15-251: Great Theoretical Ideas in Computer Science

Fall 2016 Lecture 26
November 29, 2016

Correction
Lewvel

Error Correction

Level L

EI

aﬂ*

Versmn 2
25 x 25 Array 26 x 26 Array

Level Q Level H

g
]

Version 3
2B x 28 Array 29 x 29 Array

010101 1060?10
1100111010101
1101010100101
0101010010100
1010101101010
1010101010101

No Coding

01 mu 1(|010F
01 1011000!10
110011101 101
1101010100101
01 101001010
0101010110111|
0101010101010] }

Rate 2/3 Feed-Solomon Coding

Recap: Polynomial Interpolation
Theorem:

Let arbitrary pairs (a,,b,), (a,,b,), ..., (8g+1,0441)
from a field F be given (with all a;'s distinct).
Then there always exists a unique polynomial
P(x) of degree < d with P(a;) = b, for all I.

Uniqueness follows because a degree < d
polynomial has < d distinct roots.

Can construct a polynomial with P(a;) = b, via
Lagrange interpolation.

Lagrange Interpolation

aq o
ay 0,
A 03
Ay by
ad+1 bd+1

Want P(x)

<

Lagrange Interpolation

a, 1
a, 0
A, 0
A 0
Ag+1 0

Can we do this special case?

Lagrange Interpolation

ay 1
Numerator a 0 Denominator
. 2 .

IS a deg. d a 0 IS a nonzero
polynomial 3 field element
A 0
Ag+1 0

(x—az)(x—a3) - (X—ad+1)

S1(x) =

a, 1
s 0
A 0
Ag+1 0

What about above data?

a, 0
s 0
A 0
Ag+1 1

And for this data,

Polynomial Interpolation

aq o
ay 0,
A 03
Ay by
ad+1 bd+1

~\

P(x) =Db1-S1(X)+b2-So(xX)+ -+ Dbg+1 - Sd+1(x)

Recall: Interpolation

Let pairs (a;,b,), (a,,b,), ..., (Ag+1,0441)
from a field F be given (with all a’s distinct).

Theorem:
There Is a unique degree d polynomial P(x)
satisfying P(a;) = b, foralli=1...d+1.

A linear algebra view

Let p(X) = pg + P1X + Py X2 + ... + pyX°
Need to find the coefficient vector (pg py,...,Pg)

p(a) =pg+pa+t..+pya
=1-ppta-p;+aspy,*...+ad py

Thus we need to solve:

Lagrange interpolation
The (d+ 1) x (d+ 1) Vandermonde matrix

d
a 1

o

1 a
1 as

2 2

2
1
2
2

9 d
1 ad+1 agyy 0 agyy

is invertible.

e The determinant of M is nonzero when a;’s are distinct

7= M~1p

Thus can recover coefficient vector as

The columns of M-t are given by the coefficients
of the various “selector” polynomials we constructed
In Lagrange interpolation.

Representing Polynomials

Let P(X)eF[x] be a degree-d polynomial.
Representing P(x) using d+1 field elements:

1. List the d+1 coefficients.

2. Give P’s value at d+1 different elements.

Rep 1 to Rep 2: Evaluate at d+1 elements

Application of Fields/Polynomials
(and linear algebra):

Error-correcting codes

Sending messages on a noisy channel

Alice Bob

“ bit.ly/vrxUBN ”
— >

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Sending messages on a noisy channel

Let's say messages are sequences from [257

viXUBN «— 118 114 120 85 66 78

noisy channel

v
118 114 104 85 35 /8

The channel may corrupt up to k symbols.

Sending messages on a noisy channel

Let's say messages are sequences from [257

viXUBN «— 118 114 120 85 66 78

noisy channel

v
118 114 104 85 35 /8

How to correct the errors?

Simpler case: “Erasures’

118 114 120 85 66 /8

erasure channel

\4

118 114 7?7 85 ?7? 78

Repetition code

Have Alice repeat each symbol k+1 times.

