15-251: Great Theoretical Ideas in Computer Science
Fall 2016 Lecture 26
November 29, 2016

Error Correction

Recap: Polynomial Interpolation

Theorem:
Let arbitrary pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{i} 's distinct).
Then there always exists a unique polynomial
$P(x)$ of degree $\leq d$ with $P\left(a_{i}\right)=b_{i}$ for all i .

- Uniqueness follows because a degree $\leq \mathrm{d}$ polynomial has $\leq \mathrm{d}$ distinct roots.
- Can construct a polynomial with $P\left(a_{i}\right)=b_{i}$ via Lagrange interpolation.

Lagrange Interpolation

Want $P(x)$
(with degree $\leq \mathrm{d}$) such that $P\left(a_{i}\right)=b_{i} \forall i$.

Lagrange Interpolation

a_{1}	1
a_{2}	0
a_{3}	0
\ldots	\ldots
a_{d}	0
a_{d+1}	0

Can we do this special case?

Lagrange Interpolation

Call this the selector polynomial for a_{1}.

What about above data?

$$
S_{2}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{d+1}\right)}
$$

And for this data,

$$
\frac{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{d}\right)}{\left(a_{d+1}-a_{1}\right)\left(a_{d+1}-a_{2}\right) \cdots\left(a_{d+1}-a_{d}\right)}
$$

Polynomial Interpolation

$$
\mathrm{P}(\mathrm{x})=\mathrm{b}_{1} \cdot \mathrm{~S}_{1}(\mathrm{x})+\mathrm{b}_{2} \cdot \mathrm{~S}_{2}(\mathrm{x})+\cdots+\mathrm{b}_{\mathrm{d}+1} \cdot \mathrm{~S}_{\mathrm{d}+1}(\mathrm{x})
$$

Recall: Interpolation

Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{j} 's distinct).

Theorem:
There is a unique degree d polynomial $P(x)$ satisfying $P\left(a_{i}\right)=b_{i}$ for all $i=1 \ldots d+1$.

A linear algebra view

Let $p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{d} x^{d}$
Need to find the coefficient vector ($p_{0}, p_{1}, \ldots, p_{d}$)

$$
\begin{aligned}
p(a)= & p_{0}+p_{1} a+\ldots+p_{d} a^{d} \\
& =1 \cdot p_{0}+a \cdot p_{1}+a^{2} \cdot p_{2}+\ldots+a^{d} \cdot p_{d}
\end{aligned}
$$

Thus we need to solve:
$\left(\begin{array}{ccccc}1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{d} \\ 1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{d} \\ & & \vdots & & \\ 1 & a_{d+1} & a_{d+1}^{2} & \cdots & a_{d+1}^{d}\end{array}\right) \cdot\left(\begin{array}{c}p_{0} \\ p_{1} \\ \vdots \\ p_{d}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{d+1}\end{array}\right)$

Lagrange interpolation

The $(d+1) \times(d+1)$ Vandermonde matrix

$$
M=\left(\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{d} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{d} \\
& & \vdots & & \\
1 & a_{d+1} & a_{d+1}^{2} & \cdots & a_{d+1}^{d}
\end{array}\right)
$$

is invertible.

- The determinant of M is nonzero when a_{i} 's are distinct.

Thus can recover coefficient vector as

$$
\vec{p}=M^{-1} \vec{b}
$$

The columns of M^{-1} are given by the coefficients of the various "selector" polynomials we constructed in Lagrange interpolation.

Representing Polynomials

Let $P(x) \in F[x]$ be a degree-d polynomial.
Representing $P(x)$ using $d+1$ field elements:

1. List the $d+1$ coefficients.
2. Give P's value at $d+1$ different elements.

Rep 1 to Rep 2:
Evaluate at d+1 elements

Rep 2 to Rep 1: Lagrange Interpolation

Application of Fields/Polynomials

(and linear algebra):

Error-correcting codes

Sending messages on a noisy channel

Alice Bob
" bit.ly/vrxUBN"

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Sending messages on a noisy channel

Let's say messages are sequences from \mathbb{F}_{257}

vrxUBN $\leftrightarrow \quad 118114104853578$

The channel may corrupt up to k symbols.
How can Alice still get the message across?

Sending messages on a noisy channel

Let's say messages are sequences from
 \mathbb{F}_{257}

118114104853578

How to correct the errors?
How to even detect that there are errors?

