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Il est peu de notions en mathematiques qui soient 

plus primitives que celle de loi de composition.

- Nicolas Bourbaki

There are few concepts in mathematics

that are more primitive than the composition law.



Group Theory

Study of symmetries and transformations

of mathematical objects.

Also, the study of abstract algebraic

objects called ‘groups’.

(of which ℤN and ℤN* are special cases)



What is group theory good for?

Checksums, error-correction schemes

Minimizing randomness-complexity of algorithms

Cryptosystems

Algorithms for quantum computers

Hard instances of optimization problems

Ketan Mulmuley’s approach to P vs. NP

Laci Babai’s graph isomorphism algorithm

In theoretical computer science:



What is group theory good for?

“15 Puzzle”

Rubik’s Cube

SET

In puzzles and games:



What is group theory good for?

There’s a quadratic formula:

In math:



What is group theory good for?

There’s a cubic formula:

In math:



What is group theory good for?

There’s a quartic formula:

In math:



x_1 & = & {\frac{-a}{4} - \frac{1}{2}{\sqrt{\frac{a^2}{4} - \frac{2b}{3} + \frac{2^{\frac{1}{3}}( b^2 - 3ac + 12d ) } {3{( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + 

{\sqrt{-4{( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^{\frac{1}{3}}} + (\frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + 

{\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} }} {54})^\frac{1}{3}}} - \frac{1}{2}{\sqrt{\frac{a^2}{2} - \frac{4b}{3} 

- \frac{2^{\frac{1}{3}}( b^2 - 3ac + 12d ) } {3{( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4{( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^{\frac{1}{3}}} 

- - (\frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} }} {54})^\frac{1}{3} –

- \frac{-a^3 + 4ab - 8c} {4{\sqrt{\frac{a^2}{4} - \frac{2b}{3} + \frac{2^{\frac{1}{3}} ( b^2 - 3ac + 12d ) }{3 {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + 

- {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^ {\frac{1}{3}}} + ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + 

- {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} } }{54})^\frac{1}{3}}}}}}} \\ x_2 & = & {\frac{-a}{4} 

- \frac{1}{2}{\sqrt{\frac{a^2}{4} - \frac{2b}{3} + \frac{2^{\frac{1}{3}}( b^2 - 3ac + 12d ) } {3{( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4{( b^2 - 3ac + 12d ) }^3 + 

- {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^{\frac{1}{3}}} + ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + 

- {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} }} {54})^\frac{1}{3}}} + \frac{1}{2}{\sqrt{\frac{a^2}{2} - \frac{4b}{3} - \frac{2^{\frac{1}{3}}( b^2 - 3ac + 12d ) } 

- {3{( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4{( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^{\frac{1}{3}}} –

- ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} }} {54})^\frac{1}{3} - \frac{-a^3 + 4ab - 8c} 

- {4{\sqrt{\frac{a^2}{4} - \frac{2b}{3} + \frac{2^{\frac{1}{3}} ( b^2 - 3ac + 12d ) }{3 {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 +

- {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^ {\frac{1}{3}}} + ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + 

- {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} } }{54})^\frac{1}{3}}}}}}} \\ x_3 & = & {\frac{-a}{4} + \frac{1}{2}{\sqrt{\frac{a^2}{4} - \frac{2b}{3} + 

- \frac{2^{\frac{1}{3}}( b^2 - 3ac + 12d ) } {3{( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4{( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^{\frac{1}{3}}} + 

- ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} }} {54})^\frac{1}{3}}} –

- \frac{1}{2}{\sqrt{\frac{a^2}{2} - \frac{4b}{3} - \frac{2^{\frac{1}{3}}( b^2 - 3ac + 12d ) } {3{( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4{( b^2 - 3ac + 12d ) }^3 + 

- {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^{\frac{1}{3}}} - ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + 

