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First, a little more

Number Theory



Bezout’s identity

Let a,b be arbitrary positive integers.

There exist integers r and s such that

r a + s b = gcd(a,b)

A non-algorithmic proof:

• Consider the set L of all positive integers that can         

be expressed as r a + s b for some integers r,s.

• L is non-empty (eg. a  S)

• So L has a minimum element d

(well-ordering principle    principle of induction)

Follows from

Extended 

Euclid Algorithm

Claim: d = gcd(a,b)



Claim: gcd(a,b) = d (the minimum positive

integer expressible as ra+sb)

1. gcd(a,b) divides both a and b, and 

hence also divides d. So d  gcd(a,b)

2. d divides both a and b, and hence d  gcd(a,b)

Let’s show d | a. 

Write a = q d + t , with 0  t < d.

t = a – q d is also expressible as a 

combination r’ a + s’ b.

Contradicts minimality of d.



Extended Euclid & Unique Factorization

Lemma: If gcd(a,b)=1 and a | bc, then a | c.

Proof: Let r,s be such that r a + s b =1

r a c + s b c = c 

a | bc and a | r a c, so a | c.     

Corollary: If p is a prime and p | q1 q2 … qk, 

then p must divide some qi.

If the qi’s are also prime, then p = qi for some i. 

Uniqueness of prime factorization follows from this!



Poll

Which of these numbers is congruent to

1 (mod 5), 6 (mod 7), and 8 (mod 9)?

• No such number exists

• 91

• 136

• 197

• 251

• 291

• None of the above

• Beats me



Chinese Remaindering

Uniqueness of solutions modulo N

If x,y are two solutions, then ni divides x-y, for i=1,2,…k

Since the ni are pairwise coprime, this means 

the product N = n1 n2 … nk divides (x-y), 

thus x  y (mod N)



Extended Euclid and Chinese Remaindering

Proof for k=2: 

Take x = b1 (n2
-1 mod n1) n2 + b2 (n1

-1 mod n2) n1

Can compute x efficiently (by computing modular inverses)

Divisible by 𝑛2,
Remainder 1 mod 𝑛1

Divisible by 𝑛1
Remainder 1 mod 𝑛2



For arbitrary k:  Let   mi = N/ni

Take x = b1 (m1
-1 mod n1) m1 + b2 (m2

-1 mod n2) m2 +

…. + bk (mk
-1 mod nk) mk

Note gcd(mi,ni) = 1

ni | mj for j ≠ i

First term contributes the remainder mod 𝑛1 (rest are 

divisible by 𝑛1), …. , 

𝑘’th term contributes the remainder mod 𝑛𝑘



Quick Recap: 

Groups



Recap: Definition of a group

G is a “group under operation ” if:   

0. [Closure] G is closed under 

i.e.,  a  b  G ∀ a,b∈G

1. [Associativity] Operation  is associative:

i.e.,    a  (b  c) = (a  b)  c    ∀ a,b,c∈G

2. [Identity] There exists an element  e∈G

(called the “identity element”) such that

a  e = a,  e  a = a ∀ a∈G

3. [Inverse] For each a∈G there is an element a−1∈G

(called the “inverse of a”) such that

a  a−1 = e,  a−1  a = e



Symmetries of undirected cycle:

dihedral group

G = 

{ Id, r1, r2, r3, r4,

f1, f2, f3, f4, f5 }

 Id r1 r2 r3 r4 f1 f2 f3 f4 f5

Id Id r1 r2 r3 r4 f1 f2 f3 f4 f5

r1 r1 r2 r3 r4 Id f4 f5 f1 f2 f3

r2 r2 r3 r4 Id r1 f2 f3 f4 f5 f1

r3 r3 r4 Id r1 r2 f5 f1 f2 f3 f4

r4 r4 Id r1 r2 r3 f3 f4 f5 f1 f2

f1 f1 f3 f5 f2 f4 Id r3 r1 r4 r2

f2 f2 f4 f1 f3 f5 r2 Id r3 r1 r4

f3 f3 f5 f2 f4 f1 r4 r2 Id r3 r1

f4 f4 f1 f3 f5 f2 r1 r4 r2 Id r3

f5 f5 f2 f4 f1 f3 r3 r1 r4 r2 Id



Abelian groups

In a group we do NOT NECESSARILY have

a  b = b  a

Definition:  

“a,b ∈ G  commute” means ab = ba.