Simpler case: "Erasures"

118114120856678
 erasure channel
 118114 ?? 85 ?? 78

What can you do to handle up to k erasures?

Repetition code

Have Alice repeat each symbol k+1 times.

118114120856678
becomes
118118118114114114120120120858585666666787878
erasure channel

118118118 ?? ?? 114120120120858585666666787878

If at most k erasures, Bob can figure out each symbol.

Repetition code - noisy channel

Have Alice repeat each symbol $2 \mathrm{k}+1$ times.

118114120856678
becomes

```
118118118114114114120120120858585666666787878
```


118118118114223114120120120858585666666787878
At most k corruptions: Bob can take majority of each block.

This is pretty wasteful!

To send message of d+1 symbols and guard against k erasures, we had to send $(d+1)(k+1)$ total symbols.

Can we do better?

This is pretty wasteful!

To send message of d+1 symbols and guard against k erasures, we had to send $(d+1)(k+1)$ total symbols.

To send even 1 message symbol with k erasures, need to send k+1 total symbols.

Maybe for $d+1$ message symbols with k erasures, d+k+1 total symbols can suffice??

Enter polynomials

Say Alice's message is d+1 elements from \mathbb{F}_{257}

$$
118 \quad 114120856678
$$

Alice thinks of it as the coefficients of a degree-d polynomial $P(x) \in \mathbb{F}_{257}[x]$

$$
P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78
$$

Now trying to send the degree-d polynomial $P(x)$.

Send it in the Values Representation!

$$
P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78
$$

Alice sends $P(x)$'s values on $d+k+1$ inputs:

$$
P(1), P(2), P(3), \ldots, P(d+k+1)
$$

This is called the Reed-Solomon encoding.

Send it in the Values Representation!

$$
P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78
$$

Alice sends $P(x)$'s values on $d+k+1$ inputs:

$$
P(1), P(2), P(3), \ldots, P(d+k+1)
$$

If there are at most k erasures, then Bob still knows P's value on d+1 points.

Bob recovers $\mathrm{P}(\mathrm{x})$ using Lagrange Interpolation!

Example

How good is our encoding?

Naïve Repetition:
To send $\mathrm{d}+1$ numbers with k erasure recovery sent $(d+1)(k+1)$ numbers

Polynomial Coding:
To send $d+1$ numbers with k erasures recovery, sent $(d+k+1)$ numbers

Reed-Solomon codes are used a lot in practice!

Another everyday use:

 CD/DVDs, hard discs,satellite communication, ...

Maxicodes
= "UPS codes"
= another 2-d
Reed-Solomon codes

PDF417 codes
= 2-d Reed-Solomon codes

What about corruptions/errors

To send message of $d+1$ symbols and enable correction from up to k errors, repetition code has to send $(\mathrm{d}+1)(2 \mathrm{k}+1)$ total symbols.

To communicate even 1 symbol while enabling recovery from k errors, need to send at least $2 k+1$ total codeword symbols.

Maybe for $\mathrm{d}+1$ message symbols with k errors, total symbols can suffice??

Want to send a polynomial of degree-d subject to at most k corruptions.

First simpler problem: Error detection

Suppose we try the same idea

- Evaluate $\mathrm{P}(\mathrm{X})$ at $\mathrm{d}+1+\mathrm{k}$ points
- Send $P(0), P(1), P(2), \ldots, P(d+k)$

At least $\mathrm{d}+1$ of these values will be unchanged (because we assume at most k errors)

Example

$P(X)=2 X^{2}+1$, and $k=1$.
So I sent $P(0)=1, P(1)=3, P(2)=9, P(3)=19$
Corrupted email says (1, 4, 9, 19)
Choosing $(1,4,9)$ will give us $Q(X)=X^{2}+2 X+1$

We can now detect (up to k) errors

Evaluate $P(X)$ at $d+1+k$ points
Send $P(0), P(1), P(2), \ldots, P(d+k)$
Received as $P(0), P(1)^{*}, P(2), P(3), P(4)^{*}, \ldots, P(d+k)$

- At least d+1 of these values assumed correct
- Using these $\mathrm{d}+1$ correct values for interpolation will give $\mathrm{P}(\mathrm{X})$
- Using any of the incorrect values for interpolation will give some other polynomial

Quick way of detecting errors

- Interpolate first $d+1$ points to get $Q(X)$
- Check that all other received values are consistent with this polynomial $\mathrm{Q}(\mathrm{X})$
- If all values consistent, no errors.

