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Cryptography: A land of 

counterintuitive possibilities

• Alice and Bob can agree on a secret key over a 

public channel

• Alice can convince Bob she knows something –

say proof of twin prime conjecture – with Bob 

learning nothing about the proof

• Anyone can publicly send an encrypted 

message to Bob that only he can decrypt, 

without any pre-agreed upon secret



Cryptography: A land of 

counterintuitive possibilities

• One can delegate computation of any function 
on encrypted data without revealing anything 
about the inputs

• Millionaires' Problem: Alice and Bob can find out 
who has more money without revealing anything 
else about their worth

• One can learn a piece of data from a database 
without the database learning anything about 
your desired query

• ….



Private/Symmetric Key Encryption



One Time Pads

Add (XOR) a secret key, shared between 

sender & receiver,  to the message.



One Time Pads

Gives perfect security! 

For random shared key, 

leaks no information 

about message

𝐸𝑛𝑐𝑘 𝑚 = 𝑚⊕ 𝑘

𝑘 = shared secret key

𝐷𝑒𝑐𝑘 𝑐 = 𝑐 ⊕ 𝑘



But reuse is bad

XOR =

𝐷𝑒𝑐𝑘 𝑐1 ⊕ 𝑐2
= 𝑚1 ⊕𝑚2

Encryption of one known message

allows one to recover key k



One time pad needs a shared secret key

as large as the total number of bits to be 

communicated!

This is necessary for perfect secrecy!  

But if we relax security from “information-theoretic” 

(against arbitrary eavesdroppers) to 

“computational” (against, say, polynomial time 

eavesdroppers), then we can do much better 

(under suitable intractability assumptions)!

“complexity-theoretic cryptography”



A Great Idea: Pseudorandomness

Computational lens on randomness: 

Something is “pseudorandom” if a polytime adversary 

can’t distinguish it from a pure random string

Pioneered by Blum-Micali’84;      Yao’82

20001995 2012

[Year of A. M. Turing Award]



Pseudorandomness: A Peek

Basic primitive: A pseudorandom generator (PRG)

Deterministic map 𝐺 ∶ 0,1 𝑛 → 0,1 𝑛+1

“Creates” one extra bit of randomness

For random 𝑟 ∈ 0,1 𝑛, 𝐺(𝑟) looks random
(even though it clearly is not: it’s supported on half of 0,1 𝑛+1)

Such a map can be iterated (in a suitable manner) 

to increase the stretch 

Alice and Bob can share a secret key 𝑟 ∈ 0,1 𝑛, 

stretch it to 𝑛2 bits, and encrypt 𝑛 messages mi ∈ 0,1 𝑛,

using the 𝑖’th block of 𝐺 𝑟 as “one-time pad” for 𝑚𝑖



A hard to compute bit is pseudorandom

If 𝐺(𝑟) is random looking, must be hard to 

predict last bit from from first 𝑛 bits.

How about 𝐺 𝑟 ≔ 𝑟 ∘ ℎ(𝑟), 
where ℎ: 0,1 𝑛 → {0,1} is a hard function 
(for random input 𝑟, hard to predict ℎ(𝑟) better than 50-50)  

Example: ℎ ∶ 𝑍𝑝
∗ → 0,1 defined as ℎ 𝑦 = 1 iff

log𝑔 𝑦 >
𝑝−1

2
where 𝑔 is a generator of 𝑍𝑝

∗ & log𝑔(⋅) is the 

discrete logarithm to base 𝑔 (inverse of the map 𝑥 ↦ 𝑔𝑥)

We believe this function is hard for 

large p and most generators of 𝑍𝑝
∗



Computing the PRG

𝐺 𝑟 ≔ 𝑟 ∘ ℎ(𝑟) (for random input 𝑟, hard to 

predict ℎ(𝑟) better than 50-50)  

Output of G is pseudorandom, but…

G itself is hard to compute!

Another great idea: 

Use “one-way easiness” of  some functions
(eg. multiplication is easy, but factoring seems hard)

𝐺 𝑥 = 𝑔𝑥 ∘ ℎ𝑎𝑙𝑓(𝑥)
Easy to compute + 

output looks random

(no clue about half(x) 

based on 𝑔𝑥) 
ℎ𝑎𝑙𝑓 𝑥 = 1 iff 𝑥 >

𝑝−1

2



Agreeing on a secret

 Private key cryptography relief on parties 
having a shared secret (even in PRG based 
scheme)

 Need a separate secret  for each pair of 
communicating parties.

 Does this require private communication to 
agree on the secret?

 Can Alice and Bob agree on a secret via a 
completely public conversation? 

