2:

compute B^X (use fast modular exponentiation)

check whether P divides B^X - A
```

- simple and efficient. love it.
- simple but not efficient.
- I don't understand why we are checking if P divides B^X A.
- I don't understand what is going on right now.

Complexity of Log

Input: A, B, P such that

- P is prime
- $A \in \mathbb{Z}_P^*$
- $B \in \mathbb{Z}_P^*$ is a generator.

<u>Output</u>: X such that $B^X \equiv_P A$.

We don't know how to compute this efficiently!

Complexity of Taking Roots

Input: A, E, N such that $A \in \mathbb{Z}_N^*$

<u>Output</u>: B such that $B^E \equiv_N A$

So we want to compute $A^{1/E}$ in \mathbb{Z}_N^* .

We don't know how to compute this efficiently!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
 - I. addition
 - 2. subtraction
 - 3. multiplication
 - 4. division
 - 5. exponentiation
 - 6. taking roots
 - 7. logarithm

theory + algorithms (efficient (?))

Thursday Group Theory

Next Tuesday Cryptography

