15-251: Great Theoretical Ideas in Computer Science
Fall 2016 Lecture 22 November 10, 2016

Group Theory

	R_{0}	R_{90}	R_{180}	R_{270}	V	H	D_{1}
D_{2}							
R_{0}	R_{0}	R_{90}	R_{180}	R_{270}	V	H	D_{1}
R_{90}	R_{90}	R_{180}	R_{270}	R_{0}	D_{2}	D_{1}	V
R_{180}	R_{180}	R_{270}	R_{0}	R_{90}	H	V	D_{2}
R_{270}	R_{170}	R_{0}	R_{90}	R_{180}	D_{1}	D_{2}	H
V	V	D_{1}	H	D_{2}	R_{0}	R_{180}	R_{90}
H	H	R_{270}					
D_{1}	V	D_{1}	H	R_{180}	R_{0}	R_{270}	R_{90}
D_{2}	D_{2}	V	D_{1}	H	R_{270}	R_{90}	R_{0}
R_{180}							

Il est peu de notions en mathematiques qui soient plus primitives que celle de loi de composition.

- Nicolas Bourbaki

There are few concepts in mathematics that are more primitive than the composition law.

Group Theory

Study of symmetries and transformations of mathematical objects.

Also, the study of abstract algebraic objects called 'groups'. (of which \mathbb{Z}_{N} and $\mathbb{Z}_{N}{ }^{*}$ are special cases)

What is group theory good for?

 In theoretical computer science:Checksums, error-correction schemes
Minimizing randomness-complexity of algorithms

Cryptosystems

Algorithms for quantum computers
Hard instances of optimization problems
Ketan Mulmuley's approach to P vs. NP
Laci Babai's graph isomorphism algorithm

What is group theory good for?

In puzzles and games:
"15 Puzzle"

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Rubik's Cube

SET

What is group theory good for?

In math:

There's a quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

What is group theory good for?

In math:

There's a cubic formula:

$$
\begin{aligned}
x_{1}= & -\frac{b}{3 a} \\
& -\frac{1}{3 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d+\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
& -\frac{1}{3 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d-\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
x_{2}= & -\frac{b}{3 a} \\
& +\frac{1+i \sqrt{3}}{6 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d+\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
& +\frac{1-i \sqrt{3}}{6 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d-\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
x_{3}= & -\frac{b}{3 a} \\
& +\frac{1-i \sqrt{3}}{6 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d+\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
& +\frac{1+i \sqrt{3}}{6 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d-\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]}
\end{aligned}
$$

What is group theory good for?

In math:
There's a quartic formula:
 $\left\{\right.$ sqrt $\left.\left.\left.\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{\{f r a c\{1\}\{3\}\}\}+\left(\right.$ ffrac $\left\{\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\right.\right.$ $\left\{\right.$ ssqrt $\left.\left.\left.\left.\left.\left.\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\}\right)^{\wedge} \backslash f r a c\{1\}\{3\}\right\}\right\}-\operatorname{lfrac}\{1\}\{2\}\left\{\operatorname{sqrt}\left\{\right.\right.$ frac $\left\{a^{\wedge} 2\right\}\{2\}-\mid$ frac $\{4 b\}\{3\}$ \frac $\left\{2^{\wedge}\{\right.$ frac $\left.\{1\}\{3\}\}\left(b^{\wedge} 2-3 a c+12 d\right)\right\}\left\{3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\backslash s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{\mid f r a c\{1\}\{3\}\}\right\}$ - ($\operatorname{\text {frac}\{ \{ 2b^{\wedge }3-9abc+27c^{\wedge }2+27a^{\wedge }2d-72bd+\{ \operatorname {sqrt}\{ -4\{ (b^{\wedge }2-3ac+12d)\} ^{\wedge }3+\{ (2b^{\wedge }3-9abc+27c^{\wedge }2+27a^{\wedge }2d-72bd)\} ^{\wedge }2\} \} \} \} \{ 54\})^{\wedge }\backslash frac\{ 1\} \{ 3\} -}$
\frac\{-a^3 $+4 a b-8 c\}\left\{4\left\{\backslash s q r t\left\{\backslash f r a c\left\{a^{\wedge} 2\right\}\{4\}-\backslash f r a c\{2 b\}\{3\}+\backslash f r a c\left\{2^{\wedge}\{f f r a c\{1\}\{3\}\}\left(b^{\wedge} 2-3 a c+12 d\right)\right\}\left\{3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\right.\right.\right.\right.\right.\right.$
$\left\{\right.$ ssqrt\{-4 \{($\left.\left.\left.\left.\left.\left.b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{\{f r a c\{1\}\{3\}\}\}+\left(\right.$ ffrac $\left\{\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\right.\right.$
$\left\{\right.$ sqrtt $\left.\left.\left.\left.\left.4-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\}\right)^{\wedge \backslash f r a c\{1\}\{3\}\}\}\}\}\}\} \backslash x _2 \&=\&\{\{f r a c\{-a\}\{4\}}$

