
15-251: Great Theoretical Ideas in Computer Science

Cryptography

Fall 2016 Lecture 23

November 15, 2016

Cryptography: A land of

counterintuitive possibilities

• Alice and Bob can agree on a secret key over a

public channel

• Alice can convince Bob she knows something –

say proof of twin prime conjecture – with Bob

learning nothing about the proof

• Anyone can publicly send an encrypted

message to Bob that only he can decrypt,

without any pre-agreed upon secret

Cryptography: A land of

counterintuitive possibilities

• One can delegate computation of any function
on encrypted data without revealing anything
about the inputs

• Millionaires' Problem: Alice and Bob can find out
who has more money without revealing anything
else about their worth

• One can learn a piece of data from a database
without the database learning anything about
your desired query

• ….

Private/Symmetric Key Encryption

One Time Pads

Add (XOR) a secret key, shared between

sender & receiver, to the message.

One Time Pads

Gives perfect security!

For random shared key,

leaks no information

about message

𝐸𝑛𝑐𝑘 𝑚 = 𝑚⊕ 𝑘

𝑘 = shared secret key

𝐷𝑒𝑐𝑘 𝑐 = 𝑐 ⊕ 𝑘

But reuse is bad

XOR =

𝐷𝑒𝑐𝑘 𝑐1 ⊕ 𝑐2
= 𝑚1 ⊕𝑚2

Encryption of one known message

allows one to recover key k

One time pad needs a shared secret key

as large as the total number of bits to be

communicated!

This is necessary for perfect secrecy! 

But if we relax security from “information-theoretic”

(against arbitrary eavesdroppers) to

“computational” (against, say, polynomial time

eavesdroppers), then we can do much better

(under suitable intractability assumptions)!

“complexity-theoretic cryptography”

A Great Idea: Pseudorandomness

Computational lens on randomness:

Something is “pseudorandom” if a polytime adversary

can’t distinguish it from a pure random string

Pioneered by Blum-Micali’84; Yao’82

20001995 2012

[Year of A. M. Turing Award]

Pseudorandomness: A Peek

Basic primitive: A pseudorandom generator (PRG)

Deterministic map 𝐺 ∶ 0,1 𝑛 → 0,1 𝑛+1

“Creates” one extra bit of randomness

For random 𝑟 ∈ 0,1 𝑛, 𝐺(𝑟) looks random
(even though it clearly is not: it’s supported on half of 0,1 𝑛+1)

Such a map can be iterated (in a suitable manner)

to increase the stretch

Alice and Bob can share a secret key 𝑟 ∈ 0,1 𝑛,

stretch it to 𝑛2 bits, and encrypt 𝑛 messages mi ∈ 0,1 𝑛,

using the 𝑖’th block of 𝐺 𝑟 as “one-time pad” for 𝑚𝑖

A hard to compute bit is pseudorandom

If 𝐺(𝑟) is random looking, must be hard to

predict last bit from from first 𝑛 bits.

How about 𝐺 𝑟 ≔ 𝑟 ∘ ℎ(𝑟),
where ℎ: 0,1 𝑛 → {0,1} is a hard function
(for random input 𝑟, hard to predict ℎ(𝑟) better than 50-50)

Example: ℎ ∶ 𝑍𝑝
∗ → 0,1 defined as ℎ 𝑦 = 1 iff

log𝑔 𝑦 >
𝑝−1

2
where 𝑔 is a generator of 𝑍𝑝

∗ & log𝑔(⋅) is the

discrete logarithm to base 𝑔 (inverse of the map 𝑥 ↦ 𝑔𝑥)

We believe this function is hard for

large p and most generators of 𝑍𝑝
∗

Computing the PRG

𝐺 𝑟 ≔ 𝑟 ∘ ℎ(𝑟) (for random input 𝑟, hard to

predict ℎ(𝑟) better than 50-50)

Output of G is pseudorandom, but…

G itself is hard to compute!

Another great idea:

Use “one-way easiness” of some functions
(eg. multiplication is easy, but factoring seems hard)

𝐺 𝑥 = 𝑔𝑥 ∘ ℎ𝑎𝑙𝑓(𝑥)
Easy to compute +

output looks random

(no clue about half(x)

based on 𝑔𝑥)
ℎ𝑎𝑙𝑓 𝑥 = 1 iff 𝑥 >

𝑝−1

2

Agreeing on a secret

 Private key cryptography relief on parties
having a shared secret (even in PRG based
scheme)

 Need a separate secret for each pair of
communicating parties.

