15-251: Great Theoretical Ideas in Computer Science
Fall 2016 Lecture 24 November 17, 2016
Fields and Polynomials

First, a little more Number Theory

Bezout's identity

Let a,b be arbitrary positive integers.
There exist integers r and s such that

$$
r \mathrm{a}+\mathrm{s} \mathrm{~b}=\operatorname{gcd}(\mathrm{a}, \mathrm{~b})
$$

Follows from
Extended
Euclid Algorithm

A non-algorithmic proof:

- Consider the set L of all positive integers that can be expressed as rats b for some integers r,s.
- L is non-empty (eg. $a \in S$)
- So L has a minimum element d
(well-ordering principle \Leftrightarrow principle of induction)
Claim: $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$

Claim: $\operatorname{gcd}(a, b)=d$ (the minimum positive integer expressible as ra+sb)

1. $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ divides both a and b , and hence also divides d. So $d \geq \operatorname{gcd}(a, b)$
2. d divides both a and b, and hence $d \leq \operatorname{gcd}(a, b)$

Let's show d | a.
Write $a=q d+t$, with $0 \leq t<d$.
$\mathrm{t}=\mathrm{a}-\mathrm{q} \mathrm{d}$ is also expressible as a
combination $\mathrm{r}^{\prime} \mathrm{a}+\mathrm{s}^{\prime} \mathrm{b}$.
Contradicts minimality of d .

Extended Euclid \& Unique Factorization
Lemma: If $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$ and $\mathrm{a} \mid \mathrm{bc}$, then $\mathrm{a} \mid \mathrm{c}$.
Proof: Let r, s be such that $r a+s b=1$

$$
\begin{aligned}
& \mathrm{rac}+\mathrm{s} \mathrm{bc}=\mathrm{c} \\
& \mathrm{a} \mid \mathrm{bc} \text { and a }|\mathrm{rac}, \mathrm{so} \mathrm{a}| \mathrm{c} .
\end{aligned}
$$

Corollary: If p is a prime and $p \mid q_{1} q_{2} \ldots q_{k}$, then p must divide some $q_{\text {i }}$.
If the q_{i} 's are also prime, then $\mathrm{p}=\mathrm{q}_{\mathrm{i}}$ for some i .
Uniqueness of prime factorization follows from this!

Poll

Which of these numbers is congruent to $1(\bmod 5), 6(\bmod 7)$, and $8(\bmod 9)$?

- No such number exists
- 91
- 136
- 197
- 251
- 291
- None of the above
- Beats me

Chinese Remaindering

Chinese Remainder Theorem: Suppose positive integers $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise coprime. Then, for all integers $b_{1}, b_{2}, \ldots, b_{k}$, there exists an integer x solving the below system of simultaneous congruences

$$
\begin{aligned}
x \equiv & b_{1}\left(\bmod n_{1}\right) \\
x \equiv & b_{2}\left(\bmod n_{2}\right) \\
& \vdots \\
x \equiv & b_{k}\left(\bmod n_{k}\right) .
\end{aligned}
$$

Further, all solutions x are congruent to each other modulo $N=\prod_{i=1}^{k} n_{i}$.

Uniqueness of solutions modulo N

If x, y are two solutions, then n_{i} divides $x-y$, for $i=1,2, \ldots k$
Since the n_{i} are pairwise coprime, this means the product $N=n_{1} n_{2} \ldots n_{k}$ divides ($x-y$), thus $x \equiv y(\bmod N)$

Extended Euclid and Chinese Remaindering

Chinese Remainder Theorem: Suppose positive integers $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise coprime. Then, for all integers $b_{1}, b_{2}, \ldots, b_{k}$, there exists an integer x solving the below system of simultaneous congruences

$$
\begin{aligned}
x \equiv & b_{1}\left(\bmod n_{1}\right) \\
x \equiv & b_{2}\left(\bmod n_{2}\right) \\
& \vdots \\
x \equiv & b_{k}\left(\bmod n_{k}\right) .
\end{aligned}
$$