- {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} }} {54})^\frac{1}{3} + \frac{-a^3 + 4ab - 8c} {4{\sqrt{\frac{a^2}{4} - \frac{2b}{3} + \frac{2^{\frac{1}{3}} ( b^2 - 3ac + 12d ) }

- {3 {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^ {\frac{1}{3}}} + 

- ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} } }{54})^\frac{1}{3}}}}}}} \\

- x_4 & = & {\frac{-a}{4} + \frac{1}{2}{\sqrt{\frac{a^2}{4} - \frac{2b}{3} + \frac{2^{\frac{1}{3}}( b^2 - 3ac + 12d ) } {3{( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + 

- {\sqrt{-4{( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^{\frac{1}{3}}} + ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + 

- {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} }} {54})^\frac{1}{3}}} + \frac{1}{2}{\sqrt{\frac{a^2}{2} - \frac{4b}{3} –

- \frac{2^{\frac{1}{3}}( b^2 - 3ac + 12d ) } {3{( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4{( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^{\frac{1}{3}}} –

- ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} }} {54} )^\frac{1}{3} + \frac{-a^3 + 4ab - 8c} 

- {4{\sqrt{\frac{a^2}{4} - \frac{2b}{3} + \frac{2^{\frac{1}{3}} ( b^2 - 3ac + 12d ) }{3 {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + 

- {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} ) }^ {\frac{1}{3}}} + ( \frac{{ 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + {\sqrt{-4 {( b^2 - 3ac + 12d ) }^3 + 

- {( 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd ) }^2}} } }{54})^\frac{1}{3}}}}}}}



What is group theory good for?

There is NO quintic formula.

In math:



What is group theory good for?

Predicting the existence of elementary

particles before they are discovered.

In physics:



So: What is group theory?

http://opinionator.blogs.nytimes.com/2010/05/02/group-think/

Let’s start with an example from

http://opinionator.blogs.nytimes.com/2010/05/02/group-think/


Rotate



Flip



Head-to-Toe flip



Q: How many positions can it be in?

A:  Four.



1 2

43

4 3

12

2 1

34

3 4

21

Rotate

Flip

Head-

to-Toe

Flip

Rotate



Group theory is not so much 

about objects (like mattresses).

It’s about the transformations

on objects and how they (inter)act.



1 2

43

4 3

12

2 1

34

3 4

21

R

F

H

F

R

F(R(mattress)) =

H(mattress)

H(F(mattress)) =

R(mattress)

R(F(H(mattress))) =

mattressId(mattress)

FR=H

HF=R

RFH=Id

RIdHFH = H



The kinds of questions asked:

Do transformations A and B “commute”?

I.e., does  AB = BA ?

What is the “order” of transformation A?

i.e., how many times do you have to

apply A before you get to Id ?

What is RIdHFH ?



Definition of a group of transformations

Let X be a set.

Let G be a set of bijections p : X → X.

We say G is a group of transformations if:

1. If p and q are in G then so is p  q.

G is “closed” under composition.

2. The ‘do-nothing’ bijection Id is in G.

3. If p is in G then so is its inverse, p−1.

G is “closed” under inverses.



Example:  Rotations of a rectangular mattress

X = set of all physical points of the mattress

G = { Id, Rotate, Flip, Head-to-toe }

Check the 3 conditions:

1. If p and q are in G then so is p  q.

2. The ‘do-nothing’ bijection Id is in G.

3. If p is in G then so is its inverse, p−1.

✔

✔

✔



Example:  Symmetries of a directed cycle

X =    labelings of the 

vertices by 1,2,3,4

2

3

1

4

|X| = 24

G =         permutations 

of the labels which

don’t change the graph

|G| = 4

G = { Id, Rot90, Rot180, Rot270 }



Example:  Symmetries of a directed cycle

G = { Id, Rot90, Rot180, Rot270 }

X = labelings of directed 4-cycle

Check the 3 conditions:

1. If p and q are in G then so is p  q.

2. The ‘do-nothing’ bijection Id is in G.

3. If p is in G then so is its inverse, p−1.

✔

✔

✔
“Cyclic group of size 4”