Definition:

A group is said to be abelian if all pairs a,b ∈ G 

commute.



Order of a group element

Let G be a finite group.  Let a∈G.

Definition:  The order of x, denoted ord(a), is the 

smallest m ≥ 1 such that am = 1.

Note that a, a2, a3, …, am−1, am=1 all distinct.



Order Theorem: For every a ∈ G,

ord(a) divides |G|.

Corollary:   a|G|=1 for all a∈G.

Corollary (Euler’s Theorem): For a  Zn
* , aϕ(n) = 1

That is, if gcd(a,n)=1, then aϕ(n)  1 (mod n)

Corollary (Fermat’s little theorem): 

For prime p, if gcd(a,p)=1, then  

ap-1  1 (mod p)



Cyclic groups

A finite group G of order n is cyclic if 

G= {e,b,b2,…,bn-1} for some group element b

In such a case, we say b “generates” G, 

or b is a “generator” of G.

Examples:

• (Zn, +)   (1 is a generator)

• C4   (Rot90 is a generator)

Non-examples: Mattress group; dihedral group;

any non-abelian group.



Lagrange’s Theorem: If G is a finite group, and H 

is a subgroup then |H| divides |G|.

A useful corollary: If G is a finite group and 

H is a proper subgroup of G, then |H|  |G|/2



Feature Presentation:
Field Theory



Find out about the wonderful world of 

where two equals zero, plus is minus, 

and squaring is a linear operator!  

– Richard Schroeppel



A group is a set with a single binary operation.

Number-theoretic sets often have more than 

one operation defined on them.

For example, in ℤ, we can do both addition and 

multiplication.

Same in Zn (we can add and multiply modulo n)

For reals ℝ or rationals ℚ, we can also divide

(inverse operation for multiplication).



Fields

Informally, it’s a place where you can

add, subtract, multiply, and divide.

Examples: Real numbers ℝ

Rational numbers ℚ

Complex numbers ℂ

Integers mod prime Zp (Why?)

NON-examples: Integers ℤ

Non-negative reals ℝ+

division??

subtraction??



Field – formal definition

A field is a set F with two

binary operations,

called + and •.  
= Z3

*

Example:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

• 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

(F,+) an abelian group, with

identity element called 0

(F \ {0},•) an abelian group,

identity element called 1

Distributive Law holds:

a•(b+c) = a•b + a•c



Fields: familiar examples

Real numbers ℝ

Rational numbers ℚ

Complex numbers ℂ

Integers mod prime Zp

The last one is a finite field 



Example

Quadratic “number field”

ℚ(2) = { a + b 2 : a,b  ℚ }

Addition: (a + b 2) + (c + d 2) = (a+c) + (b+d) 2

Multiplication: 

(a + b 2)  (c + d 2) = (ac+2bd) + (ad+bc) 2

Exercise: Prove above defines a field.



Finite fields

Some familiar infinite fields:  ℚ, ℝ, ℂ (now ℚ(2))

Finite fields we know:  Zp aka    for p a prime

Is there a field with 2 elements? Yes

Is there a field with 3 elements? Yes

Is there a field with 4 elements? Yes

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

• 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a



Evariste Galois (1811−1832)

introduced the concept of a 

finite field (also known as a 

Galois Field in his honor)



Finite fields

Is there a field with 2 elements? Yes

Is there a field with 3 elements? Yes

Is there a field with 4 elements? Yes

Is there a field with 5 elements? Yes

Is there a field with 6 elements? No

Is there a field with 7 elements? Yes

Is there a field with 8 elements? Yes

Is there a field with 9 elements? Yes

Is there a field with 10 elements? No



Finite fields

Theorem (which we won’t prove):

There is a field with q elements 

if and only if q is a power of a prime.