NO WAY, right?



Diffie-Hellman Key Exchange

 Alice: Picks prime p, and a generator g in Zp*

 Picks random number a  {1,2,…,p-1}

 Sends over p, g, ga (mod p) to Bob

 Bob: Picks random b  {1,2,…,p-1} and sends 
over gb (mod p) to Alice

 Now both can compute the shared “secret” 
gab (mod p)



It’s good there are hard problems!

Alice: Picks prime p, and a generator g in Zp*

Picks random a in {1,2,…,p-1}

Sends over p, g, ga (mod p)

Bob:  Picks random b in {1,2,…,p-1}, and 

sends over gb (mod p)

Secret: gab (mod p)

Given ga , a is uniquely

determined.

So why is this secure?

Crypto needs hard problems to keep bad guys at bay (security)

But good guys should be able to achieve desired functionality

This delicate balance is the challenge and beauty of crypto

Discrete Log intractability assumption: 

Given input a large prime p, g in Zp
*, and y=ga,

it is hard to compute a ( = logg y) 



Hard algebraic problems

Algebra (groups, number theory) 

is a great source of problems meeting

these conflicting demands.

Hardness to keep bad guys at bay (security/privacy)

Easiness for good guys to operate (functionality)



What about eavesdropping Eve?

If Eve’s just listening in,   

she sees p, g, ga, gb

To say Eve learns nothing about the shared secret 

(eg. its first bit), need gab (mod p) to be pseudorandom 

(look like a random element of Zp
*)

(This is the Decisional Diffie-Hellman (DDH) assumption; 

not quite true in Zp* but there are other candidate cyclic groups)

Alice: Picks prime p, and a generator g in Zp*

Picks random a in {1,2,…,p-1}

Sends over p, g, ga (mod p)

Bob:  Picks random b in {1,2,…,p-1}, and 

sends over gb (mod p)

Secret: gab (mod p)

Diffie-Hellman assumption:

computing gab (mod p) from 

p, g, ga, gb is hard



Why these assumptions? 

 Discrete-Log: Given p, g, ga (mod p), compute a

 Finding discrete logarithms seems hard, 

but proving the hardness seems even harder!

 Proving intractability of Discrete-Log is harder 

than the P vs. NP problem

 Complexity-theoretic cryptography relies on assumptions on

the presumed intractability of some (classes) of problems.

• Information-theoretic crypto: no hardness assumptions (eg. one 

time pad)



Diffie-Hellman key exchange requires both parties 

to exchange information to share a secret

Can we get rid of this assumption?

Can someone who I have never spoken to 

send me a message over a public channel

in a manner that is only intelligible to me 

One step further



Public Key Encryption

2015

A.M. Turing Award



Public Key Encryption

[Diffie-Hellman]

Goal: Enable Alice to send encrypted message

to Bob without their sharing any secret 

Anyone should be able to send Bob a 

message in encrypted form.

Only Bob should be able to decrypt.



Anyone can send Bob a message in encrypted form.

Only Bob should be able to decrypt. 

Bob has to be “special” somehow…

Bob holds a special “secret key” that only he 

knows and that enables him to decrypt

• (Hopefully) decryption intractable without   

knowledge of this secret.

• Physical analogy:  key to a locked box

HOW ???



Bob holds a “secret key” (known only to him) that 

enables him to decrypt

• Physical analogy:  key to a locked box

Encryption (Physical analogy):

• Place message in a locked box with a “lock”   

that only Bob’s key can open.

How to get hold of such lock(s)?

Bob  “gives  them”  to  everyone!!

Bob has a “public key”, known to everybody, 

which can be used for encryption. 



Public Key Encryption

Bob generates a (PK,SK) pair.

• Publishes PK. 

• Holds on to SK as a secret

Encryption of message m: Enc(m, PK)

Pair of functions (Enc,Dec) for encryption & decryption

• Anyone can encrypt (as PK is public)

Decryption of ciphertext c: Dec(c, SK)

• Bob knows SK so can decrypt.

Of course, must have Dec(Enc(m,PK),SK) = m



Take 1

Alice, who has never spoken to Bob, wants

to send him message m in encrypted form Enc(m)

Recovering m from Enc(m) should be a hard problem

How about Enc(m) = gm mod p

(where g,p are public knowledge)

Discrete log hardness privacy from eavesdropper

But how will Bob figure out m ?? 

• He has to solve the same discrete log problem!