118 114 120 85 66 78

becomes

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 /8 /8 78

erasure channel

\4

118 118 118 77 7?7 114 120 120 120 85 85 85 66 66 66 78 78 78

Repetition code — noisy channel

Have Alice repeat each symbol 2k+1 times.

118 114 120 85 66 78

becomes

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 /8 /8 78

noisy channel

v
118 118 118 114 223 114 120 120 120 85 85 85 66 66 66 /8 /8 /8

This is pretty wasteful!

To send message of d+1 symbols and
guard against k erasures, we had

to send (d+1)(k+1) total symbols.

Can we do better?

This Is pretty wasteful!

To send message of d+1 symbols and
guard against k erasures, we had

to send (d+1)(k+1) total symbols.

To send even 1 message symbol with
k erasures, need to send k+1 total symbols.

Maibe for d+1 messaie simbols with k erasures,

Enter polynomials

Say Alice’s message is d+1 elements from ;57

118 114 120 85 66 /8

Alice thinks of it as the coefficients of a
degree-d polynomial P(x) € [F257[X]

P(x) = 118x° + 114x* + 120x3 + 85x? + 66X + 78

Send it in the Values Representation!

P(x) = 118x> + 114x* + 120x3 + 85%x~ + 66x + 78

Alice sends P(x)’s values on d+k+1 inputs:
P(1), P(2), P(3), ..., P(d+k+1)

This is called the Reed—Solomon encoding.

Send it in the Values Representation!

P(x) = 118x° + 114x* + 120x3 + 85%x% + 66x + 78

Alice sends P(x)’s values on d+k+1 inputs:
P(1), P(2), P(3), ..., P(d+k+1)

If there are at most k erasures, then
Bob still knows P’s value on d+1 points.

How good Is our encoding?

Naive Repetition:
To send d+1 numbers with k erasure recovery
sent (d+1)(k+1) numbers

Polynomial Coding:
To send d+1 numbers with k erasures recovery,
sent (d+k+1) numbers

Reed—-Solomon codes are used a lot in practice!

CD/DVDs, hard discs,
satellite communication,

Another everyday use:

FE: To:

TELEC OM SUFPLIER: TELECOM CUSTOMEE
155 MOWHMOUTH PEWTY 2020 ¥ALLEYDALE BOAD
W LOHG BERAHC K, HT BIEMINGHAM, AL
07764 -1394 F3244

GEITED: gi62742MV 96421234

[F] CUST FROD II: AAGEH211211

) QUARTITY:]

LGEC

RINGER C4C

orwr: 1 OF 1

MM orsevme 3 L5S
! — -

Maxicodes

= “UPS codes”

= another 2-d
Reed-Solomon codes

" PDF417 codes’

= 2-d Reed-Solomon

... Gtodes

What about corruptions/errors

To send message of d+1 symbols
and enable correction from up to k errors,
repetition code has to send (d+1)(~k+1) total symbols.

To communicate even 1 symbol s o
while enabling recovery from s
k errors, need to send at least B rcccived word

total codeword symbols. k k Withinkerrors
from both
co and cq

Maybe for d+1 message symbols with k errors,
total symbols can suffice??

Want to send a polynomial of degree-d
subject to at most k corruptions.

First simpler problem: Error detection

Suppose we try the same idea

« Evaluate P(X) at d+1+k points

. Send P(0), P(1), P(2), ..., P(d+k)

M

Example

P(X) =2X2+ 1, and k = 1.
So I sent P(0)=1, P(1)=3, P(2)=9, P(3)=19
Corrupted email says (1, 4, 9, 19)

Choosing (1, 7/, 9) will give us Q(X) = X?+2X +1

We can now detect (up to k) errors

Evaluate P(X) at d+1+k points
Send P(0), P(1), P(2), ..., P(d+k)

Received as P(0), , P(2), P(3), , ..., P(d+K)

« Atleast d+1 of these values assumed correct

* Using these d+1 correct values for interpolation
will give P(X)

* Using any of the incorrect values for interpolation
will give some other polynomial

Quick way of detecting errors

* Interpolate first d+1 points to get Q(X)

 Check that all other received values are
consistent with this polynomial Q(X)

e |f all values consistent, no errors.