Example:  Symmetries of undirected n-cycle

X =    labelings of the 

vertices by 1,2, …, n

G =         permutations 

of the labels which

don’t change the graph
(neighbors stay neighbors 

& non-nbrs stay non-nbrs)

|G| = 2n

1

2

34

5

Poll



Example:  Symmetries of undirected n-cycle

X =    labelings of the 

vertices by 1,2, …, n

G =         permutations 

of the labels which

don’t change the graph

|G| = 2n

2

1

54

3

+ one clockwise twist



Example:  Symmetries of undirected n-cycle

X =    labelings of the 

vertices by 1,2, …, n

G =         permutations 

of the labels which

don’t change the graph

|G| = 2n

3

2

15

4

+ one clockwise twist =



Example:  Symmetries of undirected n-cycle

X =    labelings of the 

vertices by 1,2, …, n

|X| = n!

G =         permutations 

of the labels which

don’t change the graph

|G| = 2n

G = { Id,   n−1 ‘rotations’,   n ‘reflections’ }

“Dihedral group of size 2n”



Effect of the 16 elements of D8

on a stop sign



Example:  “All permutations”

X =  {1, 2, …, n}

G = all permutations of X

e.g., for n = 4, a typical element of G is:

“Symmetric group, Sym(n) or Sn”



More groups of transformations

Motions of 3D space:  translations + rotations

(preserve laws of Newtonian mechanics)

Translations of 2D space by an integer amount

horizontally and an integer amount vertically

Rotations which preserve an 

old-school soccer ball (icosahedron)



The group of mattress rotation

G = { Id, R, F, H }

Id  Id = Id

Id  R = R 

Id  F = F 

Id ⚪ H = H

R ⚪ Id = R

R ⚪ R = Id

R ⚪ F = H

R ⚪ H = F 

F  Id = F

F ⚪ R = H

F ⚪ F = Id

F ⚪ H = R

H ⚪ Id = H

H ⚪ R = F 

H ⚪ F = R

H ⚪ H = Id

 Id R F H

Id Id R F H

R R Id H F

F F H Id R

H H F R Id

Group table



The laws of the dihedral group of size 10

G = 

{ Id, r1, r2, r3, r4,

f1, f2, f3, f4, f5 }

⚪ Id r1 r2 r3 r4 f1 f2 f3 f4 f5

Id Id r1 r2 r3 r4 f1 f2 f3 f4 f5

r1 r1 r2 r3 r4 Id f4 f5 f1 f2 f3

r2 r2 r3 r4 Id r1 f2 f3 f4 f5 f1

r3 r3 r4 Id r1 r2 f5 f1 f2 f3 f4

r4 r4 Id r1 r2 r3 f3 f4 f5 f1 f2

f1 f1 f3 f5 f2 f4 Id r3 r1 r4 r2

f2 f2 f4 f1 f3 f5 r2 Id r3 r1 r4

f3 f3 f5 f2 f4 f1 r4 r2 Id r3 r1

f4 f4 f1 f3 f5 f2 r1 r4 r2 Id r3

f5 f5 f2 f4 f1 f3 r3 r1 r4 r2 Id



God created the integers. All the rest is the work of Man.

- Leopold Kronecker

Integers ℤ

closed under +

a+b = b+a

a+0 = 0+a=a

a+(-a) = 0

(a+b)+c = a+(b+c)

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Remainders mod 5 

Z5 = {0,1,2,3,4}

+5 = addition modulo 5

a+n 0 = 0+n a=a

a+n (n-a) = 0

(a+nb)+nc = a+n(b+nc)



The power of algebra: 

Abstract away the inessential 

features of a problem

=



Let G be a set.

Let  be a “binary operation” on G;

think of it as defining a “multiplication table”.

 a b c

a c a b

b a b c

c b c a

E.g., if G = { a, b, c } then…

 is a binary operation.

This means that c  a = b.