Up to isomorphism, it is unique.

That is, all fields with q elements have the 

same addition and multiplication tables,

after renaming elements.

This field is denoted     (also GF(q))



Finite fields

Question:

If q is a prime power but not just a prime,

what are the addition and multiplication

tables of         ?

Answer:

It’s a bit hard to describe.

We’ll tell you later, but for 251’s purposes,

you mainly only need to know about prime q.



Polynomials



Polynomials

Informally, a polynomial is an expression 

that looks like this:

6x3 − 2.3x2 + 5x + 4.1

x is a symbol, called the variable

(or indeterminate)
the ‘numbers’ standing next to 

powers of x are called the coefficients



Polynomials
Informally, a polynomial is an expression 

that looks like this:

Actually, coefficients can come from any field.

6x3 − 2.3x2 + 5x + 4.1

Can allow multiple variables, but we won’t.

Set of polynomials with variable x and 

coefficients from field F is denoted F[x].



Polynomials – formal definition

Let F be a field and let x be a variable symbol.

F[x] is the set of polynomials over F, 

defined to be expressions of the form

where each ci is in F, and cd ≠ 0.

We call d the degree of the polynomial.

Also, the expression 0 is a polynomial.

(By convention, we call its degree −∞.)

cd xd + cd−1 xd−1 + ··· + c2 x2 + c1 x + c0



Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in   

P(x) = x2 + 5x − 1

Q(x) = 3x3 + 10x

P(x) + Q(x) = 3x3 + x2 + 15x − 1

= 3x3 + x2 + 4x − 1 

= 3x3 + x2 +   4x + 10



Adding and multiplying polynomials

You can add and multiply polynomials (they are a

“ring”  but we’ll skip a formal treatment of rings)

Example. Here are two polynomials in      

P(x) = x2 + 5x − 1

Q(x) = 3x3 + 10x

P(x) • Q(x) = (x2 + 5x − 1)(3x3 + 10x)

= 3x5 + 15x4 + 7x3 + 50x2 − 10x

= 3x5 + 4x4 + 7x3 + 6x2 +     x



Adding and multiplying polynomials

Polynomial addition is associative and commutative.

0 + P(x) = P(x) + 0 = P(x).  

P(x) + (−P(x)) = 0.

So (F[x], +) is an abelian group!

Polynomial multiplication is associative and commutative.

1 • P(x) = P(x) • 1 = P(x).

Multiplication distributes over addition:  

P(x) • (Q(x) + R(x)) = P(x) • Q(x) + P(x) • R(x)

If P(x) / Q(x) were always a polynomial, 

then F[x] would be a field!  Alas…



Dividing polynomials?

P(x) / Q(x) is not necessarily a polynomial.

So F[x] is not quite a field.

(It’s a “ring”)

Same with ℤ, the integers: 

it has everything except division.

Actually, there are many analogies between F[x] and ℤ.

• starting point for rich interplay between algebra, arithmetic, 

and geometry in mathematics



Dividing polynomials?

ℤ has the concept of “division with remainder”:

Given a,b∈ℤ, b≠0, can write

a = q•b + r,  

where r is “smaller than” b.

F[x] has the same concept:

Given A(x),B(x)∈F[x], B(x)≠0, can write

A(x) = Q(x)•B(x) + R(x),  

where deg(R(x)) < deg(B(x)).  



“Division with remainder” for polynomials

Example: Divide 6x4+8x+1 by 2x2+4 in 

2x2+4 6x4+8x+1

3x2

6x4+x2−

−x2+8x+1

+5

−x2+9−

8x+3

Check:

6x4+8x+1 

= (3x2+5)(2x2+4)+(8x+3)

(in             )



Integers  ℤ

“division”:  

a = qb+r,   |r| < |b|

“division”:  

A(x) = Q(x)B(x)+R(x),

deg(R) < deg(B)

can use Euclid’s Algorithm

to find GCDs

can use Euclid’s Algorithm 

to find GCDs

Polynomials F[x]

