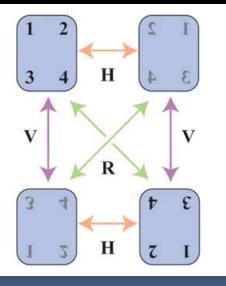
15-251: Great Theoretical Ideas in Computer Science Fall 2016 Lecture 22 November 10, 2016

Group Theory



	R ₀	R ₉₀	R ₁₈₀	R ₂₇₀	V	Н	D_1	D ₂
R ₀	R ₀	R ₉₀	R ₁₈₀	R ₂₇₀	٧	Н	D_1	D ₂
R ₉₀	R ₉₀	R ₁₈₀	R ₂₇₀	R ₀	D ₂	D_1	٧	Η
R ₁₈₀	R ₁₈₀	R ₂₇₀	R ₀	R ₉₀	Η	V	D ₂	D ₁
R ₂₇₀	R ₂₇₀	R ₀	R ₉₀	R ₁₈₀	D_1	D ₂	Н	۷
V	V	D_1	Н	D ₂	R ₀	R ₁₈₀	R ₉₀	R ₂₇₀
Н	Н	D ₂	٧	D_1	R ₁₈₀	R ₀	R ₂₇₀	R ₉₀
D_1	D_1	Н	D ₂	V	R ₂₇₀	R ₉₀	R ₀	R ₁₈₀
D ₂	D ₂	۷	D1	Η	R ₉₀	R ₂₇₀	R ₁₈₀	R ₀

Il est peu de notions en mathematiques qui soient plus primitives que celle de loi de composition.

- Nicolas Bourbaki

There are few concepts in mathematics that are more primitive than the composition law.

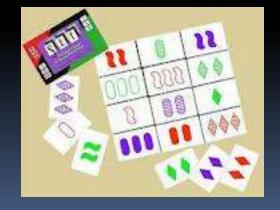
Study of symmetries and transformations of mathematical objects.

Also, the study of abstract algebraic objects called 'groups'. (of which \mathbb{Z}_N and \mathbb{Z}_N^* are special cases) What is group theory good for? In theoretical computer science:

Checksums, error-correction schemes Minimizing randomness-complexity of algorithms Cryptosystems Algorithms for quantum computers Hard instances of optimization problems Ketan Mulmuley's approach to P vs. NP Laci Babai's graph isomorphism algorithm

In puzzles and games:

"15 Puzzle"

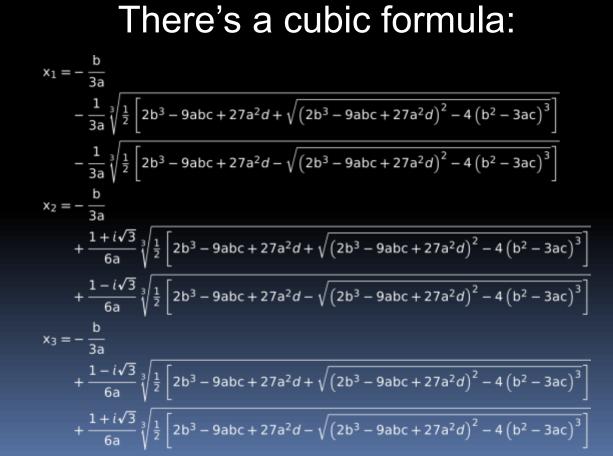


In math:

There's a quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In math:



In math:

There's a quartic formula:

x_1 & = & {\frac{-a}{4} - \frac{1}{2}{\sqrt{\frac}{a^2}{4} - \frac{2b}{3} + \frac{2^{(1}{3}}(b^2 - 3ac + 12d) } {3(2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + (\sqrt{-4{(b^2 - 3ac + 12d) }^3 + {(2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + (\sqrt{-4{(b^2 - 3ac + 12d) }^3 + {(2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + (\sqrt{-4{(b^2 - 3ac + 12d) }^3 + {(2b^3 - 9abc + 27c^2 + 27a^2d - 72bd + (\sqrt{-4{(b^2 - 3ac + 12d) }^3 + {(2b^3 - 9abc + 27c^2 + 27a^2d - 72bd) }^2) } } } } } })