$\left.\left.\left.\left.\left.\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{f f r a c\{1\}\{3\}\}\right\}+\left(\right.$ lfrac $\left\{\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\right.\right.\right.$ sqrit $\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\right.$
$\left.\left.\left.\left.\left.\left.\left.\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\}\right)^{\wedge} \backslash f r a c\{1\}\{3\}\right\}\right\}+\backslash f r a c\{1\}\{2\}\{$ sqrt\{
{frac\{a^2\}\{2\}-\frac\{4b\}\{3\}-\frac\{2^\{|frac\{1\}\{3\}\}(} b ^ { \wedge } 2 - 3 a c + 1 2 d) \}
$\left\{3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\backslash s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{\mid f r a c\{1\}\{3\}\}\right\}-$
(\frac\{ $\left.\left.\left.2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\operatorname{sqrt}\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\}\right)^{\wedge} \backslash f r a c\{1\}\{3\}-\backslash f r a c\left\{-a^{\wedge} 3+4 a b-8 c\right\}$
$\left\{4\left\{\right.\right.$ sqrt $\left\{\right.$ ffrac $\left\{a^{\wedge} 2\right\}\{4\}-\backslash f r a c\{2 b\}\{3\}+\backslash$ frac $\left\{2^{\wedge}\left\{\{f r a c\{1\}\{3\}\}\left(b^{\wedge} 2-3 a c+12 d\right)\right\} 3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\right.\right.\right.\right.$ sqrt\{-4 $\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+$
$\left.\left.\left.\left.\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{\{f r a c\{1\}\{3\}\}\}+\left(\right.$ ffrac $\left\{\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\backslash s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\right.\right.\right.\right.$

- $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\quad\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\}\right)^{\wedge} \backslash f r a c\{1\}\{3\}\right\}\right\}\right\}\right\}\right\} \backslash \backslash x _3 \&=\&\left\{\left\{f r a c\{-a\}\{4\}+\backslash f r a c\{1\}\{2\}\left\{\right.\right.\right.$ sqrt $\left\{\right.$ frac $\left\{a^{\wedge} 2\right\}\{4\}-\backslash f r a c\{2 b\}\{3\}+$
- \quad frac $\left\{2 \wedge\{\right.$ frac $\left.\left.\left.\left.\{1\}\{3\}\}\left(b^{\wedge} 2-3 a c+12 d\right)\right\}\left\{3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\{\text { sqrt\{-4\{(b^2-3ac }+12 d)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{\backslash f r a c\{1\}\{3\}\}\right\}+$
(frac\{ $\left.\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\backslash s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\} \wedge^{\wedge}$ \{frac $\left.\left.\{1\}\{3\}\right\}\right\}-$
\frac\{1\}\{2\}\{\sqrt\{\frac\{a^2\}\{2\}-\frac\{4b\}\{3\}-|frac\{2^\{frac\{1\}\{3\}\}(b^2-3ac+12d)\}\{3\{(2b^3-9abc+27c^2+27a^2d-72bd+\{|sqrt\{-4\{(b^2-3ac+12d)\}^3+
$\left.\left.\left.\left.\left.\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\} \wedge\{f r a c\{1\}\{3\}\}\right\}-\left(\right.$ frac $\left\{\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\backslash s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\right.\right.\right.\right.$

$\left\{3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\operatorname{sqrt}\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{\right.$ frac $\left.\{1\}\{3\}\}\right\}+$
(frac\{ $\left.\left.\left.\left.\left.\left.\left.\left.\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\mid s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\}\right)^{\wedge} \mid f r a c\{1\}\{3\}\right\}\right\}\right\}\right\}\right\}\right\} \backslash$
$x _4 \&=\&\left\{\right.$ frac $\{-a\}\{4\}+\operatorname{lfrac}\{1\}\{2\}\left\{\operatorname{sqrt}\left\{\backslash f r a c\left\{a^{\wedge} 2\right\}\{4\}-\operatorname{lfrac}\{2 b\}\{3\}+\operatorname{frac}\left\{2^{\wedge}\{f r a c\{1\}\{3\}\}\left(b^{\wedge} 2-3 a c+12 d\right)\right\}\left\{3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\right.\right.\right.\right.\right.$
$\left\{\right.$ ssqrt\{-4\{(b^2-3ac +12d) \}^3 + \{(2b^3-9abc + 27c^2 + 27a^2d -72bd) \}^2\}\}) \}^\{lfrac\{1\}\{3\}\}\} + (\frac\{\{ $2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+$