Further, all solutions x are congruent to each other modulo $N=\prod_{i=1}^{k} n_{i}$.
Proof for $\mathrm{k}=2$:
Take $\mathrm{x}=\mathrm{b}_{1} \underbrace{\text { Remainder } 1 \bmod n_{2}}_{\begin{array}{c}\text { Divisible by } n_{2}, \\ \mathrm{n}_{2}-1 \\ \left.\bmod \mathrm{n}_{1}\right) \mathrm{n}_{2} \\ \text { Remainder } 1 \bmod n_{1}\end{array} \mathrm{~b}_{2} \underbrace{\left(\mathrm{n}_{1}{ }^{-1} \bmod \mathrm{n}_{2}\right) \mathrm{n}_{1}}_{\text {Divisible by } n_{1}}}$
Can compute x efficiently (by computing modular inverses)

Chinese Remainder Theorem: Suppose positive integers $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise coprime. Then, for all integers $b_{1}, b_{2}, \ldots, b_{k}$, there exists an integer x solving the below system of simultaneous congruences

$$
\begin{aligned}
& x \equiv b_{1}\left(\bmod n_{1}\right) \\
& x \equiv b_{2}\left(\bmod n_{2}\right) \\
& \quad \vdots \\
& x \equiv b_{k}\left(\bmod n_{k}\right) .
\end{aligned}
$$

Further, all solutions x are congruent to each other modulo $N=\prod_{i=1}^{k} n_{i}$.
For arbitrary k: Let $\mathrm{m}_{\mathrm{i}}=\mathrm{N} / \mathrm{n}_{\mathrm{i}}$
Note $\operatorname{gcd}\left(m_{i}, n_{i}\right)=1$
$\mathrm{n}_{\mathrm{i}} \mid \mathrm{m}_{\mathrm{j}}$ for $\mathrm{j} \neq \mathrm{i}$
Take $x=b_{1}\left(m_{1}^{-1} \bmod n_{1}\right) m_{1}+b_{2}\left(m_{2}^{-1} \bmod n_{2}\right) m_{2}+$ $\ldots+b_{k}\left(m_{k}^{-1} \bmod n_{k}\right) m_{k}$

First term contributes the remainder mod n_{1} (rest are divisible by n_{1}), , k 'th term contributes the remainder mod n_{k}

Quick Recap: Groups

Recap: Definition of a group

G is a "group under operation •" if:
0 . [Closure] G is closed under -

$$
\text { i.e., } a \bullet b \in G \quad \forall a, b \in G
$$

1. [Associativity] Operation • is associative:

$$
\text { i.e., } \quad a \bullet(b \bullet c)=(a \bullet b) \bullet c \quad \forall a, b, c \in G
$$

2. [Identity] There exists an element $e \in G$ (called the "identity element") such that

$$
a \bullet e=a, e \bullet a=a \quad \forall a \in G
$$

3. [Inverse] For each $\mathrm{a} \in \mathrm{G}$ there is an element $\mathrm{a}^{-1} \in \mathrm{G}$ (called the "inverse of a") such that

$$
a \cdot a^{-1}=e, a^{-1} \cdot a=e
$$

Symmetries of undirected cycle: dihedral group

$G=$
$\left\{\mathrm{ld}, \mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}, \mathrm{r}_{4}\right.$,

$$
\left.f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}
$$

0	Id	r_{1}	r_{2}	r_{3}	r_{4}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
Id	Id	r_{1}	r_{2}	r_{3}	r_{4}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
r_{1}	r_{1}	r_{2}	r_{3}	r_{4}	Id	f_{4}	f_{5}	f_{1}	f_{2}	f_{3}
r_{2}	r_{2}	r_{3}	r_{4}	Id	r_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{1}
r_{3}	r_{3}	r_{4}	Id	r_{1}	r_{2}	f_{5}	f_{1}	f_{2}	f_{3}	f_{4}
r_{4}	r_{4}	$I d$	r_{1}	r_{2}	r_{3}	f_{3}	f_{4}	f_{5}	f_{1}	f_{2}
f_{1}	f_{1}	f_{3}	f_{5}	f_{2}	f_{4}	$I d$	r_{3}	r_{1}	r_{4}	r_{2}
f_{2}	f_{2}	f_{4}	f_{1}	f_{3}	f_{5}	r_{2}	$I d$	r_{3}	r_{1}	r_{4}
f_{3}	f_{3}	f_{5}	f_{2}	f_{4}	f_{1}	r_{4}	r_{2}	$I d$	r_{3}	r_{1}
f_{4}	f_{4}	f_{1}	f_{3}	f_{5}	f_{2}	r_{1}	r_{4}	r_{2}	$I d$	r_{3}
f_{5}	f_{5}	f_{2}	f_{4}	f_{1}	f_{3}	r_{3}	r_{1}	r_{4}	r_{2}	$I d$