In this case, we know Q(X) = P(X)

else there were errors...

How good Is our encoding?

Naive Repetition:
To send d+1 numbers with error detection,
sent (d+1)(k+1) numbers

Polynomial Coding:
To send d+1 numbers with error detection,
sent (d+k+1) numbers

How about error correction?

Requires more redundancy

To send d+1 numbers in such a way
that we can correct up to k errors,
need to send d+1+2k numbers.

Similar encoding scheme

Evaluate degree-d P(x) at d+1+2k points

Send P(0), P(1), P(2), ..., P(d+2k)
Receive P(0), , P(2), P(3), , ..., P(d+2K)

At least d+1+k of these values will be correct
(since we assume at most k corruptions)

Trouble: We do NOT know which ones are correct

Correct polynomial determined from noisy data

Suppose (P(0),P(1),...,P(d + 2k)) is transmitted
and (ry, 1y, ..., 754) IS received, with < k errors

Theorem: P(X) iIs the unigue degree-d polynomial
that differs from the received data on < k points.

Proof: Clearly, the original polynomial P(X)
obeys P(i) # r; for < k values of i

Suppose a different degree-d polynomial Q (X) did so as well.
Then P(i) # Q(i) for < 2k values of i. (Why?)
= P(i) =Q(i) for=>(d+ 2k + 1) — 2k = d + 1 values of i

Thus P(X), Q(X) agree with each other on d + 1 points.
So being degree-d polynomials, they must be equal.

A geometric view

The evaluation encodings of two different degree-d
polynomials P(X) and R(X) differ on at least 2k + 1 of
the d + 2k + 1 points.

Viewed as points in F£4:2k+1 their “Hamming distance”
(number of positions where they differ) is > 2k + 1

So If < k corruptions
occur, the original polynomial @;

IS the unique closest one

(in Hamming distance) °
to the noisy received word. ©

Theorem: The transmitted polynomial P(X) is the unique
degree-d polynomial that agrees with the received data on
at least d+1+k points

Brute-force Algorithm to find P(X):

Interpolate each subset of (d+1) points

Check if the resulting polynomial agrees
with received data on d+1+k pts

A fast (cubic runtime) algorithm to do error correction
and find P(X) was given by [Peterson, 1960]

Later improvements by Berlekamp and Massey
gave practical algorithms.

We will now sketch an elegant approach (buried in a
patent by Welch-Berlekamp) to efficiently recover
the original polynomial when there are k corruptions

Locating the errors

Noisy points mess up
the interpolation

Let Err :={i : P(i) # r;} be o Y = P(X)
the set of error locations Y m

If only we knew the error
locations, we’'d be done 1 2 345 ¥

Define the error locator polynomial with roots at error
locations:

(X — i) Of course we

E(X):

A valid equation for all points

Err:={i: P(i) # r;}
Error locator polynomial: E(X) == [l;eg-(X — 1)

Key equation: For evaluation points i,
E(r; = EQP®)
Proof:

 Ifi € Err, E(i) = 0 so both sides are 0.
« Ifi &Erm r, = P(i) so both sides are equal.