 Does this require private communication to
agree on the secret?

 Can Alice and Bob agree on a secret via a
completely public conversation?

NO WAY, right?

Diffie-Hellman Key Exchange

 Alice: Picks prime p, and a generator g in Zp*

 Picks random number a  {1,2,…,p-1}

 Sends over p, g, ga (mod p) to Bob

 Bob: Picks random b  {1,2,…,p-1} and sends
over gb (mod p) to Alice

 Now both can compute the shared “secret”
gab (mod p)

It’s good there are hard problems!

Alice: Picks prime p, and a generator g in Zp*

Picks random a in {1,2,…,p-1}

Sends over p, g, ga (mod p)

Bob: Picks random b in {1,2,…,p-1}, and

sends over gb (mod p)

Secret: gab (mod p)

Given ga , a is uniquely

determined.

So why is this secure?

Crypto needs hard problems to keep bad guys at bay (security)

But good guys should be able to achieve desired functionality

This delicate balance is the challenge and beauty of crypto

Discrete Log intractability assumption:

Given input a large prime p, g in Zp
*, and y=ga,

it is hard to compute a (= logg y)

Hard algebraic problems

Algebra (groups, number theory)

is a great source of problems meeting

these conflicting demands.

Hardness to keep bad guys at bay (security/privacy)

Easiness for good guys to operate (functionality)

What about eavesdropping Eve?

If Eve’s just listening in,

she sees p, g, ga, gb

To say Eve learns nothing about the shared secret

(eg. its first bit), need gab (mod p) to be pseudorandom

(look like a random element of Zp
*)

(This is the Decisional Diffie-Hellman (DDH) assumption;

not quite true in Zp* but there are other candidate cyclic groups)

Alice: Picks prime p, and a generator g in Zp*

Picks random a in {1,2,…,p-1}

Sends over p, g, ga (mod p)

Bob: Picks random b in {1,2,…,p-1}, and

sends over gb (mod p)

Secret: gab (mod p)

Diffie-Hellman assumption:

computing gab (mod p) from

p, g, ga, gb is hard

Why these assumptions?

 Discrete-Log: Given p, g, ga (mod p), compute a

 Finding discrete logarithms seems hard,

but proving the hardness seems even harder!

 Proving intractability of Discrete-Log is harder

than the P vs. NP problem

 Complexity-theoretic cryptography relies on assumptions on

the presumed intractability of some (classes) of problems.

• Information-theoretic crypto: no hardness assumptions (eg. one

time pad)

Diffie-Hellman key exchange requires both parties

to exchange information to share a secret

Can we get rid of this assumption?

Can someone who I have never spoken to

send me a message over a public channel

in a manner that is only intelligible to me

One step further

Public Key Encryption

2015

A.M. Turing Award

Public Key Encryption

[Diffie-Hellman]

Goal: Enable Alice to send encrypted message

to Bob without their sharing any secret

Anyone should be able to send Bob a

message in encrypted form.

Only Bob should be able to decrypt.

Anyone can send Bob a message in encrypted form.

Only Bob should be able to decrypt.

Bob has to be “special” somehow…

Bob holds a special “secret key” that only he

knows and that enables him to decrypt

• (Hopefully) decryption intractable without

knowledge of this secret.

• Physical analogy: key to a locked box

HOW ???

Bob holds a “secret key” (known only to him) that

enables him to decrypt

• Physical analogy: key to a locked box

Encryption (Physical analogy):

• Place message in a locked box with a “lock”

that only Bob’s key can open.

How to get hold of such lock(s)?

Bob “gives them” to everyone!!

Bob has a “public key”, known to everybody,

which can be used for encryption.

Public Key Encryption

Bob generates a (PK,SK) pair.

• Publishes PK.

• Holds on to SK as a secret

Encryption of message m: Enc(m, PK)

Pair of functions (Enc,Dec) for encryption & decryption

• Anyone can encrypt (as PK is public)

Decryption of ciphertext c: Dec(c, SK)

• Bob knows SK so can decrypt.

Of course, must have Dec(Enc(m,PK),SK) = m

Take 1

Alice, who has never spoken to Bob, wants

to send him message m in encrypted form Enc(m)

Recovering m from Enc(m) should be a hard problem

How about Enc(m) = gm mod p

(where g,p are public knowledge)

Discrete log hardness privacy from eavesdropper

But how will Bob figure out m ??

• He has to solve the same discrete log problem!