Abelian groups

In a group we do NOT NECESSARILY have

$$
\mathrm{a} \bullet \mathrm{~b}=\mathrm{b} \bullet \mathrm{a}
$$

Definition:
" $\mathrm{a}, \mathrm{b} \in \mathrm{G}$ commute" means $\mathrm{ab}=\mathrm{ba}$.

Definition:
A group is said to be abelian if all pairs $a, b \in G$ commute.

Order of a group element

Let G be a finite group. Let $\mathrm{a} \in \mathrm{G}$.
Definition: The order of x , denoted ord(a), is the smallest $m \geq 1$ such that $a^{m}=1$.

Note that $a, a^{2}, a^{3}, \ldots, a^{m-1}, a^{m}=1$ all distinct.

Order Theorem: For every $a \in G$, ord(a) divides |G|.

Corollary: $a^{|G|}=1$ for all $a \in G$.

Corollary (Euler's Theorem): For $a \in Z_{n}{ }^{*}, a^{\phi(n)}=1$ That is, if $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$

Corollary (Fermat's little theorem):
For prime p, if $\operatorname{gcd}(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$

Cyclic groups

A finite group G of order n is cyclic if
$G=\left\{e, b, b^{2}, \ldots, b^{n-1}\right\}$ for some group element b
In such a case, we say b "generates" G, or b is a "generator" of G.

Examples:

- $\left(Z_{n},+\right)$
(1 is a generator)
- C_{4}
(Rot $_{90}$ is a generator)

Non-examples: Mattress group; dihedral group; any non-abelian group.

Lagrange's Theorem: If G is a finite group, and H is a subgroup then $|\mathrm{H}|$ divides $|\mathrm{G}|$.

A useful corollary: If G is a finite group and H is a proper subgroup of G , then $|\mathrm{H}| \leq|\mathrm{G}| / 2$

Feature Presentation: Field Theory

Find out about the wonderful world of $\mathbb{F}_{2 k}$ where two equals zero, plus is minus, and squaring is a linear operator!

- Richard Schroeppel

A group is a set with a single binary operation.
Number-theoretic sets often have more than one operation defined on them.

For example, in \mathbb{Z}, we can do both addition and multiplication.

Same in Z_{n} (we can add and multiply modulo n)

For reals \mathbb{R} or rationals \mathbb{Q}, we can also divide (inverse operation for multiplication).

Fields

Informally, it's a place where you can add, subtract, multiply, and divide.

Examples: Real numbers
Rational numbers
Complex numbers
Integers mod prime

NON-examples: Integers \mathbb{Z}
Non-negative reals \mathbb{R}^{+}subtraction??

Field - formal definition

A field is a set F with two binary operations, called + and .
($\mathrm{F},+$) an abelian group, with identity element called 0
($\mathrm{F} \backslash\{0\}, \bullet$) an abelian group, identity element called 1

Distributive Law holds:

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

Example:

$$
\mathbb{F}_{3}=Z_{3}{ }^{*}
$$

+	0	1	2
0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
1	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$
2	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$

-	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Fields: familiar examples

Real numbers \mathbb{R}
Rational numbers ©
Complex numbers \mathbb{C}
Integers mod prime Z_{p}

The last one is a finite field

Example

Quadratic "number field"

$$
\mathbb{Q}(\sqrt{ } 2)=\{a+b \sqrt{ } 2: a, b \in \mathbb{Q}\}
$$

Addition: $(a+b \sqrt{ } 2)+(c+d \sqrt{ } 2)=(a+c)+(b+d) \sqrt{ } 2$

Multiplication:

$$
(a+b \sqrt{ } 2) \cdot(c+d \sqrt{ } 2)=(a c+2 b d)+(a d+b c) \sqrt{ } 2
$$

Exercise: Prove above defines a field.