• Seems tricky to give him an edge



Key exchange to Public Key Encryption?
Bob: Picks prime p, and a generator g in Zp*

Picks random b in {1,2,…,p-1}

Sends over p, g, gb (mod p)

Alice:  Picks random a in {1,2,…,p-1}, and 

sends over ga (mod p)

Secret: gab (mod p)

Recall the Diffie-Hellman

key-exchange protocol
(I’ve swapped

Alice & Bob’s roles)

Idea: Instead of sending p, g, gb (mod p) just to Alice,

Bob publishes this as his public key PK!

• Keeps b as his secret key SK

To encrypt m, Alice uses 

gab as a (multiplicative) 

one-time pad

Enc(m,PK)=m gab

Bob needs ga to learn the mask gab

Have Alice include it in the encryption!

Enc(m,PK)= (ga , m gab)



The ElGamal Public Key 

Encryption Scheme [1985]

• Public key: prime p, generator g of Zp
* & h = gb mod p 

• Private key: b ( {1,2,…,p-1} )

 Encryption: To encrypt m  Zp
* :

• Pick a  {1,2,…,p-1} at random

• Output  (ga mod p , m ha mod p)

Decryption:  To decrypt (c1,c2) with private key b:

• Compute s = c1
b mod p  

(this is the “shared secret” for this message)

• Output  m = c2 s-1 mod p 



Comments on ElGamal Scheme

Astonishing that it took 8+ years from the Diffie-Hellman

key exchange protocol to the encryption scheme 

• In fact, this was not the first proposal for a PKE

• That honor belongs to the RSA scheme (1976)

Security of encryption scheme based on same 

assumption as key exchange: 

given 𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏 it is hard to compute 𝑔𝑎𝑏 in 𝑍𝑝
∗

The encryption scheme is randomized
• This is not a bug, it is a necessary feature

• Without randomness, there is no secure cryptography



The RSA Cryptosystem

Modular Arithmetic 

Interlude 

(oh no, not again!)



Fundamental lemmas mod n:

Suppose x  y (mod n) and a  b (mod n). Then

1) x + a  y + b (mod n)

2) x * a  y * b (mod n)

3) x - a  y – b (mod n)

So instead of doing +,*,- and taking remainders, we can 

first take remainders and then do arithmetic.

Modular arithmetic
Defn: For integers a,b, and positive integer n,

a  b (mod n)   means 

(a-b) is divisible by n, or equivalently

a mod n = b mod n (x mod n is remainder of x when 

divided by n, and belongs to {0,1,…,n-1} )



Fundamental lemma of powers?

If x  y (mod n)

Then ax  ay  (mod n) ?

NO!

2  5 (mod 3) , 

but it is not the case that: 

22  25   (mod 3)



(Correct) rule for powers

Equivalently, for a  Zn
*,  ax  ax mod (n) (mod n)

If a  Zn
* and x  y  (mod (n)) 

then ax  ay (mod n)

Euler’s theorem: for a  Zn
*, a(n)  1 (mod n)

If x = q (n)+r,

Then ax = aq (n) ar  ar (mod n)



Example…

5121242653 (mod 11)

121242653 (mod 10) = 3

53 (mod 11) = 125 mod 11 = 4

Why did we

take mod 10?



343281327847324 mod 39

Step 1: reduce the base mod 39

Step 2: reduce the exponent mod Φ(39) = 24

Step 3: use repeated squaring to compute 34, 

taking mods at each step

NB: you should check that gcd(343281,39)=1 to use lemma of powers



RSA prepwork: computing in Zn
* 

Computing in Zn
*

• Multiplication: easy, just multiply mod n

• Exponentiation: To compute am, do 

“repeated squaring”

 log2 m multiplies mod n

• Inverses: To compute a-1

• use extended Euclid algorithm to compute

r,s such that r a + s n = 1.

• Then a-1 = r mod n.



We can compute 

am (mod n)

while performing  at most 

2 log2 m multiplies

where each time we multiply

together numbers 

with log2 n + 1 bits

Modular exponentiation



Z15
*  = {1 ≤ x  15 | gcd(x,15) = 1} 

= {1,2,4,7,8,11,13,14}

* 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

𝜙 15 = 8



Theorem: If p,q are distinct primes then

Φ(pq) =

Proof: We need to count how many numbers in

{1,2,3,…,pq-1} are relatively prime to pq.

Let us count those that are not, and subtract from (pq-1).