> In this case, we know $Q(X)=P(X)$ else there were errors...

How good is our encoding?

Naïve Repetition:

To send d+1 numbers with error detection, sent $(d+1)(k+1)$ numbers

Polynomial Coding:
To send d+1 numbers with error detection, sent ($d+k+1$) numbers

How about error correction?

Requires more redundancy

To send d+1 numbers in such a way that we can correct up to k errors, need to send $d+1+2 k$ numbers.

Similar encoding scheme

Evaluate degree- $\mathrm{d} P(x)$ at $d+1+2 k$ points

Send $P(0), P(1), P(2), \ldots, P(d+2 k)$
Receive $P(0), P(1)^{*}, P(2), P(3), P(4)^{*}, \ldots, P(d+2 k)$
At least $d+1+k$ of these values will be correct (since we assume at most k corruptions)

Trouble: We do NOT know which ones are correct

Correct polynomial determined from noisy data
Suppose $\langle P(0), P(1), \ldots, P(d+2 k)\rangle$ is transmitted and $\left\langle r_{0}, r_{1}, \ldots, r_{d+k}\right\rangle$ is received, with $\leq k$ errors

Theorem: $P(X)$ is the unique degree-d polynomial that differs from the received data on $\leq k$ points.

Proof: Clearly, the original polynomial $\mathrm{P}(\mathrm{X})$ obeys $P(i) \neq r_{i}$ for $\leq k$ values of i

Suppose a different degree-d polynomial $Q(X)$ did so as well. Then $P(i) \neq Q(i)$ for $\leq 2 k$ values of i. (Why?)

$$
\Rightarrow P(i)=Q(i) \text { for } \geq(d+2 k+1)-2 k=d+1 \text { values of } i
$$

Thus $P(X), Q(X)$ agree with each other on $d+1$ points. So being degree-d polynomials, they must be equal.

A geometric view

The evaluation encodings of two different degree-d polynomials $P(X)$ and $R(X)$ differ on at least $2 k+1$ of the $d+2 k+1$ points.

Viewed as points in $F_{25}^{d+2 k+1}$ their "Hamming distance" (number of positions where they differ) is $\geq 2 k+1$

So if $\leq k$ corruptions occur, the original polynomial is the unique closest one (in Hamming distance) to the noisy received word.

Theorem: The transmitted polynomial $P(X)$ is the unique degree-d polynomial that agrees with the received data on at least $d+1+k$ points

Brute-force Algorithm to find $P(X)$:

Interpolate each subset of $(\mathrm{d}+1)$ points
Check if the resulting polynomial agrees with received data on $\mathrm{d}+1+\mathrm{k}$ pts

Takes too much time...

A fast (cubic runtime) algorithm to do error correction and find $P(X)$ was given by [Peterson, 1960]

Later improvements by Berlekamp and Massey gave practical algorithms.

We will now sketch an elegant approach (buried in a patent by Welch-Berlekamp) to efficiently recover the original polynomial when there are k corruptions

Locating the errors

Noisy points mess up the interpolation

Let Err $:=\left\{i: P(i) \neq r_{i}\right\}$ be the set of error locations

If only we knew the error locations, we'd be done

Define the error locator polynomial with roots at error locations:

$$
E(X):=\prod_{i \in E \operatorname{Err}}(X-i)
$$

Of course we don't know $E(X)$

A valid equation for all points

Err := $\left\{i: P(i) \neq r_{i}\right\}$
Error locator polynomial: $E(X):=\prod_{i \in E r r}(X-i)$
Key equation: For evaluation points i,

$$
E(i) r_{i}=E(i) P(i)
$$

Proof:

- If $i \in \operatorname{Err}, E(i)=0$ so both sides are 0 .
- If $i \notin E r r, r_{i}=P(i)$ so both sides are equal.