Finite fields

Some familiar infinite fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C} \quad($ now $\mathbb{Q}(\sqrt{ } 2))$
Finite fields we know: $\quad Z_{p}$ aka \mathbb{F}_{p} for p a prime Is there a field with 2 elements? Yes Is there a field with 3 elements? Yes Is there a field with 4 elements? Yes

	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	$\mathbf{0}$	\mathbf{a}	\mathbf{b}	$\mathbf{1}$
b	$\mathbf{0}$	\mathbf{b}	$\mathbf{1}$	\mathbf{a}

Evariste Galois (1811-1832) introduced the concept of a finite field (also known as a Galois Field in his honor)

Finite fields

Is there a field with 2 elements?

 Is there a field with 3 elements?Is there a field with 4 elements?
Yes
Yes
Yes Is there a field with 5 elements? Is there a field with 6 elements?

No Is there a field with 7 elements? Is there a field with 8 elements? Yes Is there a field with 9 elements? Yes Is there a field with 10 elements?

Finite fields

Theorem (which we won't prove):
There is a field with q elements
if and only if q is a power of a prime.

Up to isomorphism, it is unique.
That is, all fields with q elements have the same addition and multiplication tables, after renaming elements.

This field is denoted $\quad \mathbb{F}_{\mathrm{q}} \quad($ also $\mathrm{GF}(\mathrm{q}))$

Finite fields

Question:
If q is a prime power but not just a prime, what are the addition and multiplication tables of \mathbb{F}_{q} ?

Answer:
It's a bit hard to describe.
We'll tell you later, but for 251's purposes, you mainly only need to know about prime q.

Polynomials

Polynomials

Informally, a polynomial is an expression

 that looks like this:$$
6 x^{3}-2.3 x^{2}+5 x+4.1
$$

x is a symbol, called the variable (or indeterminate)
the 'numbers' standing next to powers of x are called the coefficients

Polynomials

Informally, a polynomial is an expression

 that looks like this:$$
6 x^{3}-2.3 x^{2}+5 x+4.1
$$

Actually, coefficients can come from any field.

Can allow multiple variables, but we won't.
Set of polynomials with variable x and coefficients from field F is denoted $F[x]$.

Polynomials - formal definition

Let F be a field and let x be a variable symbol.
$F[x]$ is the set of polynomials over F,
defined to be expressions of the form

$$
c_{d} x^{d}+c_{d-1} x^{d-1}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}
$$

where each c_{i} is in F, and $c_{d} \neq 0$.

We call d the degree of the polynomial.
Also, the expression 0 is a polynomial.
(By convention, we call its degree $-\infty$.)

Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in $\mathbb{F}_{11}[x]$

$$
\begin{aligned}
& P(x)=x^{2}+5 x-1 \\
& Q(x)=3 x^{3}+10 x
\end{aligned}
$$

$$
\begin{aligned}
P(x)+Q(x)= & 3 x^{3}+x^{2}+15 x-1 \\
& =3 x^{3}+x^{2}+4 x-1 \\
& =3 x^{3}+x^{2}+4 x+10
\end{aligned}
$$

Adding and multiplying polynomials

You can add and multiply polynomials (they are a "ring" but we'll skip a formal treatment of rings)

Example. Here are two polynomials in $\mathbb{F}_{11}[x]$

$$
\begin{gathered}
P(x)=x^{2}+5 x-1 \\
Q(x)=3 x^{3}+10 x \\
P(x) \cdot Q(x)=\left(x^{2}+5 x-1\right)\left(3 x^{3}+10 x\right) \\
=3 x^{5}+15 x^{4}+7 x^{3}+50 x^{2}-10 x \\
=3 x^{5}+4 x^{4}+7 x^{3}+6 x^{2}+\quad x
\end{gathered}
$$

Adding and multiplying polynomials

Polynomial addition is associative and commutative.
$0+P(x)=P(x)+0=P(x)$.
$P(x)+(-P(x))=0$.
So ($\mathrm{F}[\mathrm{x}],+$) is an abelian group!