\frac $\left\{2^{\wedge}\left\{\{f r a c\{1\}\{3\}\}\left(b^{\wedge} 2-3 a c+12 d\right)\right\}\left\{3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\left\{s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{\{f r a c\{1\}\{3\}\}\}-\right.\right.\right.$
$\left(\text { |frac }\left\{\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\operatorname{sqrtt}\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\}\right)^{\wedge}|f r a c\{1\}\{3\}+|$ frac $\left\{-a^{\wedge} 3+4 a b-8 c\right\}$
$\left\{4\left\{\backslash\right.\right.$ sqrt $\left\{\right.$ frac $\left\{a^{\wedge} 2\right\}\{4\}-$ lfrac $\{2 b\}\{3\}+\backslash$ frac $\left\{2 \wedge\{\right.$ frac $\left.\{1\}\{3\}\}\left(b^{\wedge} 2-3 a c+12 d\right)\right\}\left\{3\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\backslash s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right)\right\}^{\wedge}\{$ frac $\left.\{1\}\{3\}\}\right\}+\left(\right.$ frac $\left\{\left\{2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d+\left\{\backslash s q r t\left\{-4\left\{\left(b^{\wedge} 2-3 a c+12 d\right)\right\}^{\wedge} 3+\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left\{\left(2 b^{\wedge} 3-9 a b c+27 c^{\wedge} 2+27 a^{\wedge} 2 d-72 b d\right)\right\}^{\wedge} 2\right\}\right\}\right\}\right\}\{54\}\right)^{\wedge} \mid f r a c\{1\}\{3\}\right\}\right\}\right\}\right\}\right\}$

What is group theory good for?

In math:

There is NO quintic formula.

What is group theory good for?

In physics:

Predicting the existence of elementary particles before they are discovered.

So: What is group theory?

Let's start with an example from
http://opinionator.blogs.nytimes.com/2010/05/02/group-think/

Rotate

Flip

Head-to-Toe flip

Q: How many positions can it be in?

A: Four.

Group theory is not so much about objects (like mattresses).

It's about the transformations on objects and how they (inter)act.

$\mathbf{F}(\mathbf{R}($ mattress $))=$ H(mattress)
$H(F($ mattress $))=$
\mathbf{R} (mattress)
$\mathbf{R}(\mathbf{F}(\mathbf{H}($ mattress $)))=$
Id(mattress)
FoR=H
$\mathrm{H} \circ \mathrm{F}=\mathrm{R}$
R॰F॰H=Id
RoldoHoFoH = $\quad \mathrm{H}$

The kinds of questions asked:

What is RolddHoFoH ?

Do transformations \mathbf{A} and \mathbf{B} "commute"? l.e., does $\mathrm{A} \bullet \mathrm{B}=\mathrm{B} \bullet \mathrm{A}$?

What is the "order" of transformation \mathbf{A} ?
i.e., how many times do you have to apply A before you get to Id ?

Definition of a group of transformations

Let X be a set.
Let G be a set of bjections $p: X \rightarrow X$.
We say G is a group of transformations if:

1. If p and q are in G then so is $p \bullet q$.

G is "closed" under composition.
2. The 'do-nothing' bijection Id is in G.
3. If p is in G then so is its inverse, p^{-1}.

G is "closed" under inverses.

Example: Rotations of a rectangular mattress
$X=$ set of all physical points of the mattress
G = \{ Id, Rotate, Flip, Head-to-toe \}

Check the 3 conditions:

1. If p and q are in G then so is $p \bullet q$.
2. The 'do-nothing' bijection Id is in G.
3. If p is in G then so is its inverse, p^{-1}.

Example: Symmetries of a directed cycle

$$
X=\text { labelings of the }
$$ vertices by 1,2,3,4

$$
|X|=24
$$

$\mathrm{G}=$ permutations of the labels which don't change the graph

$$
|G|=4
$$

$$
\mathrm{G}=\left\{\mathrm{Id}, \operatorname{Rot}_{90}, \operatorname{Rot}_{180}, \operatorname{Rot}_{270}\right\}
$$

Example: Symmetries of a directed cycle

$$
\mathrm{X}=\text { labelings of directed 4-cycle }
$$

$$
\mathrm{G}=\left\{\mathrm{Id}, \operatorname{Rot}_{90}, \operatorname{Rot}_{180}, \operatorname{Rot}_{270}\right\}
$$

Check the 3 conditions:

1. If p and q are in G then so is $p \bullet q$.
2. The 'do-nothing' bijection Id is in G .
3. If p is in G then so is its inverse, p^{-1}.
"Cyclic group of size 4"

Example: Symmetries of undirected n-cycle

$X=$ labelings of the
vertices by $1,2, \ldots, n$
$\mathrm{G}=$ permutations of the labels which don't change the graph (neighbors stay neighbors \& non-nbrs stay non-nbrs)

$$
\text { Poll } \quad|G|=2 n
$$

Example: Symmetries of undirected n-cycle

$X=$ labelings of the
vertices by $1,2, \ldots, n$
$\mathrm{G}=$ permutations of the labels which don't change the graph

$$
|\mathrm{G}|=2 \mathrm{n}
$$

+ one clockwise twist

Example: Symmetries of undirected n-cycle

$X=$ labelings of the vertices by $1,2, \ldots, n$
$\mathrm{G}=\begin{array}{r}\text { permutations } \\ \text { of the labels which }\end{array}$
don't change the graph

$$
|G|=2 n
$$

+ one clockwise twist

Example: Symmetries of undirected n-cycle

$X=$ labelings of the vertices by $1,2, \ldots, n$

$$
|X|=n!
$$

$G=\quad$ permutations of the labels which don't change the graph

$$
|G|=2 n
$$

$\mathrm{G}=\{\mathrm{Id}, \mathrm{n}-1$ 'rotations', n 'reflections' $\}$
"Dihedral group of size $2 n$ "