- \frac{2^\(frac{1}{3})(b^2 3ac + 12d) } {3}(2b^3 9abc + 27c^2 + 27a^2d 72bd + (\sqrt{-4{(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2}))^{(frac{1}{3})}
- - (\frac{2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}}}}} {54})^{12}}
- \frac{-a^3 + 4ab 8c} {4\\sqrt{\frac{a^2}{4} \frac{2b}{3} + \frac{2^{\frac{1}{3}} (b^2 3ac + 12d) }3 { (2b^3 9abc + 27c^2 + 27a^2d 72bd +
- {\sqrt{-4 {(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}}} } } {(b^2 3ac + 12d)} + (brac{1}{3}) + (brac{1
- {\sqrt{-4 {(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}}}}}}} {(54)^{frac{1}{3}}}}) \\ x_2 & = & {\frac{-a}{4}}
- \frac{1}{2}\\sqrt{\frac{a^2}{4} \frac{2}{3} + \frac{2}{\frac{1}{3}}(b^2 3ac + 12d) } 3{(2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4{(b^2 3ac + 12d)}^3 + \frac{2}{3}})}
- {(2b^3 9abc + 27c^2 + 27a^2d 72bd)})^2}) } (\frac{1}{3}} + (\frac{2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d)}^3 +
- {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2}} {54})^{frac{1}{3}} + {frac{1}{2}(sqrt{\frac{a^2}{2} \frac{4b}{3} \frac{2^{(frac{1}{3})} b^2 3ac + 12d)}}
- {3{(2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4{(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2}}) ^{(frac{1}{3}}
- {4(\sqrt{\frac{a^2}{4} \frac{2b}{3} + \frac{2^{(1}{3}} (b^2 3ac + 12d)){3 ((2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d)}^3 +
- {(2b^3 9abc + 27c^2 + 27a^2d 72bd)})) (\frac{1}{3}}) + (\frac{2b^3 9abc + 27c^2 + 27a^2d 72bd + (\sqrt{-4 {(b^2 3ac + 12d)})^3 + (\frac{1}{3}})}
- $\{(2b^3 9abc + 27c^2 + 27a^2d 72bd)^{2}\} \} \{54\})^{h} \left(x_3 \& = \& (\frac{1}{2})^{h} + \frac{1}{2} \left(x_1^{1} + \frac{1}{2})^{h} + \frac{1}{2} \right)^{h} \right)$
- \frac{2^{(frac{1}{3})(b^2 3ac + 12d)} {3((2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4((b^2 3ac + 12d)})^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)})^2}
- (\frac{{ 2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2}}}} {54}}
- \frac{1}{2}\\sqrt{\frac{a^2}{2} \frac{4b}{3} \frac{2^\\frac{1}{3}}(b^2 3ac + 12d) } {3{(2b^3 9abc + 27c^2 + 27a^2d 72bd + \\sqrt{-4{(b^2 3ac + 12d) }^3 + (b^2 3ac + 12d) } }
- {(2b^3 9abc + 27c^2 + 27a^2d 72bd)})^2}))^(\frac{1}{3}}) (\frac{2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d)}^3 + (b^2 3ac + 12d)}})^3 + (b^2 3ac + 12d)})^3 + (b^2 3ac + 12d) + (b^2 3ac + 12d))^3 + (b^2 3ac +
- {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2}} {54})^{fac{1}(3) + {fac{-a^3 + 4ab 8c} {4}(sqrt{fac{a^2}(4) {frac{2b}(3) + {frac{2^{(1)}(3) + (frac{1}(3) + (frac{1}(3)
- {3 {(2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2}) } } } }
- (\frac{{ 2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d) }^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd) }^2}}}}}
- $x_4 &= & \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1$
- {\sqrt{-4{(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2} } } \\ (\frac{1}{3}}) + (\frac{{2b^3 9abc + 27c^2 + 27a^2d 72bd + 27c^2 + 27a^2d + 72bd + 27c^2 + 72bd + 27c^2 + 72bd + 27c^2 + 27a^2d + 72bd + 27c^2 + 27a^2d + 72bd + 27c^2 + 72bd + 72bd + 27c^2 + 72bd + 27c^2 + 72bd + 72bd + 72bd + 72bd + 7
- {\sqrt{-4 {(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2}} {54}}^{fac{1}{3}} + {frac{1}{2}}\sqrt{frac{a^2}{2} {frac{4b}{3} -
- \frac{2^{\frac{1}{3}}(b^2 3ac + 12d) } {3((2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4{(b^2 3ac + 12d)}}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd })^2}) }
- (\frac{{ 2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d)}^3 + {(2b^3 9abc + 27c^2 + 27a^2d 72bd)}^2} } } {54})^\frac{1}{3} + \frac{-a^3 + 4ab 8c}
- {{\sqrt{\frac{a^2}{4} \frac{2b}{3} + \frac{2^{\frac{1}{3}} (b^2 3ac + 12d) }{3} (2b^3 9abc + 27c^2 + 27a^2d 72bd + {\sqrt{-4 {(b^2 3ac + 12d) }^3 +
- {(2b^3 9abc + 27c^2 + 27a^2d 72bd)})^2}) ^ {trac{1}{3}} + (trac{{ 2b^3 9abc + 27c^2 + 27a^2d 72bd + {sqrt{-4 {(b^2 3ac + 12d)}^3 + (b^2 3ac + 12d)}}
- {(2b^3 9abc + 27c^2 + 27a^2d 72bd) }^2} } }{54})^\frac{1}{3}}}}}

In math:

There is **NO** quintic formula.

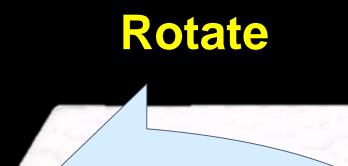
In physics:

Predicting the existence of elementary particles **before** they are discovered.

So: What is group theory?

Let's start with an example from

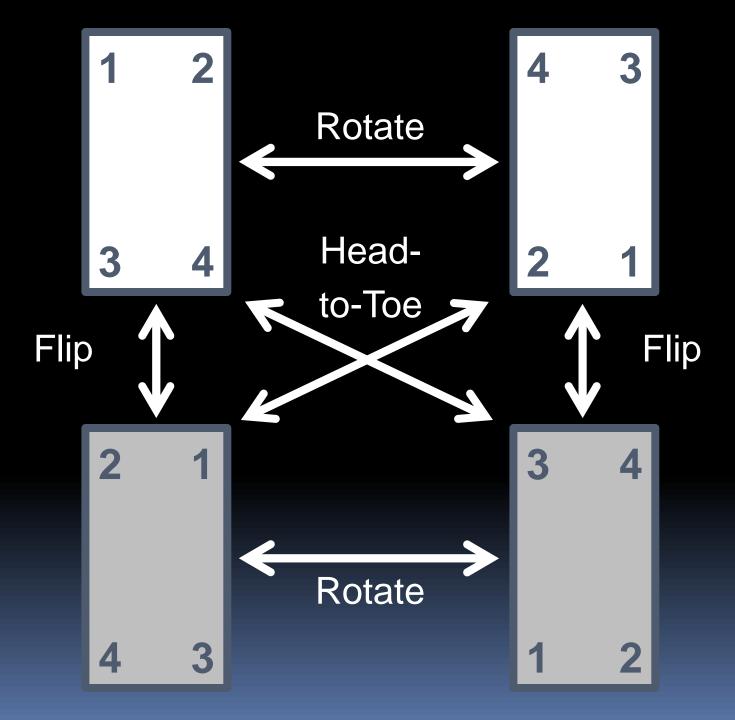
<u>http://opinionator.blogs.nytimes.com/2010/05/02/group-think/</u>