Polynomial multiplication is associative and commutative.

$$
1 \cdot P(x)=P(x) \cdot 1=P(x) .
$$

Multiplication distributes over addition:

$$
P(x) \cdot(Q(x)+R(x))=P(x) \cdot Q(x)+P(x) \cdot R(x)
$$

If $\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})$ were always a polynomial, then $F[x]$ would be a field! Alas...

Dividing polynomials?

$P(x) / Q(x)$ is not necessarily a polynomial.
So $F[x]$ is not quite a field. (It's a "ring")

Same with \mathbb{Z}, the integers: it has everything except division.

Actually, there are many analogies between $F[x]$ and \mathbb{Z}.

- starting point for rich interplay between algebra, arithmetic, and geometry in mathematics

Dividing polynomials?

\mathbb{Z} has the concept of "division with remainder":
Given $a, b \in \mathbb{Z}, b \neq 0$, can write

$$
a=q \cdot b+r,
$$

where r is "smaller than" b.
$F[x]$ has the same concept:
Given $A(x), B(x) \in F[x], B(x) \neq 0$, can write

$$
A(x)=Q(x) \cdot B(x)+R(x)
$$

where $\operatorname{deg}(R(x))<\operatorname{deg}(B(x))$.

"Division with remainder" for polynomials

Example: Divide $6 x^{4}+8 x+1$ by $2 x^{2}+4$ in $\mathbb{F}_{11}[x]$

$$
3 x^{2}+5
$$

$2 x ^ { 2 } + 4 \longdiv { 6 x ^ { 4 } + 8 x + 1 }$
$-6 x^{4}+x^{2}$
Check:

$$
\begin{gathered}
6 x^{4}+8 x+1 \\
=\left(3 x^{2}+5\right)\left(2 x^{2}+4\right)+(8 x+3) \\
\left(\text { in } \mathbb{F}_{11}[x]\right)
\end{gathered}
$$

$8 x+3$

Integers \mathbb{Z}

"size" = absolute value
"division":

$$
\mathrm{a}=\mathrm{qb}+\mathrm{r}, \quad|\mathrm{r}|<|\mathrm{b}|
$$

can use Euclid's Algorithm to find GCDs
p is "prime":
no nontrivial divisors

\mathbb{Z} mod p :

a field iff p is prime

Polynomials F[x]

"size" = degree
"division":

$$
\begin{aligned}
A(x)= & Q(x) B(x)+R(x), \\
& \operatorname{deg}(R)<\operatorname{deg}(B)
\end{aligned}
$$

can use Euclid's Algorithm to find GCDs
$P(x)$ is "irreducible": no nontrivial divisors
$F[x] \bmod P(x)$:
a field iff $P(x)$ is irreducible (with $|\mathrm{F}|^{\text {deg }}(\mathrm{P})$ elements)

The field with 4 elements

Degree <2 polynomials $\{0,1, x, 1+x\} \subseteq \mathbb{F}_{2}[x]$

Addition and multiplication modulo $1+\mathrm{x}+\mathrm{x}^{2}$

$$
\begin{array}{|c|c|c|c|c|}
\hline+ & 0 & 1 & \mathbf{a} & \mathbf{b} \\
\hline 0 & \mathbf{0} & \mathbf{1} & \mathbf{a} & \mathbf{b} \\
\hline \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{b} & \mathbf{a} \\
\hline \mathbf{a} & \mathbf{a} & \mathbf{b} & \mathbf{0} & \mathbf{1} \\
\hline \mathbf{b} & \mathbf{b} & \mathbf{a} & \mathbf{1} & \mathbf{0}
\end{array} \quad \begin{array}{c|c|c|c|c|}
\hline & 0 & 1 & \mathbf{a} & \mathbf{b} \\
\hline 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline 1 & \mathbf{0} & \mathbf{1} & \mathbf{a} & \mathbf{b} \\
\hline \text { a } & \mathbf{0} & \mathbf{a} & \mathbf{b} & \mathbf{1} \\
\hline \mathbf{b} & \mathbf{0} & \mathbf{b} & \mathbf{1} & \mathbf{a} \\
\hline
\end{array}
$$

The field with p^{d} elements

Degree $<\mathrm{d}$ polynomials $\subseteq \mathbb{F}_{p}[\mathrm{X}]$

Addition and multiplication modulo $\mathrm{h}(\mathrm{x})$, which is any degree d irreducible polynomial in $F_{p}[x]$

- Fact: Irreducibles of every degree exist in $\mathbb{F}_{p}[x]$

Field with 9 elements:

$$
\mathbb{F}_{3}[x] \bmod \left(x^{2}+1\right)
$$

Field with 8 elements:

$$
\mathbb{F}_{2}[x] \bmod \left(x^{3}+x+1\right)
$$

Enough algebraic theory.