• Seems tricky to give him an edge

Key exchange to Public Key Encryption?
Bob: Picks prime p, and a generator g in Zp*

Picks random b in {1,2,…,p-1}

Sends over p, g, gb (mod p)

Alice: Picks random a in {1,2,…,p-1}, and

sends over ga (mod p)

Secret: gab (mod p)

Recall the Diffie-Hellman

key-exchange protocol
(I’ve swapped

Alice & Bob’s roles)

Idea: Instead of sending p, g, gb (mod p) just to Alice,

Bob publishes this as his public key PK!

• Keeps b as his secret key SK

To encrypt m, Alice uses

gab as a (multiplicative)

one-time pad

Enc(m,PK)=m gab

Bob needs ga to learn the mask gab

Have Alice include it in the encryption!

Enc(m,PK)= (ga , m gab)

The ElGamal Public Key

Encryption Scheme [1985]

• Public key: prime p, generator g of Zp
* & h = gb mod p

• Private key: b ( {1,2,…,p-1})

 Encryption: To encrypt m  Zp
* :

• Pick a  {1,2,…,p-1} at random

• Output (ga mod p , m ha mod p)

Decryption: To decrypt (c1,c2) with private key b:

• Compute s = c1
b mod p

(this is the “shared secret” for this message)

• Output m = c2 s-1 mod p

Comments on ElGamal Scheme

Astonishing that it took 8+ years from the Diffie-Hellman

key exchange protocol to the encryption scheme

• In fact, this was not the first proposal for a PKE

• That honor belongs to the RSA scheme (1976)

Security of encryption scheme based on same

assumption as key exchange:

given 𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏 it is hard to compute 𝑔𝑎𝑏 in 𝑍𝑝
∗

The encryption scheme is randomized
• This is not a bug, it is a necessary feature

• Without randomness, there is no secure cryptography

The RSA Cryptosystem

Modular Arithmetic

Interlude

(oh no, not again!)

Fundamental lemmas mod n:

Suppose x  y (mod n) and a  b (mod n). Then

1) x + a  y + b (mod n)

2) x * a  y * b (mod n)

3) x - a  y – b (mod n)

So instead of doing +,*,- and taking remainders, we can

first take remainders and then do arithmetic.

Modular arithmetic
Defn: For integers a,b, and positive integer n,

a  b (mod n) means

(a-b) is divisible by n, or equivalently

a mod n = b mod n (x mod n is remainder of x when

divided by n, and belongs to {0,1,…,n-1})

Fundamental lemma of powers?

If x  y (mod n)

Then ax  ay (mod n) ?

NO!

2  5 (mod 3) ,

but it is not the case that:

22  25 (mod 3)

(Correct) rule for powers

Equivalently, for a  Zn
*, ax  ax mod (n) (mod n)

If a  Zn
* and x  y (mod (n))

then ax  ay (mod n)

Euler’s theorem: for a  Zn
*, a(n)  1 (mod n)

If x = q (n)+r,

Then ax = aq (n) ar  ar (mod n)

Example…

5121242653 (mod 11)

121242653 (mod 10) = 3

53 (mod 11) = 125 mod 11 = 4

Why did we

take mod 10?

343281327847324 mod 39

Step 1: reduce the base mod 39

Step 2: reduce the exponent mod Φ(39) = 24

Step 3: use repeated squaring to compute 34,

taking mods at each step

NB: you should check that gcd(343281,39)=1 to use lemma of powers

RSA prepwork: computing in Zn
*

Computing in Zn
*

• Multiplication: easy, just multiply mod n

• Exponentiation: To compute am, do

“repeated squaring”

 log2 m multiplies mod n

• Inverses: To compute a-1

• use extended Euclid algorithm to compute

r,s such that r a + s n = 1.

• Then a-1 = r mod n.

We can compute

am (mod n)

while performing at most

2 log2 m multiplies

where each time we multiply

together numbers

with log2 n + 1 bits

Modular exponentiation

Z15
* = {1 ≤ x  15 | gcd(x,15) = 1}

= {1,2,4,7,8,11,13,14}

* 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

𝜙 15 = 8

Theorem: If p,q are distinct primes then

Φ(pq) =

Proof: We need to count how many numbers in

{1,2,3,…,pq-1} are relatively prime to pq.

Let us count those that are not, and subtract from (pq-1).