Head-to-Toe flip

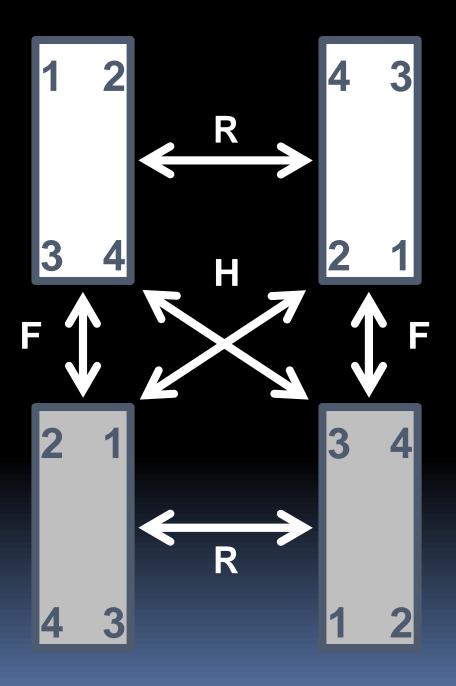
Q: How many positions can it be in?

A: Four.



Group theory is not so much about **objects** (like mattresses).

It's about the **transformations** on objects and how they (inter)act.



F(R(mattress)) =H(mattress) H(F(mattress)) =**R**(mattress) **R**(**F**(**H**(mattress))) = Id(mattress) F•R=H H•F=R R•F•H=ld $R \bullet Id \bullet H \bullet F \bullet H =$ Н

The kinds of questions asked:

What is R•Id•H•F•H ?

Do transformations **A** and **B** "commute"? I.e., does **A**•**B** = **B**•**A** ?

What is the "order" of transformation **A**? i.e., how many times do you have to apply **A** before you get to **Id** ?

Definition of a group of transformations

- Let X be a set.
- Let **G** be a set of **bijections** $p : X \rightarrow X$.
- We say G is a group of transformations if:
 - 1. If p and q are in G then so is $p \circ q$.
 - G is "closed" under composition.
 - 2. The 'do-nothing' bijection Id is in G.
 - 3. If p is in G then so is its inverse, p^{-1} .
 - G is "closed" under inverses.

Example: Rotations of a rectangular mattress

X = set of all physical points of the mattress

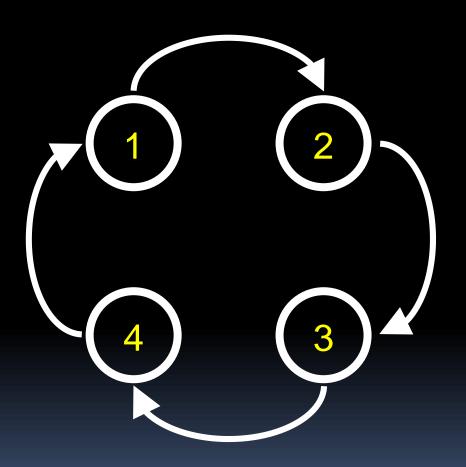
G = { **Id**, **Rotate**, **Flip**, **Head-to-toe** }

Check the 3 conditions:

1. If p and q are in G then so is $p \circ q$.

2. The 'do-nothing' bijection Id is in G.

3. If p is in G then so is its inverse, p^{-1} .



X = labelings of the vertices by 1,2,3,4

|X| = 24

G = permutations of the labels which don't change the graph |G| = 4

 $G = \{ Id, Rot_{90}, Rot_{180}, Rot_{270} \}$

X = labelings of directed 4-cycle

 $G = \{ \text{ Id}, \text{ Rot}_{90}, \text{ Rot}_{180}, \text{ Rot}_{270} \}$

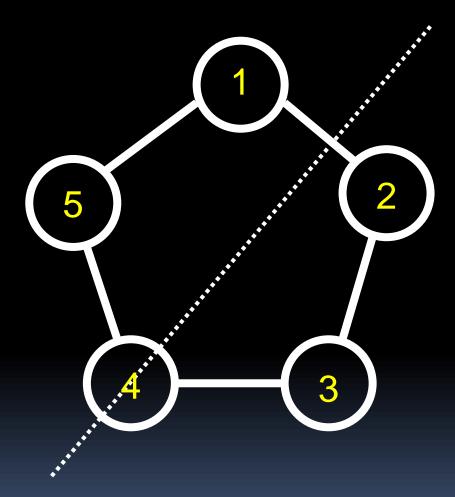
Check the 3 conditions:

1. If \mathbf{p} and \mathbf{q} are in \mathbf{G} then so is $\mathbf{p} \bullet \mathbf{q}$.

2. The 'do-nothing' bijection Id is in G.

3. If p is in G then so is its inverse, p^{-1} .

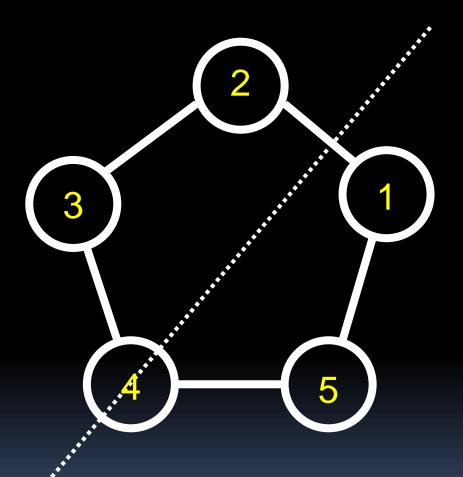
"Cyclic group of size 4"



X = labelings of the vertices by 1,2, ..., n

G = permutations of the labels which don't change the graph (neighbors stay neighbors & non-nbrs stay non-nbrs)

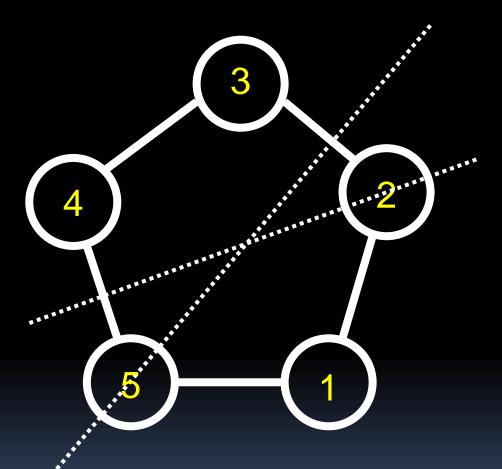
Poll |G| = 2n



X = labelings of the vertices by 1,2, ..., n

G = permutations of the labels which don't change the graph |G| = 2n

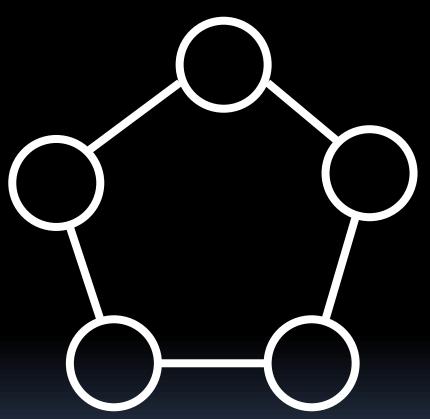
+ one clockwise twist



X = labelings of the vertices by 1,2, ..., n

G = permutations of the labels which don't change the graph |G| = 2n

+ one clockwise twist

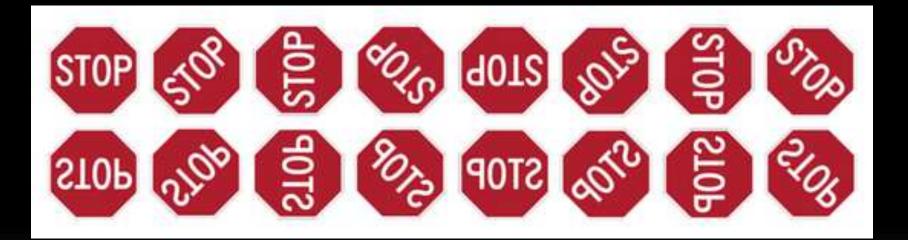


X = labelings of the vertices by 1,2, ..., n

$$|X| = n!$$

G = permutations of the labels which don't change the graph |G| = 2n G = { Id, n-1 'rotations', n 'reflections' } "Dihedral group of size 2n"

Effect of the 16 elements of D₈ on a stop sign



Example: "All permutations"

$$X = \{1, 2, ..., n\}$$

G = all permutations of X

e.g., for n = 4, a typical element of G is:

$$\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4\\
\downarrow & \downarrow & \downarrow & \downarrow\\
4 & 2 & 1 & 3
\end{array}\right)$$

"Symmetric group, Sym(n) or S_n"

More groups of transformations

Motions of 3D space: translations + rotations (preserve laws of Newtonian mechanics)

Translations of 2D space by an integer amount horizontally and an integer amount vertically

Rotations which preserve an old-school soccer ball (icosahedron)

The group of mattress rotation

 $G = \{ Id, R, F, H \}$

- $d \bullet d = d$
- $\mathsf{Id} \bullet \mathsf{F} = \mathsf{F}$
- $Id \cap H = H$
- $R \circ Id = R$
- $R \circ R = Id$
- $R \cap F = H$

 $R \cap H = F$

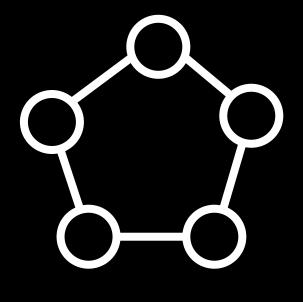
- $F \bullet Id = F$
- $\mathsf{Id} \bullet \mathsf{R} = \mathsf{R}$ $\mathsf{F} \circ \mathsf{R} = \mathsf{H}$
 - $F \circ F = Id$
 - $F \circ H = R$
 - $H \cap Id = H$ $H \cap R = F$ $H \circ F = R$

 $H \cap H = Id$

Group table

•	ld	R	F	н
ld	ld	R	F	н
R	R	ld	н	F
F	F	н	ld	R
I	н	F	R	ld

The laws of the dihedral group of size 10



G =

{ Id, r_1 , r_2 , r_3 , r_4 , f_1 , f_2 , f_3 , f_4 , f_5 }

0	Id	r,	r ₂	r ₃	r ₄	f1	f ₂	f ₃	f ₄	f ₅
Id							f_2			
							f_5			
							f ₃			
							f_1			
							f ₄			
							r ₃			
							Id			
							r ₂			
							r ₄			
f ₅	f_5	f_2	f_4	f_1	f_3	r ₃	r1	r ₄	r ₂	Id

God created the integers. All the rest is the work of Man. - Leopold Kronecker

> Remainders mod 5 $Z_5 = \{0,1,2,3,4\}$ $+_5 = addition modulo 5$

Integers Z closed under + a+b = b+a(a+b)+c = a+(b+c)a+0 = 0+a=aa+(-a) = 0

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

 $(a+_{n}b)+_{n}c = a+_{n}(b+_{n}c)$ $a+_{n}0 = 0+_{n}a=a$ $a+_{n}(n-a) = 0$ The power of algebra: Abstract away the inessential features of a problem

Let's define an abstract group.