These are

(i) the multiples of p: p, 2p, 3p, …, (q-1)p

(ii) the multiples of q: q, 2q, 3q, …, (p-1)q

Total = q-1 + p-1=p+q-2

So Φ(pq) = pq-1 – (p+q-2) = pq-p-q+1 = (p-1) (q-1)

RSA prepwork

(p-1)(q-1) Poll



RSA Cryptosystem
[Rivest, Shamir, Adleman]

2002

A.M. Turing Award



Pick secret, random large primes: 

p,q

Multiply n = p*q

“Publish”: n

(n) = (p) (q) = (p-1)*(q-1)

Pick random e  Z*
(n)

“Publish”: e

Compute d = inverse of e in Z*
(n)

Hence, ed  1 (mod (n))

“Private/secret Key”: d

The RSA Cryptosystem



n,e is my 

public key. 

Use it to 

send me a 

message.

p,q random primes

e random  Z*
(n)

n = pq

ed 1 (mod (n) )



PK: (n, e)

p,q prime, e random  Z*
(n)

n = pq

ed ≡ 1 (mod (n))

message 
m  Zn

*

Enc(m,PK)= 
me mod n

(me)d mod n = m

SK: d



RSA: Simple example

𝑛 = 3 × 11 = 33

𝑒 = 3

𝜙 𝑛 = 20

Public key: (33,3) Private key 𝑑 = 7

𝑑 = 3−1 𝑚𝑜𝑑 20 =

What is the RSA ciphertext

𝑐 encrypting 𝑚 = 13?
What is the decryption of 

𝑐 = 19?



How hard is breaking RSA?

 If we can factor products of two large primes, 

can we crack RSA?   

 If we can compute Φ(n) from n, can we crack RSA?

 How about the other way? Does cracking RSA mean 

we must be able do one of these two? 

 We don’t know this…



What does (breach of) security mean?

Certainly complete recovery of m by bad guys

But also learning partial information about  m

• eg. value of m (say salary info) up to +/- $1000

How to define security to capture the requirement

that  no information  about m is leaked?



Information-theoretic perfect secrecy 

For the one time pad solution, the eavesdroppers 

have no clue about m, regardless of computing power

• The distribution of ciphertexts doesn’t depend on m

• Say adversary knows either m0 or m1

was sent, and sees the ciphertext.

• Still can’t tell which of m0 or m1 was sent 

better than 50-50 guessing 

• Thus seeing the ciphertext has no bearing 

on adversary’s ability to learn

For computational security (based on pseudorandom 

pads), no polytime adversary can predict if m0 or m1 

was sent better than ½ + negl(n)



What about computational security in 

Public Key Encryption?



Great Definitions & Solution Concepts:

Semantic Security & Probabilistic Encryption

Goldwasser, Micali:

2012 Turing Award

Both Ph.D. advisees

of now CMU Professor

Manuel Blum.

Shafi Goldwasser

also a CMU undergrad.



Semantic Security

Given ciphertext and message length, adversary cannot 

determine any partial information about the message with 

success probability non-negligibly larger than when 

he only knows the message length (but not the ciphertext)

Equivalent to following:

• Let m0 and m1 be any two messages of equal length

(known to all).

• Adversary is presented Enc(mb, PK) for random b

• The adversary shouldn’t be able to find b with 

probability non-negligibly better than 50-50



Probabilistic Encryption

Semantic security: Adversary shouldn’t be able to 

tell apart Enc(m0,PK) from Enc(m1,PK)

But anyone (including the adversary) can compute 

Enc(m, PK) from m ….

How can Enc(m, PK) hide m in above strong sense?

Have many possible encryptions for each m

Enc(m, PK) should be a randomized encryption of m

Need randomness as in ElGamal scheme



Security of RSA & ElGamal Schemes

Is RSA encryption scheme semantically secure
(knowing that either 𝑚0 or 𝑚1 was encrypted,

is it hard to guess which one was encrypted)? 

• No! The encryption is deterministic.

• But there are probabilistic variants which are

secure if 𝑥𝑒 𝑚𝑜𝑑 𝑛 is very hard to invert

Is ElGamal scheme sematically secure?

• Yes, under Decisional Diffie-Hellman assumption

in concerned group

• 𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑎𝑏 is indistinguishable from (𝑔, 𝑔𝑎 , 𝑔𝑏 , ℎ)

where ℎ is an independent uniform group element 



Probabilistic Encryption

Enc(m, PK) = random ciphertext from many 

possible encryptions

m0

m1

Adversary shouldn’t 

be able to tell apart 

random red point

from 

random blue point

Knowing SK

allows recovery

of m from Enc(m,PK)



Goldwasser-Micali

Public Key Encryption Scheme

• Probabilistic encryption scheme

• Semantically secure under certain “quadratic 

residuosity” intractability assumption (which is 

related to hardness of factoring)