These are

(i) the multiples of p: p, 2p, 3p, …, (q-1)p

(ii) the multiples of q: q, 2q, 3q, …, (p-1)q

Total = q-1 + p-1=p+q-2

So Φ(pq) = pq-1 – (p+q-2) = pq-p-q+1 = (p-1) (q-1)

RSA prepwork

(p-1)(q-1) Poll

RSA Cryptosystem
[Rivest, Shamir, Adleman]

2002

A.M. Turing Award

Pick secret, random large primes:

p,q

Multiply n = p*q

“Publish”: n

(n) = (p) (q) = (p-1)*(q-1)

Pick random e  Z*
(n)

“Publish”: e

Compute d = inverse of e in Z*
(n)

Hence, ed  1 (mod (n))

“Private/secret Key”: d

The RSA Cryptosystem

n,e is my

public key.

Use it to

send me a

message.

p,q random primes

e random  Z*
(n)

n = pq

ed 1 (mod (n))

PK: (n, e)

p,q prime, e random  Z*
(n)

n = pq

ed ≡ 1 (mod (n))

message
m  Zn

*

Enc(m,PK)=
me mod n

(me)d mod n = m

SK: d

RSA: Simple example

𝑛 = 3 × 11 = 33

𝑒 = 3

𝜙 𝑛 = 20

Public key: (33,3) Private key 𝑑 = 7

𝑑 = 3−1 𝑚𝑜𝑑 20 =

What is the RSA ciphertext

𝑐 encrypting 𝑚 = 13?
What is the decryption of

𝑐 = 19?

How hard is breaking RSA?

 If we can factor products of two large primes,

can we crack RSA?

 If we can compute Φ(n) from n, can we crack RSA?

 How about the other way? Does cracking RSA mean

we must be able do one of these two?

 We don’t know this…

What does (breach of) security mean?

Certainly complete recovery of m by bad guys

But also learning partial information about m

• eg. value of m (say salary info) up to +/- $1000

How to define security to capture the requirement

that no information about m is leaked?

Information-theoretic perfect secrecy

For the one time pad solution, the eavesdroppers

have no clue about m, regardless of computing power

• The distribution of ciphertexts doesn’t depend on m

• Say adversary knows either m0 or m1

was sent, and sees the ciphertext.

• Still can’t tell which of m0 or m1 was sent

better than 50-50 guessing

• Thus seeing the ciphertext has no bearing

on adversary’s ability to learn

For computational security (based on pseudorandom

pads), no polytime adversary can predict if m0 or m1

was sent better than ½ + negl(n)

What about computational security in

Public Key Encryption?

Great Definitions & Solution Concepts:

Semantic Security & Probabilistic Encryption

Goldwasser, Micali:

2012 Turing Award

Both Ph.D. advisees

of now CMU Professor

Manuel Blum.

Shafi Goldwasser

also a CMU undergrad.

Semantic Security

Given ciphertext and message length, adversary cannot

determine any partial information about the message with

success probability non-negligibly larger than when

he only knows the message length (but not the ciphertext)

Equivalent to following:

• Let m0 and m1 be any two messages of equal length

(known to all).

• Adversary is presented Enc(mb, PK) for random b

• The adversary shouldn’t be able to find b with

probability non-negligibly better than 50-50

Probabilistic Encryption

Semantic security: Adversary shouldn’t be able to

tell apart Enc(m0,PK) from Enc(m1,PK)

But anyone (including the adversary) can compute

Enc(m, PK) from m ….

How can Enc(m, PK) hide m in above strong sense?

Have many possible encryptions for each m

Enc(m, PK) should be a randomized encryption of m

Need randomness as in ElGamal scheme

Security of RSA & ElGamal Schemes

Is RSA encryption scheme semantically secure
(knowing that either 𝑚0 or 𝑚1 was encrypted,

is it hard to guess which one was encrypted)?

• No! The encryption is deterministic.

• But there are probabilistic variants which are

secure if 𝑥𝑒 𝑚𝑜𝑑 𝑛 is very hard to invert

Is ElGamal scheme sematically secure?

• Yes, under Decisional Diffie-Hellman assumption

in concerned group

• 𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑎𝑏 is indistinguishable from (𝑔, 𝑔𝑎 , 𝑔𝑏 , ℎ)

where ℎ is an independent uniform group element

Probabilistic Encryption

Enc(m, PK) = random ciphertext from many

possible encryptions

m0

m1

Adversary shouldn’t

be able to tell apart

random red point

from

random blue point

Knowing SK

allows recovery

of m from Enc(m,PK)

Goldwasser-Micali

Public Key Encryption Scheme

• Probabilistic encryption scheme

• Semantically secure under certain “quadratic

residuosity” intractability assumption (which is

related to hardness of factoring)