Let G be a set.

Let \diamond be a "**binary operation**" on G; think of it as defining a "multiplication table".

E.g., if G = { a, b, c } then...

 \diamond is a binary operation.

This means that $c \diamond a = b$.



Definition of an (abstract) group

- We say **G** is a "group under operation •" if:
- 0. [Closure] G is closed under •

i.e., $\mathbf{a} \bullet \mathbf{b} \in \mathbf{G}$ $\forall a, b \in \mathbf{G}$

[Associativity] Operation • is associative:
 i.e., a • (b • c) = (a • b) • c ∀ a,b,c∈G

2. [Identity] There exists an element e∈G (called the "identity element") such that
a • e = a, e • a = a ∀ a∈G

3. [Inverse] For each a∈G there is an element a⁻¹∈G (called the "inverse of a") such that
a • a⁻¹ = e, a⁻¹ • a = e

Examples of (abstract) groups

Any group of transformations is a group.

(Only need to check that composition of functions is associative.)

E.g., the 'mattress group' (AKA Klein 4-group)

•	ld	R	F	н
ld	ld	R	F	н
R	R	ld	н	F
F	F	н	ld	R
н	н	F	R	ld

identity element is Id $R^{-1} = R$ $F^{-1} = F$ $H^{-1} = H$

Examples of (abstract) groups

Any group of transformations is a group.

 ${\rm Z}$ (the integers) is a group under operation +

Check:

0. + really is a binary operation on \mathbb{Z}

1. + is associative: a+(b+c) = (a+b)+c

2. "e" is 0: a+0 = a, 0+a = a

3. " a^{-1} " is -a: $a^{+}(-a) = 0$, $(-a)^{+}a = 0$

Examples of (abstract) groups

Any group of transformations is a group.

 \mathbb{Z} (the integers) is a group under operation +

 \mathbb{R} (the reals) is a group under operation +

 \mathbb{R}^+ (the positive reals) is a group under \times

Q \ {0} (non-zero rationals) is a group under ×

 Z_n (the integers mod n) is a group under + modulo n

NONEXAMPLES of groups

(Natural numbers, +) No inverses !

Z, operation -

- is not associative! & No identity!

$\mathbb{Z} \setminus \{0\}$, operation \times

1 is the only possible identity element; but then most elements don't have inverses!

Permutation property

In a group table, every row and every column is a permutation of the group elements

> Follows from "cancellation property" (which we will prove shortly)

Dihedral group of size 10

0	Id	r,	r ₂	r ₃	r ₄	f	f ₂	f ₃	f ₄	f ₅
Id	Id	r1	r ₂	r ₃		f_1			f ₄	
r,	r	r ₂	r ₃	r ₄	Id	f ₄	f_5	f_1	f_{2}	f_3
r ₂	r ₂	r ₃	r ₄	Id	r1	f_2	f_3	f ₄	f_5	f_1
r ₃	r ₃	r ₄	Id	r1	r ₂	f_5	f_1	f_2	f_3	f_4
r ₄	r ₄	Id	r1	r ₂	r ₃	f ₃	f_4	f_5	f_1	f_2
f <u>ı</u>	f_1	f_3	f_5	f_2	f_4	Id	r ₃	r1	r ₄	r ₂
f ₂	f_2	f_4	f_1	f_3	f_5	r ₂	Id	r ₃	r1	r ₄
f ₃	f_3	f_5	f_2	f_4	f_1	r ₄	r ₂	Id	r ₃	r1
f ₄	f_4	f_1	f_3	f_5	f_2	r1	r ₄	r ₂	Id	r ₃
f ₅	f_5	f_2	f_4	f_1	f_3	r ₃	r1	r ₄	r ₂	Id

Let's connect back to Modular arithmetic

Modular arithmetic

<u>Defn</u>: For integers a,b, and positive integer n, $a \equiv b \pmod{n}$ (read: "a congruent to b modulo n") means (a-b) is divisible by n, or equivalently $a \mod n = b \mod n$ (x mod n is remainder of x when divided by n, and belongs to {0,1,...,n-1})

Suppose $x \equiv y \pmod{n}$ and $a \equiv b \pmod{n}$. Then 1) $x + a \equiv y + b \pmod{n}$ 2) $x^* a \equiv y^* b \pmod{n}$ 3) $x - a \equiv y - b \pmod{n}$

So instead of doing +,*,- and taking remainders, we can first take remainders and then do arithmetic.

Modular arithmetic

 $(Z_n, +)$ is group (understood that + is $+_n$)

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

What about (Z₅, *) ? (* = multiplication modulo n)

NOT a group. 1 = candidate for identity, but 0 has no inverse.

Okay, what about $(Z_5^*, *)$ where $Z_5^* = Z_5 \setminus \{0\} = \{1, 2, 3, 4\}$

Turns out, it *is* a group.

Multiplication table mod 6 for $Z_6 \setminus \{0\} = \{1,2,3,4,5\}$

2,3,4 have no inverse

*	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

NOT a group !