Let's play with polynomials!

Evaluating polynomials

Given a polynomial $P(x) \in F[x]$,

$\mathrm{P}(\mathrm{a})$ means its evaluation at element a.

$$
\begin{gathered}
\text { E.g., if } P(x)=x^{2}+3 x+5 \text { in } \mathbb{F}_{11}[x] \\
P(6)=6^{2}+3 \cdot 6+5=36+18+5=59=4 \\
P(4)=4^{2}+3 \cdot 4+5=16+12+5=33=0
\end{gathered}
$$

Definition: α is a root of $P(x)$ if $P(\alpha)=0$.

Polynomial roots

Theorem:
Let $P(x) \in F[x]$ have degree 1 .
Then $P(x)$ has exactly 1 root.

Proof:
Write $P(x)=c x+d \quad($ where $c \neq 0)$.
Then $P(r)=0 \Leftrightarrow c r+d=0$

$$
\left.\begin{array}{ll}
\Leftrightarrow & c r=-d \\
\Leftrightarrow & r
\end{array}\right)-d / c .
$$

Polynomial roots

Theorem:
Let $P(x) \in F[x]$ have degree 2.
Then $P(x)$ has... how many roots??
E.g.: $x^{2}+1 .$.
\# of roots over $\mathbb{F}_{2}[x]$: 1 (namely, 1)
\# of roots over $\mathbb{F}_{3}[\mathrm{x}]: 0$
\# of roots over $\mathbb{F}_{5}[\mathrm{x}]: 2$ (namely, 2 and 3)
\# of roots over $\mathbb{R}[x]$:
0
\# of roots over $\mathbb{C}[x]: 2$ (namely, i and -i)

The single most important theorem about polynomials over fields:

A nonzero degree-d polynomial has at most d roots.

Theorem: Over a field, for all $\mathrm{d} \geq 0$, a nonzero degree-d polynomial P has at most d roots.

Proof by induction on $d \in \mathbb{N}$:
Base case: If $\mathrm{P}(\mathrm{x})$ is degree- 0 then $\mathrm{P}(\mathrm{x})=\mathrm{a}$ for some $\mathrm{a} \neq 0$. This has 0 roots.

Recall our
convention:
$\operatorname{deg}(0)=-\infty$

Induction:
Assume true for $\mathrm{d} \geq 0$. Let $\mathrm{P}(\mathrm{x})$ have degree $\mathrm{d}+1$.
If $\mathrm{P}(\mathrm{x})$ has 0 roots: we're done! Else let b be a root.
Divide with remainder: $\mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x})(\mathrm{x}-\mathrm{b})+\mathrm{R}(\mathrm{x})$. (*)
$\operatorname{deg}(R)<\operatorname{deg}(x-b)=1$, so $R(x)$ is a constant. Say $R(x)=r$.
Plug $x=b$ into (*): $0=P(b)=Q(b)(b-b)+r=0+r=r$.
So $P(x)=Q(x)(x-b)$. Now, $\operatorname{deg}(Q)=d . \quad \therefore Q$ has $\leq d$ roots.
$\therefore \mathrm{P}(\mathrm{x})$ has $\leq \mathrm{d}+1$ roots, completing the induction.

A useful corollary

Theorem: Over a field F , for all $\mathrm{d} \geq 0$, degree-d polynomials have at most d roots.

Corollary: Suppose a polynomial $\mathrm{R}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ is such that
(i) R has degree $\leq d$ and
(ii) R has $>d$ roots

Then R must be the 0 polynomial

I've used the above corollary several times in my research.

Theorem:

Over a field, degree-d polynomials have at most d roots.

Reminder:

This is only true over a field.
E.g., consider $P(x)=3 x$ over Z_{6}.