“size” = absolute value “size” = degree

p is “prime”: 

no nontrivial divisors

P(x) is “irreducible”: 

no nontrivial divisors

ℤ mod p:

a field iff p is prime

F[x] mod P(x):

a field iff P(x) is irreducible

(with |F|deg(P) elements)



The field with 4 elements

Degree < 2 polynomials {0,1,x,1+x}  F2[x]

• 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

Addition and multiplication modulo 1+x+x2

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

a=x

b=1+x



The field with 𝑝𝑑 elements

Degree < d polynomials  Fp[x]

Addition and multiplication modulo h(x), which is any 

degree d irreducible polynomial in Fp[x]

• Fact: Irreducibles of every degree exist in Fp[x]

Field with 9 elements: 

F3[x] mod (x2+1)

Field with 8 elements: 

F2[x] mod (x3+x+1)



Enough algebraic theory.

Let’s play with polynomials!



Evaluating polynomials

Given a polynomial P(x) ∈ F[x],

P(a) means its evaluation at element a.

E.g., if  P(x) = x2+3x+5 in         

P(6) = 62+3·6+5 = 36+18+5 = 59 = 4

P(4) = 42+3·4+5 = 16+12+5 = 33 = 0

Definition:  is a root of P(x) if P() = 0.



Polynomial roots

Theorem: 

Let P(x) ∈ F[x] have degree 1.

Then P(x) has exactly 1 root.

Proof:

Write P(x) = cx + d   (where c≠0).

Then P(r) = 0 ⇔ cr + d = 0

⇔ cr = −d

⇔ r = −d/c.



Polynomial roots

Theorem: 

Let P(x) ∈ F[x] have degree 2.

Then P(x) has… how many roots??

E.g.:    x2+1…

# of roots over              : 1 (namely, 1)

# of roots over              : 0

# of roots over              : 2 (namely, 2 and 3)

# of roots over              : 0

# of roots over              : 2 (namely, i and −i)



The single most important theorem 

about polynomials over fields:

A nonzero degree-d 

polynomial has 

at most d roots.



Theorem: Over a field, for all d ≥ 0, a nonzero 

degree-d polynomial P has at most d roots.

Proof by induction on d∈ℕ:

Base case:  If P(x) is degree-0 then P(x) = a for some a≠0. 

This has 0 roots.

Induction:   

Assume true for d ≥ 0.  Let P(x) have degree d+1.

If P(x) has 0 roots: we’re done!  Else let b be a root.

Divide with remainder: P(x) = Q(x)(x−b) + R(x).  (∗)

deg(R) < deg(x−b) = 1, so R(x) is a constant.  Say R(x)=r.

Plug x = b into (∗):  0 = P(b) = Q(b)(b−b)+r = 0+r = r.

So P(x) = Q(x)(x−b).  Now, deg(Q) = d.  ∴ Q has ≤ d roots.

∴ P(x) has ≤ d+1 roots, completing the induction.

Recall our 

convention:

deg(0) = - ∞



A useful corollary

Theorem: Over a field F, for all d ≥ 0, 

degree-d polynomials have at most d roots.

Corollary: Suppose a polynomial R(x)  F[x] 

is such that

(i) R has degree ≤ d and 

(ii) R has > d roots

Then R must be the 0 polynomial

I’ve used the above corollary several times in my research.



Theorem:

Reminder:

This is only true over a field.

E.g., consider P(x) = 3x  over Z6.

It has degree 1, but 3 roots:  0, 2, and 4.

Over a field, degree-d polynomials have at most d roots.



Interpolation

Say you’re given a bunch of “data points”

a1

b1

(a2,b2)
(a3,b3)

(a4,b4)

(a5,b5)

Can you find a (low-degree) 

polynomial which “fits the data”?



Interpolation

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Theorem:  

There is exactly one polynomial P(x)

of degree at most d such that 

P(ai) = bi for all i = 1…d+1.

E.g., through 2 points there is a unique linear polynomial.



Interpolation

There are two things to prove.

1. There is at least one polynomial of degree

≤ d passing through all d+1 data points.