Effect of the 16 elements of D_{8} on a stop sign

Example: "All permutations"

$$
X=\{1,2, \ldots, n\}
$$

$G=$ all permutations of X

e.g., for $\mathrm{n}=4$, a typical element of G is:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
4 & 2 & 1 & 3
\end{array}\right)
$$

More groups of transformations

Motions of 3D space: translations + rotations (preserve laws of Newtonian mechanics)

Translations of 2D space by an integer amount horizontally and an integer amount vertically

Rotations which preserve an
old-school soccer ball (icosahedron)

The group of mattress rotation

$$
\mathrm{G}=\{\mathrm{Id}, \mathrm{R}, \mathrm{~F}, \mathrm{H}\}
$$

$$
\begin{array}{ll}
\mathrm{Id} \bullet I d=I d & F \bullet I d=F \\
I d \bullet R=R & F \circ R=H \\
I d \bullet F=F & F \circ F=I d \\
I d \circ H=H & F \circ H=R \\
R \circ I d=R & H \circ I d=H \\
R \circ R=I d & H \circ R=F \\
R \circ F=H & H \circ F=R \\
R \circ H=F & H \circ H=I d
\end{array}
$$

Group table

\bullet	Id	R	F	H
Id	Id	R	F	H
R	R	Id	H	F
F	F	H	Id	R
H	H	F	R	Id

The laws of the dihedral group of size 10

$G=$
$\left\{\mathrm{ld}, \mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}, \mathrm{r}_{4}\right.$, $\left.\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}\right\}$

God created the integers. All the rest is the work of Man.

- Leopold Kronecker

Remainders mod 5
$Z_{5}=\{0,1,2,3,4\}$
$+{ }_{5}=$ addition modulo 5
Integers \mathbb{Z}
closed under +

$$
a+b=b+a
$$

$$
(a+b)+c=a+(b+c)
$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$$
a+0=0+a=a
$$

$$
a+(-a)=0
$$

$$
\begin{gathered}
\left(a+{ }_{n} b\right)+{ }_{n} c=a++_{n}(b+n c) \\
a+{ }_{n} 0=0+{ }_{n} a=a \\
a+n(n-a)=0
\end{gathered}
$$

The power of algebra: Abstract away the inessential features of a problem

Let's define an abstract group.

Let G be a set.
Let \diamond be a "binary operation" on G;
think of it as defining a "multiplication table".
E.g., if $G=\{a, b, c\}$ then...
\diamond is a binary operation.

This means that $\mathrm{c} \diamond \mathrm{a}=\mathrm{b}$.

\checkmark	a	b	c
a	c	a	b
b	a	b	c
c	b	c	a

Definition of an (abstract) group

We say G is a "group under operation •" if:
0 . [Closure] G is closed under -

$$
\text { i.e., } a \bullet b \in G \quad \forall a, b \in G
$$

1. [Associativity] Operation \bullet is associative:

$$
\text { i.e., } \quad a \bullet(b \bullet c)=(a \bullet b) \bullet c \quad \forall a, b, c \in G
$$

2. [Identity] There exists an element $e \in G$ (called the "identity element") such that

$$
a \bullet e=a, e \bullet a=a \quad \forall a \in G
$$

3. [Inverse] For each $a \in G$ there is an element $a^{-1} \in G$ (called the "inverse of a") such that

$$
a \cdot a^{-1}=e, a^{-1} \cdot a=e
$$

Examples of (abstract) groups

Any group of transformations is a group.
(Only need to check that composition of functions is associative.)
E.g., the 'mattress group' (AKA Klein 4-group)

\bullet	Id	R	F	H
Id	Id	R	F	H
R	R	Id	H	F
F	F	H	Id	R
H	H	F	R	Id

identity element is Id

$$
\begin{aligned}
\mathrm{R}^{-1} & =\mathrm{R} \\
\mathrm{~F}^{-1} & =\mathrm{F} \\
\mathrm{H}^{-1} & =\mathrm{H}
\end{aligned}
$$

Examples of (abstract) groups

Any group of transformations is a group.
\mathbb{Z} (the integers) is a group under operation +
Check:
0. + really is a binary operation on \mathbb{Z}

1. + is associative: $a+(b+c)=(a+b)+c$
2. " e " is $0: a+0=a, 0+a=a$
3. " $a^{-1 "}$ is $-a$: $a+(-a)=0,(-a)+a=0$

Examples of (abstract) groups

Any group of transformations is a group.
\mathbb{Z} (the integers) is a group under operation +
\mathbb{R} (the reals) is a group under operation +
\mathbb{R}^{+}(the positive reals) is a group under \times
$Q \backslash\{0\}$ (non-zero rationals) is a group under \times
$Z_{n}($ the integers $\bmod n$) is a group under + modulo n

NONEXAMPLES of groups

$\mathrm{G}=$ \{all odd integers\}, operation + + is not a binary operation on G!
(Natural numbers, +) No inverses!

Z, operation -

- is not associative! \& No identity!
$\mathbb{Z} \backslash\{0\}$, operation \times
1 is the only possible identity element; but then most elements don't have inverses!