Key Generation

1. Pick large primes p,q with p,q  3 (mod 4)

2. Compute n = pq

Public Key: n

Secret Key: p,q

Remark: Integers n of above from are called

Blum integers (after CMU professor Manuel Blum)

Fact: For a Blum integer n, 

(n-1) is a quadratic non-residue (non-square) modulo n

which means x2  (n-1) (mod n) has no solutions



Encryption by Alice

Scheme encrypts bits (for longer messages, 

break into bits and apply encryption to each bit 

separately)

Enc(b, PK=n):  

1. Pick a random y  Zn
*

2. Output (n-1)b y2  Zn
*

Note: Enc(b,n) is a quadratic residue (square) 

modulo n if and only if  b=0



Decryption by Bob

Ciphertext c=Enc(b,n) is a quadratic residue mod n 

(i.e.,  x s.t x2  c (mod n))   if and only if b=0

How can Bob (who has the secret key) determine 

if c is a quadratic residue mod n

Bob’s advantage: He knows the factors p,q of n

Exercise 1: c is a quadratic residue mod n if and 

only if c is a quadratic residue modulo both p, q

Exercise 2: c is quadratic residue mod prime p 

if and only if c(p-1)/2  1 (mod p)



Eavesdropping by Eve

What does the adversary see?

For encryption of bit 0, 

• a random quadratic residue mod n

For encryption of bit 1, 

• a random quadratic non-residue* mod n

* actually random quadratic non-residue c 

such that n–c is a quadratic residue  (mod n)

Enc(b,n) = (n-1)b y2 (mod n) for a random y  Zn
*



Semantically secure?

Given large n = pq with unknown factorization,

it is believed that distinguishing random quadratic 

residues from random quadratic non-residues is hard

Remark (nice exercise): Finding square roots of 

quadratic residues modulo n=pq enables finding

the prime factors p,q of n 

This assumption implies semantic security 

of the GM scheme



Operating on Ciphertexts

For RSA, given ciphertexts encrypting m1 and m2, 

one can compute ciphertext encrypting the product 

m1 m2 (i.e., there is no need to decrypt, 

can directly multiply in the encrypted world)

• (m1m2)
e  m1

e m2
e (mod n)

Same holds for Elgamal scheme:

• (ga , m1h
a ) * (ga’ , m2h

a’ ) = (ga+a’ , m1m2 ha+a’ ) 

For Goldwasser-Micali, one can compute 

encryption of b  b’ given ciphertexts for b and b’

(n-1)b y2 (n-1)b’ z2  (n-1)b  b’ (yz)2 (mod n)



Partially malleable encryption

These encryption schemes allow us to perform either

addition or multiplication directly on ciphertexts. 

Rivest, Adleman, Dertouzos 1978 wondered:

Is there an encryption scheme that would allow one to 

both add and multiply within the encrypted world?

They foresaw that such a completely malleable encryption 

scheme allowing arbitrary computations on encrypted data

would have amazing applications  (eg. today think of 

delegating computation to the cloud without revealing your inputs)

However, finding such a plausible scheme, which these 

days we call “fully homomorphic encryption” (FHE)

remained open for over 30 years



Craig Gentry in 2009

gave the first candidate

FHE scheme

[Picture from 2014 MacArthur 

Fellowship announcement]

Very high level & sketchy idea behind approach:

• Encrypt by noisy encoding of message as per some 

error-correcting code

• Decrypt by removing noise (which requires a secret     

nice representation of the code)

• Add and multiply operations increase the noise by a

small amount

• When noise gets too large, “refresh” ciphertext

Curious? : see survey “Computing on the edge of chaos”: 

https://eprint.iacr.org/2014/610



Non-malleable encryption

Sometimes, we actually don’t want ciphertexts

to be malleable

• Eg. if you are submitting bidding D dollars in encrypted 

form, you don’t want someone to encrypt (D+1) dollars 

(or 1.1 D dollars) based on your bid

Candidates of such non-malleable encryption schemes 

are also known (starting with Dolev, Dwork, Naor 1991)

One of our newly hired faculty members 

(Vipul Goyal, arriving Jan 2017) 

is an expert on non-malleable cryptography



Summary

Cryptography is a field with a 

host of challenges (that seem impossible at first blush), 

conceptually deep definitions,

rich underlying theory,

and profound applications.

It hinges on structured hard computational problems

Algebra and number theory are a 

fertile source of such problems



One time Pad

Pseudorandomness (informal)

Diffie-Hellman Key Exchange

Public Key Cryptography

ElGamal public key encryption

RSA encryption scheme

Probabilistic encryption 

Goldwasser-Micali publick key 

encryption scheme

Study Guide