Define $N(X):=E(X) P(X)$; the degree of $N(X)$ is $\leq d+k$
There is a rational function $\mathrm{R}(\mathrm{X})=\frac{N(X)}{E(X)}$
with $\operatorname{deg}(N) \leq d+k$ and $\operatorname{deg}(E) \leq k$ such that $R(i)=r_{i}$ for $i=0,1, \ldots, d+2 k$
(Let's say 0/0 is equal to any desired value)

Error-correction algorithm

1. Interpolate a rational function $\tilde{R}(X)=\frac{\tilde{N}(X)}{\tilde{E}(X)}$ with $\operatorname{deg}(\tilde{E}) \leq k$ and $\operatorname{deg}(\widetilde{N}) \leq d+k$ such that $\tilde{R}(i)=r_{i}$ for $i=0,1, \ldots, d+2 k$
2. If $\tilde{R}(X)$ is a polynomial of degree $\leq d$, output it; otherwise declare more than k errors occurred.

Efficiency?

Similar to polynomial interpolation, Step 1 can be implemented by solving a system of linear equations
(a solution exists by previous slide)

Correctness

Interpolate a rational function $\tilde{R}(\mathrm{X})=\frac{\widetilde{N}(X)}{\tilde{E}(X)}$ with $\operatorname{deg}(\widetilde{E}) \leq k$ and $\operatorname{deg}(\widetilde{N}) \leq d+k$ such that $\tilde{R}(i)=r_{i}$ for $i=0,1, \ldots, d+2 k$

Claim: There is a unique such rational function.
Proof: We proved existence of a solution $\mathrm{R}(\mathrm{X})=\frac{N(X)}{E(X)}$ via error locator polynomial $E(X)$.
If we had another solution $\tilde{R}(X)=\frac{\tilde{N}(X)}{\tilde{E}(X)}$, then

$$
\widetilde{N}(i) E(i)=N(i) \widetilde{E}(i) \text { for } i=0,1, \ldots, d+2 k .
$$

This implies $\widetilde{N}(X) E(X)=N(X) \widetilde{E}(X)$ as polynomials (Why?)

$$
\text { So } \tilde{R}(X)=R(X)=P(X) \text {. }
$$

How good is Reed-Solomon encoding?

Naïve Repetition:
To send d+1 numbers with error correction of up to k corruptions, sent $(d+1)(2 k+1)$ numbers

Polynomial (Reed-Solomon) Coding:
To send $d+1$ numbers with
error
of up to k corruptions, sent $(d+2 k+1)$ numbers (optimal!)

Sending messages on a noisy channel
 > Um, what if $d+2 k+1>257 ?$

 Um, what if

 Um, what if d+2k+1>257? d+2k+1>257?
 Alice

Message: $\mathrm{d}+1$ symbols from \mathbb{F}_{257}
To guard against k corruptions,
Reed-Solomon: treat message as coeffs of poly P, send $P(1), P(2), \ldots, P(d+2 k+1)$

Sending messages on a noisy channel

What if the noisy channel corrupts bits, not bytes?
(Can we have fewer redundant bits?)

Sending messages on a noisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

Sending messages on a noisy channel

Alice wants to send an ($\mathrm{n}-1$)-bit message to Bob.

The channel may flip up to 1 bit.

How can Alice get the message across?

Q1: How can Bob detect if there's been a bit-flip?

Parity-check solution

Alice tacks on a bit, equal to the parity of the message's $n-1$ bits.

Alice's n-bit 'encoding' always has an even number of 1 's.

Bob can detect if the channel flips a bit: if he receives a string with an odd \# of 1's.

1-bit error-detection for 2^{n-1} messages
by sending n bits: optimal! (exercise)

Linear Algebra perspective

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1
\end{array}\right] \underset{\sim}{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1}
\end{array}\right]}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n-1} \\
y_{n}
\end{array}\right]
$$

$\mathrm{G}: \operatorname{an} \mathrm{n} \times(\mathrm{n}-1)$
'generator' matrix
Alice's
message $x \in \mathbb{F}_{2}^{n-1}$

Bob
receives

Linear Algebra perspective

$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1\end{array}\right]\left[\begin{array}{c}z_{1} \\ z_{2} \\ \\ \\ \\ \begin{array}{c}\mathrm{H}: \\ \text { parity check' } \\ \text { matrix }\end{array} \\ z_{3} \\ \vdots \\ z_{n-1} \\ z_{n}\end{array}\right] \stackrel{?}{=} \quad \stackrel{?}{=}$
Bob checks this to detect if no errors

Solves 1-bit error detection, but not correction

If Bob sees $z=(1,0,0,0,0,0,0)$,

did Alice send $y=(0,0,0,0,0,0,0)$,

$$
\begin{aligned}
& \text { or } y=(1,1,0,0,0,0,0) \text {, } \\
& \text { or } y=(1,0,1,0,0,0,0) \text {, } \\
& \text { or... ? }
\end{aligned}
$$

The Hamming $(7,4)$ Code

Alice communicates 4-bit messages (16 possible messages) by transmitting 7 bits.

$$
G^{\prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

Alice encodes
 $x \in \mathbb{F}_{2}^{4}$ by $G^{\prime} x$,
 which looks like x followed by 3 extra bits.