Multiplicative inverse in $Z_n \setminus \{0\}$

Theorem: For $a \in \{1, 2, ..., n-1\}$, there exists $x \in \{1, 2, ..., n-1\}$ such that $ax \equiv 1 \pmod{n}$ if and only if

gcd(a,n) = 1

Proof (if) : Suppose gcd(a,n)=1 There exist integers r,s such that r a + s n =1 (Extended Euclid)

So ar = 1 (mod n). Take x = r mod n, ax = 1 (mod n) as well. Multiplicative inverse in $Z_n \setminus \{0\}$

Theorem: For $a \in \{1, 2, ..., n-1\}$, there exists $x \in \{1, 2, ..., n-1\}$ such that $ax \equiv 1 \pmod{n}$ if and only if

gcd(a,n) = 1

Proof (only if) : Suppose $\exists x, ax \equiv 1 \pmod{n}$ So ax-1 = nk for some integer k.

If gcd(a,n)=c, then c divides ax-nk

Since ax-nk=1, this means c=1.

Recall:

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$

 $Z_6^* = \{1, 5\}$

 $Z_n^* = \{x \in Z_n \mid gcd(x,n) = 1\}$

Elements in Z_n^{*} have multiplicative inverses

Exercise: Check (Z^{*}, *) is a group (* is multiplication modulo n)

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

$Z_{12}^* = \{0 \le x \le 12 \mid gcd(x, 12) = 1\}$ = $\{1, 5, 7, 11\}$

* 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

*	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

Fact: For prime p, the set $Z_p^* = Z_p \setminus \{0\}$

Proof: It just follows from the definition!

For prime p, all 0 < x < p satisfy gcd(x,p) = 1

Euler Phi Function $\phi(n)$

$\phi(n) = \text{size of } Z_n^*$

= number of integers $1 \le k < n$ that are relatively prime to n.

> p prime $\Leftrightarrow Z_p^* = \{1, 2, 3, \dots, p-1\}$ $\Leftrightarrow \phi(p) = p-1$

Back to abstract groups

Abstract algebra on groups

Theorem 1:

If (G, \bullet) is a group, identity element is unique.

Proof:

Suppose f and g are both identity elements. Since g is identity, $f \bullet g = f$. Since f is identity, $f \bullet g = g$. Therefore f = g.

Abstract algebra on groups

Theorem 2:

In any group (G, \bullet) , inverses are unique.

Proof:

Given $a \in G$, suppose b, c are both inverses of a. Let e be *the* identity element. By assumption, $a \cdot b = e$ and $c \cdot a = e$. Now: $c = c \cdot e = c \cdot (a \cdot b)$ $= (c \cdot a) \cdot b = e \cdot b = b$ Theorem 3 (Cancellation): If $a \\black b = a \\clack c,$ then b = c

Proof: Multiply on left by a⁻¹

Similarly, $b \bullet a = c \bullet a$ implies b = c

So each row and each column of a group table are permutations of the group elements.

Theorem 3 (Cancellation): If $a \\black b = a \\clack c,$ then b = c

Theorem 4: For all a in group G we have $(a^{-1})^{-1} = a$. Theorem 5: For a,b∈G we have $(a \bullet b)^{-1} = b^{-1} \bullet a^{-1}$.

Theorem 6: In group (G,•), it doesn't matter how you put parentheses in an expression like $a_1 \circ a_2 \circ a_3 \circ \cdots \circ a_k$ ("generalized associativity").

Notation

In abstract groups, it's tiring to always write •. So we often write ab rather than a • b.

Sometimes write 1 instead of e for the identity (When operation is "addition", write 0 in place of e)

For $n \in \mathbb{N}^+$, write a^n instead of $aaa \cdots a$ (n times). Also a^{-n} instead of $a^{-1}a^{-1}\cdots a^{-1}$, and a^0 means 1. (again denote $a + a + \ldots + a$ by na for additive groups)

Algebra practice

Problem: In the mattress group {1, R, F, H}, simplify the element R² (H³ R⁻¹)⁻¹

One (slightly roundabout) solution:

 $H^{3} = H H^{2} = H 1 = H$, so we reach $R^{2} (H R^{-1})^{-1}$. ($H R^{-1}$)⁻¹ = (R^{-1})⁻¹ $H^{-1} = R H$, so we get $R^{2} R H$. But $R^{2} = 1$, so we get 1 R H = R H = F.

Moral: the usual rules of multiplication, except...

Commutativity?

In a group we do NOT NECESSARILY have $a \bullet b = b \bullet a$

Actually, in the mattress group we do have this for all elements; e.g., RF = FR (=H).

Definition: "a,b∈G commute" means ab = ba. "G is commutative" means all pairs commute.

In group theory, "commutative groups" are usually called abelian groups.

Niels Henrik Abel (1802–1829) Norwegian Died at 26 of tuberculosis Age 22: proved there is no quintic formula.

Evariste Galois (1811–1832) French Died at 20 in a dual 🛞 Laid the foundations of group theory and Galois theory Some abelian groups:

"Mattress group"

Symmetries of a directed cycle

("Klein 4-group")

("cyclic group")

 $(\mathbb{R}, +), \quad (Z_n^*, \mathbf{x})$

Some nonabelian groups:

Symmetries of an **undirected** cycle ("dihedral group") Permutation group S_n ("symmetric group on n elements") *Invertible* n x n real matrices (under matrix product) More fun groups: Matrix groups

 $SL_2(\mathbb{Z})$: Set of matrices

where $a,b,c,d \in \mathbb{Z}$ and ad-bc=1.