Key Generation

1. Pick large primes p,q with p,q  3 (mod 4)

2. Compute n = pq

Public Key: n

Secret Key: p,q

Remark: Integers n of above from are called

Blum integers (after CMU professor Manuel Blum)

Fact: For a Blum integer n,

(n-1) is a quadratic non-residue (non-square) modulo n

which means x2  (n-1) (mod n) has no solutions

Encryption by Alice

Scheme encrypts bits (for longer messages,

break into bits and apply encryption to each bit

separately)

Enc(b, PK=n):

1. Pick a random y  Zn
*

2. Output (n-1)b y2  Zn
*

Note: Enc(b,n) is a quadratic residue (square)

modulo n if and only if b=0

Decryption by Bob

Ciphertext c=Enc(b,n) is a quadratic residue mod n

(i.e.,  x s.t x2  c (mod n)) if and only if b=0

How can Bob (who has the secret key) determine

if c is a quadratic residue mod n

Bob’s advantage: He knows the factors p,q of n

Exercise 1: c is a quadratic residue mod n if and

only if c is a quadratic residue modulo both p, q

Exercise 2: c is quadratic residue mod prime p

if and only if c(p-1)/2  1 (mod p)

Eavesdropping by Eve

What does the adversary see?

For encryption of bit 0,

• a random quadratic residue mod n

For encryption of bit 1,

• a random quadratic non-residue* mod n

* actually random quadratic non-residue c

such that n–c is a quadratic residue (mod n)

Enc(b,n) = (n-1)b y2 (mod n) for a random y  Zn
*

Semantically secure?

Given large n = pq with unknown factorization,

it is believed that distinguishing random quadratic

residues from random quadratic non-residues is hard

Remark (nice exercise): Finding square roots of

quadratic residues modulo n=pq enables finding

the prime factors p,q of n

This assumption implies semantic security

of the GM scheme

Operating on Ciphertexts

For RSA, given ciphertexts encrypting m1 and m2,

one can compute ciphertext encrypting the product

m1 m2 (i.e., there is no need to decrypt,

can directly multiply in the encrypted world)

• (m1m2)
e  m1

e m2
e (mod n)

Same holds for Elgamal scheme:

• (ga , m1h
a) * (ga’ , m2h

a’) = (ga+a’ , m1m2 ha+a’)

For Goldwasser-Micali, one can compute

encryption of b  b’ given ciphertexts for b and b’

(n-1)b y2 (n-1)b’ z2  (n-1)b  b’ (yz)2 (mod n)

Partially malleable encryption

These encryption schemes allow us to perform either

addition or multiplication directly on ciphertexts.

Rivest, Adleman, Dertouzos 1978 wondered:

Is there an encryption scheme that would allow one to

both add and multiply within the encrypted world?

They foresaw that such a completely malleable encryption

scheme allowing arbitrary computations on encrypted data

would have amazing applications (eg. today think of

delegating computation to the cloud without revealing your inputs)

However, finding such a plausible scheme, which these

days we call “fully homomorphic encryption” (FHE)

remained open for over 30 years

Craig Gentry in 2009

gave the first candidate

FHE scheme

[Picture from 2014 MacArthur

Fellowship announcement]

Very high level & sketchy idea behind approach:

• Encrypt by noisy encoding of message as per some

error-correcting code

• Decrypt by removing noise (which requires a secret

nice representation of the code)

• Add and multiply operations increase the noise by a

small amount

• When noise gets too large, “refresh” ciphertext

Curious? : see survey “Computing on the edge of chaos”:

https://eprint.iacr.org/2014/610

Non-malleable encryption

Sometimes, we actually don’t want ciphertexts

to be malleable

• Eg. if you are submitting bidding D dollars in encrypted

form, you don’t want someone to encrypt (D+1) dollars

(or 1.1 D dollars) based on your bid

Candidates of such non-malleable encryption schemes

are also known (starting with Dolev, Dwork, Naor 1991)

One of our newly hired faculty members

(Vipul Goyal, arriving Jan 2017)

is an expert on non-malleable cryptography

Summary

Cryptography is a field with a

host of challenges (that seem impossible at first blush),

conceptually deep definitions,

rich underlying theory,

and profound applications.

It hinges on structured hard computational problems

Algebra and number theory are a

fertile source of such problems

One time Pad

Pseudorandomness (informal)

Diffie-Hellman Key Exchange

Public Key Cryptography

ElGamal public key encryption

RSA encryption scheme

Probabilistic encryption

Goldwasser-Micali publick key

encryption scheme

Study Guide