Let’s define an abstract group.



Definition of an (abstract) group

We say G is a “group under operation ” if:   

0. [Closure] G is closed under 

i.e.,  a  b  G ∀ a,b∈G

1. [Associativity] Operation  is associative:

i.e.,    a  (b  c) = (a  b)  c    ∀ a,b,c∈G

2. [Identity] There exists an element  e∈G

(called the “identity element”) such that

a  e = a,  e  a = a ∀ a∈G

3. [Inverse] For each a∈G there is an element a−1∈G

(called the “inverse of a”) such that

a  a−1 = e,  a−1  a = e



Examples of (abstract) groups

Any group of transformations is a group.

(Only need to check that composition of functions is associative.)

E.g., the ‘mattress group’  (AKA Klein 4-group) 

 Id R F H

Id Id R F H

R R Id H F

F F H Id R

H H F R Id

identity element is Id

R−1 = R 

F−1 = F  

H−1 = H  



Examples of (abstract) groups

Any group of transformations is a group.

ℤ (the integers) is a group under operation +

Check:  

0.  + really is a binary operation on ℤ

1.  + is associative:  a+(b+c) = (a+b)+c

2.  “e” is 0:  a+0 = a,  0+a = a

3.  “a−1” is −a:  a+(−a) = 0,  (−a)+a = 0



Examples of (abstract) groups

Any group of transformations is a group.

ℤ (the integers) is a group under operation +

ℝ (the reals) is a group under operation +

ℝ+ (the positive reals) is a group under ×

Q \ {0} (non-zero rationals) is a group under ×

Zn (the integers mod n) is a group under + modulo n



NONEXAMPLES of groups

ℤ, operation −

ℤ \ {0}, operation ×

G = {all odd integers}, operation +

+ is not a binary operation on G!

− is not associative!  &  No identity!

1 is the only possible identity element;

but then most elements don’t have inverses!

(Natural numbers,  +) 

No inverses !



⚪ Id r1 r2 r3 r4 f1 f2 f3 f4 f5

Id Id r1 r2 r3 r4 f1 f2 f3 f4 f5

r1 r1 r2 r3 r4 Id f4 f5 f1 f2 f3

r2 r2 r3 r4 Id r1 f2 f3 f4 f5 f1

r3 r3 r4 Id r1 r2 f5 f1 f2 f3 f4

r4 r4 Id r1 r2 r3 f3 f4 f5 f1 f2

f1 f1 f3 f5 f2 f4 Id r3 r1 r4 r2

f2 f2 f4 f1 f3 f5 r2 Id r3 r1 r4

f3 f3 f5 f2 f4 f1 r4 r2 Id r3 r1

f4 f4 f1 f3 f5 f2 r1 r4 r2 Id r3

f5 f5 f2 f4 f1 f3 r3 r1 r4 r2 Id

Permutation property

Dihedral group of size 10
In a group table,

every row and 

every column

is a permutation 

of the group elements

Follows from

“cancellation 

property”
(which we will 

prove shortly)



Let’s connect back to 

Modular arithmetic 



Suppose x  y (mod n) and a  b (mod n). Then

1) x + a  y + b (mod n)

2) x * a  y * b (mod n)

3) x - a  y – b (mod n)

So instead of doing +,*,- and taking remainders, we can 

first take remainders and then do arithmetic.

Modular arithmetic
Defn: For integers a,b, and positive integer n,

a  b (mod n)   (read: “a congruent to b modulo n”) means 

(a-b) is divisible by n, or equivalently

a mod n = b mod n (x mod n is remainder of x when 

divided by n, and belongs to {0,1,…,n-1} )



Modular arithmetic

(Zn, +) is group  (understood that + is +n )

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

What about (Z5, *) ?

(* = multiplication modulo n)

NOT a group.

1 = candidate for identity, but 

0 has no inverse.

Okay, what about 

(Z5
*
, *) where

* 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Z5
* = Z5 \ {0} = {1,2,3,4}

Turns out, it is a group.