Permutation property

Dihedral group of size 10

In a group table, every row and every column is a permutation of the group elements

Follows from "cancellation property"
(which we will prove shortly)

O	Id	${ }_{1}$	r_{2}	r_{3}	r_{4}	f_{1}	f_{2}	3	f_{4}	f_{5}
Id	Id	r_{1}	r_{2}	r_{3}	r_{4}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
r_{1}	r_{1}	r_{2}	r_{3}	r_{4}	Id	f_{4}	f_{5}	f_{1}	f_{2}	f_{3}
r_{2}	r_{2}	r_{3}	r_{4}	Id	r_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{1}
r_{3}	r_{3}	r_{4}	Id	r_{1}	r_{2}	f_{5}	f_{1}	f_{2}	f_{3}	f_{4}
r_{4}	r_{4}	Id	r_{1}	r_{2}	r_{3}	f_{3}	f_{4}	f_{5}	f_{1}	f_{2}
f_{1}	f_{1}	f_{3}	f_{5}	f_{2}	f_{4}	Id	r_{3}	r_{1}	r_{4}	r_{2}
f_{2}	f_{2}	f_{4}	f_{1}	f_{3}	f_{5}	r_{2}	Id	r_{3}	r_{1}	r_{4}
f_{3}	f_{3}	f_{5}	f_{2}	f_{4}	f_{1}	r_{4}	r_{2}	Id	r_{3}	r_{1}
f_{4}	f_{4}	f_{1}	f_{3}	f_{5}	f_{2}	r_{1}	r_{4}	r_{2}	Id	r_{3}
f_{5}	f_{5}	f_{2}	f_{4}	f_{1}	f_{3}	r_{3}	r_{1}	r_{4}	r_{2}	Id

Let's connect back to Modular arithmetic

Modular arithmetic

Defn: For integers a,b, and positive integer n ,
$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ (read: "a congruent to b modulo n") means (a-b) is divisible by n, or equivalently
a mod $n=b \bmod n(x \bmod n$ is remainder of x when divided by n , and belongs to $\{0,1, \ldots, \mathrm{n}-1\}$)

```
Suppose x = y (mod n) and a =b (mod n). Then
    1)}x+a\equivy+b(\operatorname{mod}n
    2) }\mp@subsup{x}{}{*}a\equivy**b(\operatorname{mod}n
    3) x-a =y-b (mod n)
```

So instead of doing + , ${ }^{*}$, - and taking remainders, we can first take remainders and then do arithmetic.

Modular arithmetic

$\left(Z_{n},+\right.$) is group (understood that + is $+_{n}$)

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$*$	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

What about $\left(\mathrm{Z}_{5},{ }^{*}\right)$?
(* $=$ multiplication modulo n)
NOT a group.
1 = candidate for identity, but
0 has no inverse.
Okay, what about $\left(Z_{5}{ }^{*},{ }^{*}\right)$ where

$$
Z_{5}^{*}=Z_{5} \backslash\{0\}=\{1,2,3,4\}
$$

Turns out, it is a group.

Multiplication table mod 6 for
 $$
Z_{6} \backslash\{0\}=\{1,2,3,4,5\}
$$

2,3,4 have no inverse

NOT a group !

$*$	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

Multiplicative inverse in $Z_{n} \backslash\{0\}$

Theorem: For $a \in\{1,2, \ldots, n-1\}$, there exists $x \in\{1,2, \ldots, n-1\}$ such that $a x \equiv 1(\bmod n)$ if and only if

$$
\operatorname{gcd}(a, n)=1
$$

Proof (if) : Suppose gcd(a,n)=1
There exist integers r, s such that

$$
r a+s n=1 \quad(\text { Extended Euclid) }
$$

So ar $\equiv 1(\bmod n)$.
Take $x=r \bmod n, a x \equiv 1(\bmod n)$ as well.

Multiplicative inverse in $\mathrm{Z}_{\mathrm{n}} \backslash\{0\}$
Theorem: For $a \in\{1,2, \ldots, n-1\}$, there exists $x \in\{1,2, \ldots, n-1\}$ such that $a x=1(\bmod n)$ if and only if

$$
\operatorname{gcd}(a, n)=1
$$

Proof (only if) : Suppose $\exists x, a x \equiv 1(\bmod n)$ So ax-1 = nk for some integer k.

If $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=\mathrm{c}$, then c divides $\mathrm{ax}-\mathrm{nk}$
Since $a x-n k=1$, this means $c=1$.