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

 $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Operation: matrix mult. Inverses:

Application: constructing expander graphs, 'magical' graphs crucial for derandomization.

Isomorphism

Here's a group: $V = \{ (0,0), (0,1), (1,0), (1,1) \}$ + modulo 2 is the operation

There's something familiar about this group...

\		7	/	
	١.	/		
	V	7		

+	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

same

after
renaming:
00⇔Id
01↔R
10↔F
11↔H

The mattress group

•	ld	R	F	н
ld	ld	R	F	н
R	R	ld	н	F
F	F	н	ld	R
н	н	F	R	ld

Isomorphism

Groups (G,●) and (H,◊) are "isomorphic" if there is a way to rename elements so that they have the same multiplication table.

Formally, bijection $\sigma : G \to H$ such that $\sigma(a \bullet b) = \sigma(a) \diamond \sigma(b) \quad \forall a, b \in G$

Fundamentally, they're the "same" abstract group.

Isomorphism and orders

Obviously, if G and H are isomorphic we must have |G| = |H|.

G is called the order / size of G.

E.g.: Let C₄ be the group of transformations preserving the directed 4-cycle.

 $|C_4| = 4$

Q: Is C_4 isomorphic to the mattress group V?

Isomorphism and orders

Q: Is C_4 isomorphic to the mattress group V?

A: No!



$a^2 = 1$ for every element $a \in V$.

But in C₄, $Rot_{90}^2 = Rot_{270}^2 \neq Rot_{180}^2 = Id^2$

Motivates studying powers of elements.

Order of a group element

Let G be a *finite* group. Let $a \in G$.

Look at 1, a, a^2 , a^3 , ... till you get some repeat. Say $a^k = a^j$ for some k > j.

Multiply this equation by a^{-j} to get $a^{k-j} = 1$.

So the first repeat is always 1.

Definition: The order of x, denoted ord(a), is the smallest $m \ge 1$ such that $a^m = 1$. Note that a, a^2 , a^3 , ..., a^{m-1} , $a^m=1$ all distinct.

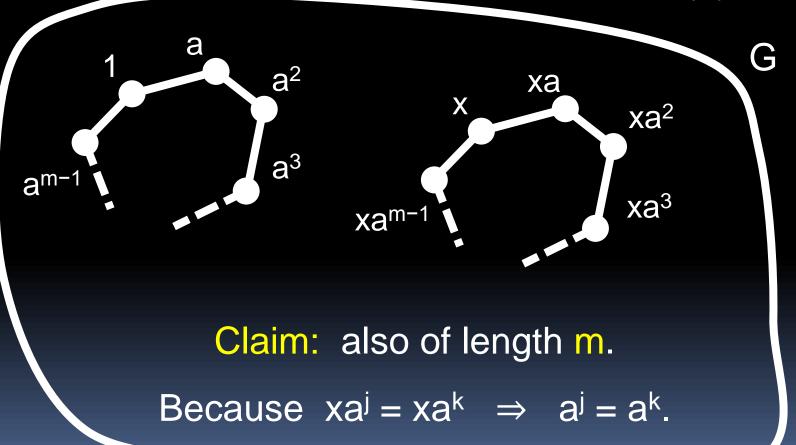
In mattress group (order 4), ord(Id) = 1, ord(R) = ord(F) = ord(H) = 2.

In directed-4-cycle group (order 4), ord(Id) = 1, ord(Rot₁₈₀) = 2, ord(Rot₉₀) = ord(Rot₂₇₀) = 4.

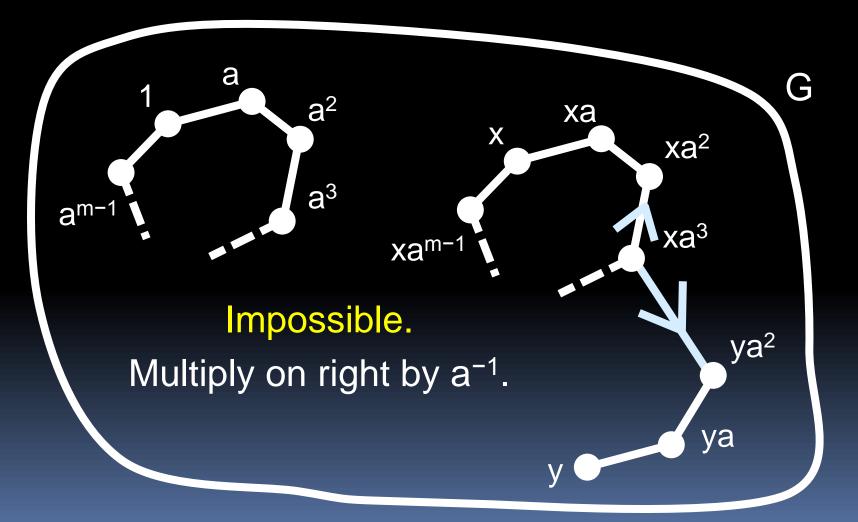
In dihedral group of order 10 (symmetries of undirected 5-cycle) ord(Id) = 1, ord(any rotation) = 5, ord(any reflection) = 2.

Order Theorem: For a finite group G & a ∈ G ord(a) always divides |G|.