* 1 2 3 4 5

1 1 2 3 4 5

2 2 4 0 2 4

3 3 0 3 0 3

4 4 2 0 4 2

5 5 4 3 2 1

Multiplication table mod 6 for

Z6 \ {0} = {1,2,3,4,5}

2,3,4 have no inverse

NOT a group !



Multiplicative inverse in Zn \ {0}

Theorem: For a  {1,2,…,n-1}, there exists 

x  {1,2,…,n-1} such that ax  1 (mod n)

if and only if

gcd(a,n) = 1

Proof (if)  : Suppose gcd(a,n)=1

There exist integers r,s such that 

r a + s n =1  (Extended Euclid)

So ar  1 (mod n). 

Take x = r mod n, ax  1 (mod n) as well.



Multiplicative inverse in Zn \ {0}

Theorem: For a  {1,2,…,n-1}, there exists 

x  {1,2,…,n-1} such that ax  1 (mod n)

if and only if

gcd(a,n) = 1

Proof (only if)  : Suppose  x, ax  1 (mod n) 

So ax-1 = nk for some integer k.

If gcd(a,n)=c, then c divides ax-nk

Since ax-nk=1, this means c=1.



Recall:

Zn
* = {x  Zn | gcd(x,n) =1}

Elements in Zn
* have 

multiplicative inverses 

Exercise: 

Check (Zn
* , *) is a group

(* is multiplication modulo n)

Z6 = {0, 1,2,3,4,5}

Z6
* = {1,5}

* 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1



Z12
* = {0 ≤ x < 12 | gcd(x,12) = 1} 

= {1,5,7,11}

*12 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1



Z15
*

* 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1



Fact:

For prime p, the set Zp
* = Zp \ {0}

Proof:

It just follows from the definition!

For prime p, all 0 < x < p satisfy 

gcd(x,p) = 1



Euler Phi Function 𝜙(𝑛)

𝜙(𝑛) = size of Zn
* 

=  number of integers 1 ≤ k < n that 

are relatively prime to n.

p prime 

 Zp
*= {1,2,3,…,p-1}

 𝜙(p) = p-1



Back to abstract groups



Abstract algebra on groups

Theorem 1: 

If (G,) is a group, identity element is unique.

Proof: 

Suppose f and g are both identity elements.

Since g is identity,  f  g = f.

Since f  is identity,  f  g = g.

Therefore f = g.



Abstract algebra on groups

Theorem 2: 

In any group (G,), inverses are unique.

Proof: 

Given a∈G, suppose b, c are both inverses of a.

Let e be the identity element.

By assumption,  a  b = e and c  a = e.

Now:  c = c  e = c(ab)

= (ca)b = e  b = b



Theorem 3 (Cancellation): If a  b = a  c, 

then b = c

Proof:  Multiply on left by a-1

Similarly, b  a = c  a implies b = c

So each row and each column of a group table

are permutations of the group elements.



Theorem 4: 

For all a in group G we have (a−1)−1 = a.

Theorem 5: 

For a,b∈G we have (a  b)−1 = b−1  a−1.

Theorem 6: 

In group (G,), it doesn’t matter how you put 

parentheses in an expression like a1  a2  a3  · · ·  ak

(“generalized associativity”).

Theorem 3 (Cancellation): If a  b = a  c, 

then b = c



Notation

In abstract groups, it’s tiring to always write .

So we often write ab rather than a  b.

For n∈ℕ+, write an instead of aaa···a (n times).

Also a−n instead of a−1a−1···a−1, and a0 means 1.

(again denote a+ a+ … + a by na for additive groups)

Sometimes write 1 instead of e for the identity

(When operation is “addition”, write 0 in place of e)



Algebra practice

Problem: In the mattress group {1, R, F, H},

simplify the element R2 (H3 R−1)−1

One (slightly roundabout) solution:

H3 = H H2 = H 1 = H, so we reach R2 (H R−1)−1.