Recall:

$$
\begin{array}{ll}
Z_{n}^{*}=\left\{x \in Z_{n} \mid \operatorname{gcd}(x, n)=1\right\} & Z_{6}^{*}=\{0,1,2,3,4,5\} \\
Z_{6}^{*}=\{1,5\}
\end{array}
$$

Elements in $\mathrm{Z}_{n}{ }^{*}$ have
multiplicative inverses

Exercise:
Check $\left(Z_{n}^{*},{ }^{*}\right)$ is a group

$*$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

$$
\begin{aligned}
& Z_{12}{ }^{*}=\{0 \leq x<12 \mid \operatorname{gcd}(x, 12)=1\} \\
& =\{1,5,7,11\}
\end{aligned}
$$

$*_{12}$	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Z_{15}^{*}

$*$	$\mathbf{1}$	2	4	7	$\mathbf{8}$	11	13	14
$\mathbf{1}$	$\mathbf{1}$	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

Fact:
For prime p, the set $Z_{p}^{*}=Z_{p} \backslash\{0\}$

Proof:

It just follows from the definition!
For prime p, all $0<x<p$ satisfy $\operatorname{gcd}(x, p)=1$

Euler Phi Function $\phi(n)$

$\phi(n)=$ size of $Z_{n}{ }^{*}$
$=$ number of integers $1 \leq \mathrm{k}<\mathrm{n}$ that are relatively prime to n .

p prime

$$
\begin{aligned}
& \Leftrightarrow Z_{p}^{*}=\{1,2,3, \ldots, p-1\} \\
& \Leftrightarrow \phi(p)=p-1
\end{aligned}
$$

Back to abstract groups

Abstract algebra on groups

Theorem 1:
If (G, \bullet) is a group, identity element is unique.
Proof:
Suppose f and g are both identity elements.
Since g is identity, $\mathrm{f} \bullet \mathrm{g}=\mathrm{f}$.
Since f is identity, $\mathrm{f} \bullet \mathrm{g}=\mathrm{g}$.
Therefore $\mathrm{f}=\mathrm{g}$.

Abstract algebra on groups

Theorem 2:
In any group (G, \bullet), inverses are unique.
Proof:
Given $a \in G$, suppose b, c are both inverses of a.
Let e be the identity element.
By assumption, $\mathrm{a} \bullet \mathrm{b}=\mathrm{e}$ and $\mathrm{c} \bullet \mathrm{a}=\mathrm{e}$.
Now: $c=c \bullet e=c \bullet(a \bullet b)$

$$
=(c \bullet a) \cdot b=e \bullet b=b
$$

Theorem 3 (Cancellation): If $\mathrm{a} \bullet \mathrm{b}=\mathrm{a} \bullet \mathrm{c}$, then $\mathrm{b}=\mathrm{c}$

Proof: Multiply on left by a^{-1}

Similarly, $\mathrm{b} \bullet \mathrm{a}=\mathrm{c} \bullet \mathrm{a}$ implies $\mathrm{b}=\mathrm{c}$

So each row and each column of a group table are permutations of the group elements.

Theorem 3 (Cancellation): If $\mathrm{a} \bullet \mathrm{b}=\mathrm{a} \bullet \mathrm{c}$, then $\mathrm{b}=\mathrm{c}$

Theorem 4:
For all a in group G we have $\left(a^{-1}\right)^{-1}=a$.
Theorem 5:
For $\mathrm{a}, \mathrm{b} \in \mathrm{G}$ we have $(\mathrm{a} \bullet \mathrm{b})^{-1}=\mathrm{b}^{-1} \cdot \mathrm{a}^{-1}$.
Theorem 6:
In group (G, $\stackrel{\text {) , it doesn't matter how you put }}{ }$ parentheses in an expression like $a_{1} \bullet a_{2} \bullet a_{3} \bullet \cdots \bullet a_{k}$ ("generalized associativity").

Notation

In abstract groups, it's tiring to always write • So we often write ab rather than $\mathrm{a} \bullet \mathrm{b}$.

Sometimes write 1 instead of e for the identity
(When operation is "addition", write 0 in place of e)

For $n \in \mathbb{N}^{+}$, write a^{n} instead of aaa $\cdot \cdot a$ (n times). Also a^{-n} instead of $a^{-1} a^{-1} \cdots a^{-1}$, and a^{0} means 1.
(again denote $a+a+\ldots+a$ by na for additive groups)

Algebra practice

Problem: In the mattress group $\{1, \mathrm{R}, \mathrm{F}, \mathrm{H}\}$, simplify the element $\mathrm{R}^{2}\left(\mathrm{H}^{3} \mathrm{R}^{-1}\right)^{-1}$

One (slightly roundabout) solution:
$\mathrm{H}^{3}=\mathrm{H} \mathrm{H}^{2}=\mathrm{H} 1=\mathrm{H}$, so we reach $\mathrm{R}^{2}\left(\mathrm{HR}^{-1}\right)^{-1}$.
$\left(H^{-1}\right)^{-1}=\left(R^{-1}\right)^{-1} H^{-1}=R \mathrm{H}$, so we get $\mathrm{R}^{2} \mathrm{R} H$.
But $R^{2}=1$, so we get $1 R H=R H=F$.

Moral: the usual rules of multiplication, except...

Commutativity?

In a group we do NOT NECESSARILY have

$$
\mathrm{a} \bullet \mathrm{~b}=\mathrm{b} \bullet \mathrm{a}
$$

Actually, in the mattress group we do have this for all elements; e.g., $\mathrm{RF}=\mathrm{FR}(=\mathrm{H})$.

Definition:

"a,beG commute" means $\mathrm{ab}=\mathrm{ba}$.
"G is commutative" means all pairs commute.

In group theory, "commutative groups" are usually called abelian groups.

Niels Henrik Abel (1802-1829)
Norwegian
Died at 26 of tuberculosis $:$:
Age 22: proved there is no quintic formula.