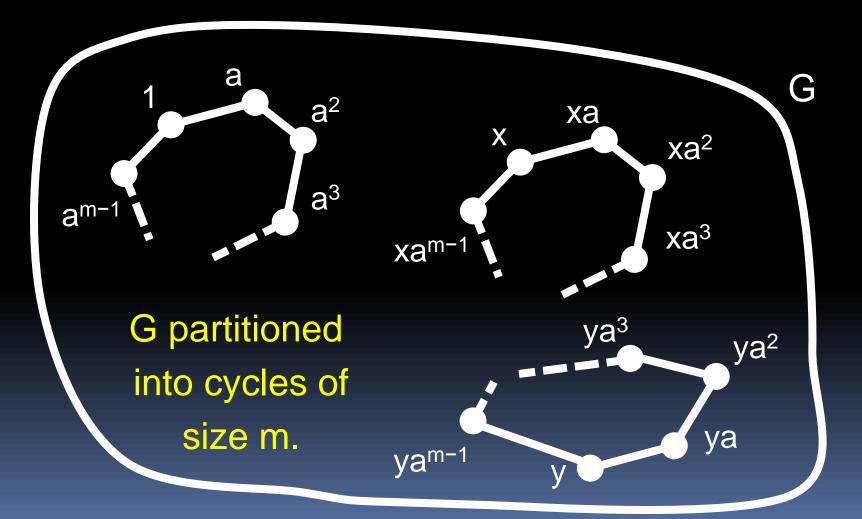
Let ord(a) = m.



Order Theorem: ord(a) always divides |G|.



Order Theorem: $\forall a \in G$, ord(a) divides |G|.



Order Theorem: ord(a) always divides [G].

Corollary: If |G| = n, then $a^n = 1$ for all $a \in G$.

Proof: Let ord(a) = m. Write n = mk. Then $a^n = (a^m)^k = 1^k = 1$.

Corollary: Euler's Theorem: For $a \in Z_n^*$, $a^{\phi(n)} = 1$ That is, if gcd(a,n)=1, then $a^{\phi(n)} \equiv 1 \pmod{n}$

Corollary (Fermat's little theorem): For prime p, if gcd(a,p)=1, then $a^{p-1} \equiv 1 \pmod{p}$

Cyclic groups

A finite group G of order n is cyclic if $G = \{e, b, b^2, ..., b^{n-1}\}$ for some group element b

In such a case, we say the element b "generates" G, or b is a "generator" of G.

Examples:

- $(Z_n, +)$ What is a generator?
- C₄ (Symmetries of directed 4-cycle)

Non-examples: Mattress group; any non-abelian group. How many generators does (Z_n, +) have?

Answer: $\phi(n)$

b generates $Z_n \Leftrightarrow \exists a \text{ s.t. } ba \equiv 1 \pmod{n}$ (ba = b+b+...+b (a times))

Same holds for *any* cyclic group with n elements

Subgroups

Q: Is (Even integers, +) a group?

A: Yes. It is a "subgroup" of $(\mathbb{Z},+)$

<u>Definition</u>: Suppose (G ,•) is a group. If $H \subseteq G$, and if (H,•) is also a group, then H is called a subgroup of G.

To check H is a subgroup of G, check:

- 1. H is closed under •
- 2. e ∈ H
- 3. If $h \in H$ then $h^{-1} \in H$
 - (3rd condition follows from 1,2 if H is finite)

Examples

Every G has two trivial subgroups: {e}, G Rest are called "proper" subgroups

Suppose k, 1 < k < n, divides n. Q1. Is ({0, k, 2k, 3k, ..., (n/k-1)k}, +_n) subgroup of (Z_n,+_n) ? Yes!

Q2. Is $(Z_k, +_k)$ a subgroup of $(Z_n, +_n)$? No! it doesn't even have the same operation

Q3. Is $(Z_k, +_n)$ a subgroup of $(Z_n, +_n)$? No! Z_k is not closed under $+_n$

Lagrange's Theorem

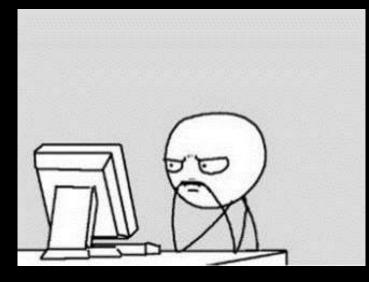
Theorem: If G is a finite group, and H is a subgroup then [H] divides [G].

Proof similar to order theorem.

Corollary (order theorem): If $x \in G$, then ord(x) divides |G|. Proof of Corollary:

Consider the set $T_x = (x, x^2, x^3, ...)$

(i) $\operatorname{ord}(x) = |T_x|$ (ii) (T_x, \bullet) is a subgroup of (G, \bullet) (check!)



Definitions:

Groups; Commutative/abelian Isomorphism ; order of elements; subgroups

Specific Groups:

Klein 4-, cyclic, dihedral, symmetric, number-theoretic.

Doing:

Study Guide

Checking for "groupness" Computations in groups

Theorem/proof: Order Theorem; Lagrange Thm Modular arithmetic Euler theorem More fun groups: Quaternion group

 $Q_8 = \{ 1, -1, i, -i, j, -j, k, -k \}$

Multiplication 1 is the identity defined by: $(-1)^2 = 1$, (-1)a = a(-1) = -a $i^2 = j^2 = k^2 = -1$ ij = k, ji = -kjk = i, kj = -iki = j, ik = -j

Exercise: valid defn. of a (nonabelian) group.

Application to computer graphics

"Quaternions": expressions like 3.2 + 1.4i - .5j + 1.1kwhich generalize complex numbers (\mathbb{C}).

Let (x,y,z) be a unit vector, θ an angle, let $q = \cos(\theta/2) + \sin(\theta/2)x i + \sin(\theta/2)y j + \sin(\theta/2)z k$

Represent p=(a,b,c) in 3D space by quaternion P= a i + b j + c k Then qPq^{-1} is its rotation by angle θ around axis (x,y,z).