(H R−1)−1 = (R−1)−1 H−1 = R H, so we get R2 R H.

But R2 = 1, so we get 1 R H = R H = F.

Moral:  the usual rules of multiplication, except…



Commutativity?

In a group we do NOT NECESSARILY have

a  b = b  a

Actually, in the mattress group we do have

this for all elements; e.g.,  RF = FR (=H).

Definition: 

“a,b∈G commute” means ab = ba.

“G is commutative” means all pairs commute.



In group theory, “commutative groups”

are usually called abelian groups.

Niels Henrik Abel (1802−1829)

Norwegian

Died at 26 of tuberculosis 

Age 22: proved there is 

no quintic formula.



Evariste Galois (1811−1832)

French

Died at 20 in a dual 

Laid the foundations 

of group theory and Galois theory



Some abelian groups:

“Mattress group”  (“Klein 4-group”)

Symmetries of a directed cycle         (“cyclic group”)

(ℝ, +),      (Zn
*,×)

Some nonabelian groups:

Symmetries of an undirected cycle (“dihedral group”)

Permutation group Sn (“symmetric group on n elements”)

Invertible n x n real matrices (under matrix product)



More fun groups:

Matrix groups

SL2(ℤ):   Set of matrices

where a,b,c,d∈ ℤ and ad−bc=1.

Operation: matrix mult.    Inverses:

Application:  constructing expander graphs,

‘magical’ graphs crucial for derandomization.



Isomorphism

 Id R F H

Id Id R F H

R R Id H F

F F H Id R

H H F R Id

Here’s a group:  V = { (0,0), (0,1), (1,0), (1,1) }

+ modulo 2   is the operation

There’s something familiar about this group…

+ 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

The mattress groupV same

after

renaming:

00↔Id

01↔R 

10↔F 

11↔H 



Isomorphism

Groups   (G,) and  (H,) are “isomorphic”

if there is a way to rename elements so that 

they have the same multiplication table.

Formally, bijection  : G  H such that

(a  b) = (a)  (b)     a,b  G

Fundamentally, 

they’re the “same” abstract group.



Isomorphism and orders

Obviously, if G and H are isomorphic

we must have |G| = |H|.

|G| is called the order / size of G.

E.g.:  Let C4 be the group of transformations

preserving the directed 4-cycle.  

|C4| = 4

Q: Is C4 isomorphic to the mattress group V ?



Isomorphism and orders

Q: Is C4 isomorphic to the mattress group V ?

A: No!  

a2 = 1 for every element a∈V.

But in C4,   Rot90
2 = Rot270

2 ≠ Rot180
2 = Id2

Motivates studying powers of elements.



Order of a group element

Let G be a finite group.  Let a∈G.

Look at 1, a, a2, a3, …  till you get some repeat. 

Say ak = aj for some k > j.

Multiply this equation by a−j to get ak−j = 1.

So the first repeat is always 1.

Definition:  The order of x, denoted ord(a), is the 

smallest m ≥ 1 such that am = 1.

Note that a, a2, a3, …, am−1, am=1 all distinct.



Examples:   

In mattress group (order 4),

ord(Id) = 1,      ord(R) = ord(F) = ord(H) = 2.

In directed-4-cycle group (order 4),

ord(Id) = 1,  ord(Rot180) = 2,  ord(Rot90) = ord(Rot270) = 4.

In dihedral group of order 10

(symmetries of undirected 5-cycle)

ord(Id) = 1,  ord(any rotation) = 5,  ord(any reflection) = 2.



Order Theorem: For a finite group G & a  G

ord(a) always divides |G|.

G1
a

a2

a3

am−1

x
xa

xa2

xa3
xam−1

Claim:  also of length m. 

Because  xaj = xak ⇒ aj = ak.

Let ord(a) = m. 



Order Theorem: ord(a) always divides |G|.

G1
a

a2

a3

am−1

x
xa

xa2

xa3
xam−1

y
ya

ya2
Impossible.