The Hamming $(7,4)$ Code

Alice sends 4-bit messages $\left(x_{1} x_{2} x_{3} x_{4}\right)$ using 7 'codeword' bits.

Codeword $y=G x$ satisfies:
$y_{3}=x_{1} \quad y_{5}=x_{2} \quad y_{6}=x_{3} \quad y_{7}=x_{4}$
$y_{1}=x_{1}+x_{2}+x_{4}$
$y_{2}=x_{1}+x_{3}+x_{4}$
$y_{4}=x_{2}+x_{3}+x_{7}$
Let's permute the output 7 bits (rows of G')

$$
\mathrm{G}=
$$

$\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

The Hamming $(7,4)$ Code

Alice sends 4-bit messages using 7 codeword bits.
Any 'codeword' y = Gx satisfies some 'parity checks':

$$
\left.\left.\begin{array}{c}
\mathrm{y}_{1}=\mathrm{y}_{3}+\mathrm{y}_{5}+\mathrm{y}_{7} \\
\mathrm{y}_{2}=\mathrm{y}_{3}+\mathrm{y}_{6}+\mathrm{y}_{7} \\
\mathrm{y}_{4}=\mathrm{y}_{5}+\mathrm{y}_{6}+\mathrm{y}_{7} \\
\mathrm{H}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right. \\
0
\end{array} 1 \begin{array}{llllll}
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{array} 1\right]\right] .
$$

Let's permute the output 7 bits (rows of G')

$$
\mathrm{G}=
$$

$\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

The Hamming(7,4) Code

Alice communicates 4-bit messages using 7 bits.

Columns are 1... 7 in binary!

$$
\begin{aligned}
& H= {\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] } \\
& \\
& H y=0 \text {, because } H G=0 .
\end{aligned}
$$

The Hamming $(7,4)$ Code

On receiving $z \in \mathbb{F}_{2}^{7}$, Bob computes Hz .

$$
H=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

If no errors, $\mathrm{z}=\mathrm{Gx}$, so Hz = HGx = 0 .
If jth coordinate corrupted, $\mathrm{z}=\mathrm{Gx}+\mathrm{e}_{\mathrm{j}}$.
Then $\mathrm{Hz}=\mathrm{H}\left(\mathrm{Gx}+\mathrm{e}_{\mathrm{j}}\right)=\mathrm{HGx}+\mathrm{He}_{\mathrm{j}}$
$=\mathrm{He}_{\mathrm{j}}=(\mathrm{j}$ 'th column of H$)=$ binary rep. of j
Bob knows where the error is, can recover msg!

Sending longer messages: General Hamming Code

By sending $\mathrm{n}=7$ bits, Alice can communicate one of 16 messages, guarding against 1 bit flip.

This scheme generalizes: Let $\mathrm{n}=2^{\mathrm{r}-1}$, take H to be the $\mathrm{r} \times\left(2^{r}-1\right)$ matrix whose columns are the numbers $1 . . .2^{r}-1$ in binary.

There are $2^{n-r}=2^{n} /(n+1)$ solutions $z \in\{0,1\}^{n}$ to the check equations $\mathrm{Hz}=0$.

- These are codewords of the Hamming code of length n

Summary: Parity Check \& Hamming code

To detect 1 bit error in n transmitted bits:

- one parity check bit suffices,
- can communicate $2^{\mathrm{n}-1}$ messages by sending n bits.

To correct 1 bit error in n transmitted bits:

- for $n=2^{r}-1$, r check bits suffice
- can communicate $2^{n /(n+1)}$ messages by sending n bits

Fact (left as exercise): Both are optimal (in terms of number of messages communicated through n codeword bits)

Polynomials:

Lagrange Interpolation

Reed-Solomon codes:
Erasure correction via interpolation

Error correction
Hamming codes:
Correcting 1 bit error

Study Guide