Evariste Galois (1811-1832)

French
Died at 20 in a dual :
Laid the foundations of group theory and Galois theory

Some abelian groups:

"Mattress group"
("Klein 4-group")
Symmetries of a directed cycle ("cyclic group")

$$
(\mathbb{R},+), \quad\left(Z_{n}{ }^{*}, \times\right)
$$

Some nonabelian groups:

Symmetries of an undirected cycle ("dihedral group")
Permutation group $\mathrm{S}_{\mathrm{n}} \quad$ ("symmetric group on n elements")
Invertible $\mathrm{n} \times \mathrm{n}$ real matrices (under matrix product)

More fun groups:

Matrix groups

$S L_{2}(\mathbb{Z})$: Set of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
where $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1$.
Operation: matrix mult. Inverses: $\quad\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
Application: constructing expander graphs, 'magical' graphs crucial for derandomization.

Isomorphism

Here's a group: $\mathrm{V}=\{(0,0),(0,1),(1,0),(1,1)\}$ + modulo 2 is the operation

There's something familiar about this group...

V					same after	The mattress group				
+	00	01	10	11		-	Id	R	F	H
00	00	01	10	11	renaming:	Id	Id	R	F	H
01	01	00	11	10	$01 \leftrightarrow R$	R	R	Id	H	F
10	10	11	00	01	$10 \leftrightarrow F$	F	F	H	Id	R
11	11	10	01	00	$11 \leftrightarrow \mathrm{H}$	H	H	F	R	Id

Isomorphism

Groups (G, \bullet) and (H, \diamond) are "isomorphic" if there is a way to rename elements so that they have the same multiplication table.

Formally, bijection $\sigma: \mathrm{G} \rightarrow \mathrm{H}$ such that

$$
\sigma(\mathrm{a} \bullet \mathrm{~b})=\sigma(\mathrm{a}) \diamond \sigma(\mathrm{b}) \quad \forall \mathrm{a}, \mathrm{~b} \in \mathrm{G}
$$

Fundamentally,
they're the "same" abstract group.

Isomorphism and orders

Obviously, if G and H are isomorphic we must have $|\mathrm{G}|=|\mathrm{H}|$.
|G| is called the order / size of G.
E.g.: Let C_{4} be the group of transformations preserving the directed 4-cycle.

$$
\left|C_{4}\right|=4
$$

Q: Is C_{4} isomorphic to the mattress group V ?

Isomorphism and orders

Q : Is C_{4} isomorphic to the mattress group V ?

A: No!

$$
a^{2}=1 \text { for every element } a \in V \text {. }
$$

But in $\mathrm{C}_{4}, \quad \operatorname{Rot}_{90}{ }^{2}=\operatorname{Rot}_{270}{ }^{2} \neq \operatorname{Rot}_{180}{ }^{2}=\operatorname{ld}^{2}$

Motivates studying powers of elements.

Order of a group element

Let G be a finite group. Let $\mathrm{a} \in \mathrm{G}$.
Look at $1, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}, \ldots$ till you get some repeat.
Say $a^{k}=a^{j}$ for some $k>j$.
Multiply this equation by a^{-j} to get $a^{k-j}=1$.
So the first repeat is always 1.
Definition: The order of x, denoted ord(a), is the smallest $m \geq 1$ such that $a^{m}=1$.
Note that $a, a^{2}, a^{3}, \ldots, a^{m-1}, a^{m}=1$ all distinct.

Examples:

$$
\begin{gathered}
\text { In mattress group (order 4), } \\
\operatorname{ord}(\mathrm{ld})=1, \quad \operatorname{ord}(\mathrm{R})=\operatorname{ord}(\mathrm{F})=\operatorname{ord}(\mathrm{H})=2 .
\end{gathered}
$$

In directed-4-cycle group (order 4), $\operatorname{ord}(\operatorname{Id})=1, \operatorname{ord}\left(\operatorname{Rot}_{180}\right)=2, \operatorname{ord}\left(\operatorname{Rot}_{90}\right)=\operatorname{ord}\left(\operatorname{Rot}_{270}\right)=4$.

In dihedral group of order 10

(symmetries of undirected 5-cycle) $\operatorname{ord}($ ld $)=1, \operatorname{ord}($ any rotation $)=5, \quad \operatorname{ord}($ any reflection $)=2$.

Order Theorem: For a finite group G \& $\mathrm{a} \in \mathrm{G}$ ord(a) always divides |G|.

Let $\operatorname{ord}(\mathrm{a})=\mathrm{m}$.

Claim: also of length m.
Because $x a^{j}=x a^{k} \Rightarrow a^{j}=a^{k}$.

Order Theorem: ord(a) always divides |G|.

Order Theorem: $\forall \mathrm{a} \in \mathrm{G}$, ord(a) divides |G|.

Order Theorem: ord(a) always divides |G|.

Corollary: If $|\mathrm{G}|=\mathrm{n}$, then $\mathrm{a}^{\mathrm{n}}=1$ for all $\mathrm{a} \in \mathrm{G}$.