Multiply on right by a−1.



Order Theorem: a  G, ord(a) divides |G|.

G1
a

a2

a3

am−1

x
xa

xa2

xa3
xam−1

y
ya

ya2ya3

yam−1

G partitioned 

into cycles of

size m.



Order Theorem: ord(a) always divides |G|.

Corollary:     If |G| = n, then an=1 for all a∈G.

Proof:          Let  ord(a) = m.  Write n = mk.

Then an = (am)k = 1k = 1.

Corollary:  Euler’s Theorem: For a  Zn
* , aϕ(n) = 1

That is, if gcd(a,n)=1, then aϕ(n)  1 (mod n)

Corollary (Fermat’s little theorem): 

For prime p, if gcd(a,p)=1, then  

ap-1  1 (mod p)



Cyclic groups

A finite group G of order n is cyclic if 

G= {e,b,b2,…,bn-1} for some group element b

In such a case, we say the element b “generates” G, 

or b is a “generator” of G.

Examples: 

• (Zn, +)   What is a generator? 

• C4   (Symmetries of directed 4-cycle)

Non-examples: Mattress group; 

any non-abelian group.



How many generators does

(Zn, +) have? 

Answer: 𝜙(n)    

Same holds for any cyclic group

with n elements

b generates Zn   a s.t. ba  1 (mod n)

(ba = b+b+…+b (a times))



Subgroups

Definition: Suppose (G ,) is a group.

If  H  G, and if (H,) is also a group,

then H is called a subgroup of G.

Q: Is (Even integers, +) a group?

A: Yes.     It is a “subgroup” of (ℤ,+)

To check H is a subgroup of G, check:

1. H is closed under 

2. e  H

3. If h  H then h-1  H
• (3rd condition follows from 1,2 if H is finite)



Examples

Suppose k, 1 < k < n, divides n. 

Q1. Is ({0, k, 2k, 3k, …, (n/k-1)k}, +n) subgroup of (Zn,+n) ?

Q2. Is (Zk, +k) a subgroup of (Zn, +n)?

Q3. Is (Zk, +n) a subgroup of (Zn, +n)?

No! it doesn’t even have the same operation

No!  Zk is not closed under +n

Yes!

Every G has two trivial subgroups: {e}, G

Rest are called “proper” subgroups



Lagrange’s Theorem 

Theorem: If G is a finite group, and H is a subgroup then 

|H| divides |G|.

Proof similar to order theorem. 

Corollary (order theorem): If x  G, then ord(x) divides |G|.

Proof of Corollary: 

Consider the set Tx = (x, x2, x3, …)

(i) ord(x) = |Tx| 

(ii)  (Tx, ) is a subgroup of (G,) (check!)



Definitions:

Groups;   Commutative/abelian

Isomorphism ; order of elements;

subgroups

Specific Groups:

Klein 4-, cyclic, dihedral,

symmetric, number-theoretic.

Doing:

Checking for “groupness”

Computations in groups

Theorem/proof:

Order Theorem; Lagrange Thm

Modular arithmetic

Euler theorem

Study Guide



More fun groups:

Quaternion group

Q8 = { 1, −1,  i, −i,  j, −j,  k, −k }

Multiplication 1 is the identity

defined by: (−1)2 = 1,     (−1)a = a(−1) = −a

i2 = j2 = k2 = −1

i j = k,  j i = −k

jk = i,   kj = −i

ki = j,   ik = −j

Exercise:      valid defn. of a (nonabelian) group.



Application to computer graphics

“Quaternions”:     expressions like

3.2 + 1.4i −.5j +1.1k

which generalize complex numbers (ℂ).

Let (x,y,z) be a unit vector, θ an angle, let

q = cos(θ/2) + sin(θ/2)x i + sin(θ/2)y j + sin(θ/2)z k

Represent p=(a,b,c) in 3D space by quaternion P= a i + b j + c k

Then qPq−1 is its rotation by angle θ around axis (x,y,z).