It has degree 1, but 3 roots: 0, 2, and 4.

Interpolation

Say you're given a bunch of "data points"

Can you find a (low-degree) polynomial which "fits the data"?

Interpolation

Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{i} 's distinct).

Theorem:
There is exactly one polynomial $\mathrm{P}(\mathrm{x})$ of degree at most d such that $P\left(a_{i}\right)=b_{i}$ for all $i=1 \ldots d+1$.
E.g., through 2 points there is a unique linear polynomial.

Interpolation

There are two things to prove.

1. There is at least one polynomial of degree $\leq \mathrm{d}$ passing through all $\mathrm{d}+1$ data points.
2. There is at most one polynomial of degree $\leq \mathrm{d}$ passing through all $\mathrm{d}+1$ data points.

Let's prove \#2 first.

Interpolation

Theorem: Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$ from a field F be given (with all a_{i} 's distinct).
Then there is at most one polynomial $P(x)$ of degree at most d with $P\left(a_{i}\right)=b_{i}$ for all i .

Proof: Suppose $P(x)$ and $Q(x)$ both do the job.
Let $R(x)=P(x)-Q(x)$.
Since $\operatorname{deg}(P), \operatorname{deg}(Q) \leq d$ we must have deg $(R) \leq d$.
But $R\left(a_{i}\right)=b_{i}-b_{i}=0$ for all $i=1 \ldots d+1$.
Thus $\mathrm{R}(\mathrm{x})$ has more roots than its degree.
$\therefore \mathrm{R}(\mathrm{x})$ must be the 0 polynomial, i.e., $\mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x})$.

Interpolation

Now let's prove the other part, that there is at least one polynomial.

Theorem:
Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{i} 's distinct).
Then there exists a polynomial $P(x)$ of degree at most d with $P\left(a_{i}\right)=b_{i}$ for all i.

Interpolation

The method for constructing the polynomial is called Lagrange Interpolation.

Discovered in 1779 by Edward Waring.

> Rediscovered in 1795 by J.-L. Lagrange.

Lagrange Interpolation

Want $P(x)$
(with degree $\leq \mathrm{d}$) such that $P\left(a_{i}\right)=b_{i} \forall i$.

Lagrange Interpolation

a_{1}	1
a_{2}	0
a_{3}	0
\ldots	\ldots
a_{d}	0
a_{d+1}	0

Can we do this special case?
Promise: once we solve this special case, the general case is very easy.

Lagrange Interpolation

a_{1}	1
a_{2}	0
a_{3}	0
\ldots	\ldots
a_{d}	0
a_{d+1}	0

Lagrange Interpolation

a_{1}	1
a_{2}	0
a_{3}	0
\ldots	\ldots
a_{d}	0
a_{d+1}	0

Idea \#1: $P(x)=\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)$
Degree is d.

$$
\begin{aligned}
& P\left(a_{2}\right)=P\left(a_{3}\right)=\cdots=P\left(a_{d+1}\right)=0 . \quad V \\
& P\left(a_{1}\right)=\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{d+1}\right) . \quad ? ?
\end{aligned}
$$

Lagrange Interpolation

Call this the selector polynomial for a_{1}.

Lagrange Interpolation

a_{1}	0
a_{2}	1
a_{3}	0
\ldots	\ldots
a_{d}	0
a_{d+1}	0

Great! But what about this data?

$$
S_{2}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{d+1}\right)}
$$

Lagrange Interpolation

Great! But what about this data?

$$
\frac{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{d}\right)}{\left(a_{d+1}-a_{1}\right)\left(a_{d+1}-a_{2}\right) \cdots\left(a_{d+1}-a_{d}\right)}
$$

Lagrange Interpolation

a_{1}	b_{1}
a_{2}	b_{2}
a_{3}	b_{3}
\ldots	\ldots
a_{d}	b_{d}
a_{d+1}	b_{d+1}

Great! Finally, what about this data?
$\mathrm{P}(\mathrm{x})=\mathrm{b}_{1} \cdot \mathrm{~S}_{1}(\mathrm{x})+\mathrm{b}_{2} \cdot \mathrm{~S}_{2}(\mathrm{x})+\cdots+\mathrm{b}_{\mathrm{d}+1} \cdot \mathrm{~S}_{\mathrm{d}+1}(\mathrm{x})$