Proof: \quad Let $\operatorname{ord}(\mathrm{a})=\mathrm{m}$. Write $\mathrm{n}=\mathrm{mk}$.

$$
\text { Then } a^{n}=\left(a^{m}\right)^{k}=1^{\mathrm{k}}=1 \text {. }
$$

Corollary: Euler's Theorem: For $a \in Z_{n}{ }^{*}, a^{\phi(n)}=1$
That is, if $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$
Corollary (Fermat's little theorem):
For prime p, if $\operatorname{gcd}(a, p)=1$, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

Cyclic groups

A finite group G of order n is cyclic if
$G=\left\{e, b, b^{2}, \ldots, b^{n-1}\right\}$ for some group element b
In such a case, we say the element b "generates" G, or b is a "generator" of G.

Examples:
$\cdot\left(Z_{n},+\right) \quad$ What is a generator?

- C_{4} (Symmetries of directed 4-cycle)

Non-examples: Mattress group; any non-abelian group.

How many generators does $\left(Z_{n},+\right)$ have?

Answer: $\phi(\mathrm{n})$
b generates $Z_{n} \Leftrightarrow \exists$ a s.t. ba $=1(\bmod n)$

$$
(\mathrm{ba}=\mathrm{b}+\mathrm{b}+\ldots+\mathrm{b}(\mathrm{a} \text { times }))
$$

Same holds for any cyclic group with n elements

Subgroups

Q: Is (Even integers, +) a group?
A: Yes. It is a "subgroup" of $(\mathbb{Z},+)$
Definition: Suppose (G, \bullet) is a group. If $\mathrm{H} \subseteq \mathrm{G}$, and if (H, \odot) is also a group, then H is called a subgroup of G.

To check H is a subgroup of G , check: 1. H is closed under -
2. $e \in H$
3. If $h \in H$ then $h^{-1} \in H$
($3^{\text {rdd }}$ condition follows from 1,2 if H is finite)

Examples

Every G has two trivial subgroups: \{e\}, G Rest are called "proper" subgroups

Suppose $\mathrm{k}, 1<\mathrm{k}<\mathrm{n}$, divides n .
Q1. Is $\left(\{0, k, 2 k, 3 k, \ldots,(n / k-1) k\},+_{n}\right)$ subgroup of $\left(Z_{n},+_{n}\right)$? Yes!

Q2. Is $\left(Z_{k},+_{k}\right)$ a subgroup of $\left(Z_{n},+_{n}\right)$?
No! it doesn't even have the same operation

Q3. Is $\left(Z_{k},+_{n}\right)$ a subgroup of $\left(Z_{n},+_{n}\right)$?
No! Z_{k} is not closed under $+_{n}$

Lagrange's Theorem

Theorem: If G is a finite group, and H is a subgroup then |H| divides |G|.

Proof similar to order theorem.

Corollary (order theorem): If $x \in G$, then $\operatorname{ord}(x)$ divides $|\mathrm{G}|$. Proof of Corollary:

Consider the set $T_{x}=\left(x, x^{2}, x^{3}, \ldots\right)$
(i) $\operatorname{ord}(x)=\left|T_{x}\right|$
(ii) $\left(T_{x}, \bullet\right)$ is a subgroup of $(G, \bullet) \quad$ (check!)

Definitions:

Groups; Commutative/abelian Isomorphism ; order of elements; subgroups

Specific Groups:
Klein 4-, cyclic, dihedral, symmetric, number-theoretic.

Doing:
Checking for "groupness"
Computations in groups
Theorem/proof:
Order Theorem; Lagrange Thm
Modular arithmetic
Euler theorem

More fun groups:
 Quaternion group

$$
\mathrm{Q}_{8}=\{1,-1, \mathrm{i},-\mathrm{i}, \mathrm{j},-\mathrm{j}, \mathrm{k},-\mathrm{k}\}
$$

Multiplication $\quad 1$ is the identity
defined by: $(-1)^{2}=1, \quad(-1) \mathrm{a}=\mathrm{a}(-1)=-\mathrm{a}$

$$
\begin{array}{ll}
\mathrm{j}^{2}=\mathrm{j}^{2}= & \mathrm{k}^{2}=-1 \\
\mathrm{ij}=\mathrm{k}, & \mathrm{ji}=-\mathrm{k} \\
\mathrm{jk}=\mathrm{i}, & \mathrm{kj}=-\mathrm{i} \\
\mathrm{ki}=\mathrm{j}, & \mathrm{ik}=-\mathrm{j}
\end{array}
$$

Exercise: valid defn. of a (nonabelian) group.

Application to computer graphics

"Quaternions": expressions like

$$
3.2+1.4 i-.5 j+1.1 k
$$

which generalize complex numbers (\mathbb{C}).

Let (x, y, z) be a unit vector, θ an angle, let

$$
q=\cos (\theta / 2)+\sin (\theta / 2) x i+\sin (\theta / 2) y j+\sin (\theta / 2) z k
$$

Represent $\mathrm{p}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$ in 3D space by quaternion $\mathrm{P}=\mathrm{ai}+\mathrm{bj}+\mathrm{ck}$ Then qPq^{-1} is its rotation by angle θ around axis $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