2. There is at most one polynomial of degree

≤ d passing through all d+1 data points.

Let’s prove #2 first.



Interpolation

Theorem: Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Then there is at most one polynomial P(x)

of degree at most d with P(ai) = bi for all i.

Proof: Suppose P(x) and Q(x) both do the job.

Let R(x) = P(x)−Q(x).  

Since deg(P), deg(Q) ≤ d we must have deg(R) ≤ d.

But R(ai) = bi−bi = 0 for all i = 1…d+1.

Thus R(x) has more roots than its degree.

∴ R(x) must be the 0 polynomial, i.e., P(x)=Q(x).



Interpolation

Now let’s prove the other part,

that there is at least one polynomial.

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Then there exists a polynomial P(x) of 

degree at most d with P(ai) = bi for all i.

Theorem:



Interpolation

The method for constructing the polynomial

is called Lagrange Interpolation.

Discovered in 1779 

by Edward Waring.

Rediscovered in 1795 

by J.-L. Lagrange.



Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

b1

b2

b3

···

bd

bd+1

Want P(x)
(with degree ≤ d) 

such that  P(ai) = bi ∀i.



Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Can we do this special case?

Promise: once we solve this special case,

the general case is very easy.



Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0



Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Idea #1: P(x) = (x−a2)(x−a3)···(x−ad+1)

Degree is d.  ✔

P(a2) = P(a3) = · · · = P(ad+1) = 0.  ✔

P(a1) = (a1−a2)(a1−a3)···(a1−ad+1).  ??

Just divide P(x)

by this number.



Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Idea #2:

Denominator

is a nonzero

field element

Numerator 

is a deg. d 

polynomial

Call this the selector polynomial for a1.



Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

0

1

0

···

0

0

Great!  But what about this data?



Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

0

0

0

···

0

1

Great!  But what about this data?



Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

b1

b2

b3

···

bd

bd+1

Great!  Finally, what about this data?



Lagrange Interpolation – example

Over Z11, find a polynomial P of degree ≤ 2

such that P(5) = 1, P(6) = 2, P(7) = 9.

S5(x) = 6 (x−6)(x−7)

S6(x) = -1 (x−5)(x−7)

S7(x) = 6 (x−5)(x−6)

P(x) = 1 S5(x) + 2 S6(x) + 9 S7(x)

P(x) = 6(x2−13x+42) − 2(x2−12x+35) + 54(x2−11x+30)

P(x) = 3x2+x+9



The Chinese Remainder Theorem had a

very similar proof

Not a coincidence: 

algebraically, integers & polynomials 

share many common properties

Lagrange interpolation is the exact analog of
Chinese Remainder Theorem for polynomials.



Let   mi = N/ni

x = a1 T1  + a2 T2 + ... +  ak Tk

i’th “selector” number: Ti = (mi
-1 mod ni) mi



Recall: Interpolation

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Theorem: 

There is a unique degree d polynomial P(x)

satisfying  P(ai) = bi for all i = 1…d+1.



A linear algebra view 

Let p(x) = p0 + p1x + p2 x2 + … + pd x
d

Need to find the coefficient vector (p0,p1,…,pd) 

p(a) = p0 + p1 a + …+ pd ad

= 1  p0 + a  p1 + a2 p2 + … + ad pd

Thus we need to solve:



Lagrange interpolation

Thus can recover coefficient vector as 

The columns of M-1 are given by the coefficients

of the various “selector” polynomials we constructed

in Lagrange interpolation.



Representing Polynomials

Let P(x)∈F[x] be a degree-d polynomial.

Representing P(x) using d+1 field elements:

1.

2.

List the d+1 coefficients.

Give P’s value at d+1 different elements.

Rep 1 to Rep 2:  

Rep 2 to Rep 1:  

Evaluate at d+1 elements

Lagrange Interpolation



Number Theory:

Unique factorization 

Chinese Remainder theorem

Fields:

Definitions

Examples

Finite fields of prime order

Polynomials:

Degree-d polys have ≤ d roots.

Polynomial division with    
remainder

Lagrange Interpolation

Study Guide