Lagrange Interpolation - example

Over Z_{11}, find a polynomial P of degree ≤ 2 such that $P(5)=1, P(6)=2, P(7)=9$.

$$
\begin{aligned}
& S_{5}(x)=6(x-6)(x-7) \\
& S_{6}(x)=-1(x-5)(x-7) \\
& S_{7}(x)=6(x-5)(x-6) \\
& P(x)=1 S_{5}(x)+2 S_{6}(x)+9 S_{7}(x) \\
& P(x)=6\left(x^{2}-13 x+42\right)-2\left(x^{2}-12 x+35\right)+54\left(x^{2}-11 x+30\right) \\
& P(x)=3 x^{2}+x+9
\end{aligned}
$$

The Chinese Remainder Theorem had a very similar proof

Not a coincidence:
algebraically, integers \& polynomials share many common properties

Lagrange interpolation is the exact analog of Chinese Remainder Theorem for polynomials.

Chinese Remainder Theorem: Suppose $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise coprime. Then, for all integers $a_{1}, a_{2}, \ldots, a_{k}$, there exists an integer x solving the below system of simultaneous congruences

$$
\begin{array}{ll}
x \equiv a_{1} & \left(\bmod n_{1}\right) \\
x \equiv a_{2} & \left(\bmod n_{2}\right) \\
& \vdots \\
x \equiv a_{k} & \left(\bmod n_{k}\right) .
\end{array}
$$

Further, all solutions x are congruent modulo $N=\prod_{i=1}^{k} n_{i}$.

Let $m_{i}=N / n_{i}$

i 'th "selector" number: $T_{i}=\left(m_{i}^{-1} \bmod n_{i}\right) m_{i}$

$$
x=a_{1} T_{1}+a_{2} T_{2}+\ldots+a_{k} T_{k}
$$

Recall: Interpolation

Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{j} 's distinct).

Theorem:
There is a unique degree d polynomial $P(x)$ satisfying $P\left(a_{i}\right)=b_{i}$ for all $i=1 \ldots d+1$.

A linear algebra view

Let $p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{d} x^{d}$
Need to find the coefficient vector $\left(p_{0}, p_{1}, \ldots, p_{d}\right)$

$$
\begin{aligned}
p(a) & =p_{0}+p_{1} a+\ldots+p_{d} a^{d} \\
& =1 \cdot p_{0}+a \cdot p_{1}+a^{2} \cdot p_{2}+\ldots+a^{d} \cdot p_{d}
\end{aligned}
$$

Thus we need to solve:
$\left(\begin{array}{ccccc}1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{d} \\ 1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{d} \\ & & \vdots & & \\ 1 & a_{d+1} & a_{d+1}^{2} & \cdots & a_{d+1}^{d}\end{array}\right) \cdot\left(\begin{array}{c}p_{0} \\ p_{1} \\ \vdots \\ p_{d}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{d+1}\end{array}\right)$

Lagrange interpolation

The $(d+1) \times(d+1)$ Vandermonde matrix

$$
M=\left(\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{d} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{d} \\
& & \vdots & & \\
1 & a_{d+1} & a_{d+1}^{2} & \cdots & a_{d+1}^{d}
\end{array}\right)
$$

is invertible.

- The determinant of M is nonzero when a_{i} 's are distinct.

Thus can recover coefficient vector as

$$
\vec{p}=M^{-1} \vec{b}
$$

The columns of M^{-1} are given by the coefficients of the various "selector" polynomials we constructed in Lagrange interpolation.

Representing Polynomials

Let $P(x) \in F[x]$ be a degree-d polynomial.
Representing $P(x)$ using $d+1$ field elements:

1. List the $d+1$ coefficients.
2. Give P's value at $d+1$ different elements.

Rep 1 to Rep 2:
Evaluate at d+1 elements

Rep 2 to Rep 1: Lagrange Interpolation

Number Theory:
Unique factorization
Chinese Remainder theorem

Fields:
Definitions
Examples
Finite fields of prime order
Polynomials:
Degree-d polys have $\leq \mathrm{d}$ roots.
Polynomial division with remainder
Lagrange Interpolation