Define N(X) := E(X)P(X); thedegreeof N(X)is<d+k

There is a rational function R(X) = %
with deg(N) < d + k and deg(E) < k (Let's say 0/0 is

such that R(i) =r; fori =0,1,...,d + 2k equal to any
desired value)

Error-correction algorithm

N(X)
Wilig
E(X)

deg(E) < k and deg(ﬁ) < d + k such that R(i) = r;
fori =0,1,..,d + 2k

1. Interpolate a rational function R(X) =

2. If R(X) is a polynomial of degree < d, output it;
otherwise declare more than k errors occurred.

Efficiency?
Similar to polynomial interpolation, Step 1 can be

Implemented by solving a system of linear equations
(a solution exists by previous slide)

Correctness

Interpolate a rational function R(X) = N&X)

E(X)
deg(E") < k and deg(IV) < d + k such that

R =1 fori =0,1,..,d+ 2k

Wilig

Claim: There Is a unigue such rational function.

Proof: We proved existence of a solution R(X) = % via

error locator polynomial E (X).

If we had another solution R(X) = NEX; then

N(E@G@) =N@E@G) fori =0,1,...,d + 2k.
This implies N(X)E(X) = N(X)E(X) as polynomials (Why?)
So R(X) = R(X) = P(X).

How good is Reed-Solomon encoding?

Naive Repetition:
To send d+1 numbers with
error correction of up to k corruptions,
sent (d+1)(2k+1) numbers

Polynomial (Reed-Solomon) Coding:
To send d+1 numbers with
error —rrocion of up to k corruptions,
sent (d+2k+1) numbers (optimal!)

Sending messages on a noisy channel

Message: d+1 symbols from [»57

To guard against k corruptions,
Reed-Solomon: treat message as coeffs of poly P,
send P(1), P(2), ..., P(d+2k+1)

Sending messages on a noisy channel

Alice

oQQ

What if the noisy
channel corrupts bits, 257

not bytes? | |
(Can we have fewer Ainst k corruptions,

redundant bits?) sage as coeffs of poly P,
srma P(1), P(2), ..., P(d+2k+1)

Sending messages on a noisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

Sending messages on a noisy channel

Alice wants to send an (n—1)-bit message to Bob.

The channel may flip up to 1 bit.

How can Alice get the message across?

Parity-check solution

Alice tacks on a bit, equal to
the parity of the message’s n—1 bits.

Alice’s n-bit ‘encoding’ always has
an even number of 1's.

Bob can detect if the channel flips a bit:
iIf he receives a string with an odd # of 1’s.

1-bit error-detection for 2"~ messages
by sending n bits: optimal! (exercise)

Linear Algebra perspective

O 0 --- 0 X1 V1
X2
1 0 --- O X3)
0 = | Y3
| Xn—-1_ ;

0 00 -+ 1 Vi1

Linear Algebra perspective

111 - 1| =
o
?
H: alxn ‘3 = 0
‘parity check’
matrix Zn—1

Solves 1-bit error detection, but not correction

If Bobseesz=(1, 0, 0,0, 0, 0, 0),

did Alice sendy =(0, 0, 0, 0, O, O, 0),
ory=(1,1,0,0,0, 0, 0),
ory=(1,0,1,0,0,0,0),

The Hamming(7,4) Code

Alice communicates 4-bit messages (16 possible messages)
by transmitting 7 bits.

1 0 0 O
O 1 0 O Alice encodes
0 010 xe F2 by G'x,
G=10 0 0 1
O 1 1 1 which looks like
1 011 x followed by

The Hamming(7,4) Code

Alice sends 4-bit messages (X;X,X3X,)
using 7 ‘codeword’ bits.

Codeword y = Gx satisfies:
Y3=X1 Ys5=X; Yg=X3 Y77X4
Y1 =X+ X5 Xy
Yo = Xy X3 ¥ Xy
Ya= Xy + X3+ X7

Let's permute
the output 7 bits
(rows of G’)

(

=Nl ==

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 codeword bits.

Any ‘codeword’y = GX Let’'s permute
satisfies some ‘parity checks'’: the output 7 bits
Vi =Ys Vs +Y; (rows of &)

Yo=Y3tVYs TV
Ye=Y5 1 Ys T Y7

The Hamming(7,4) Code

On receiving z€F’, Bob computes Hz.

0001111
H=(0 1 1 0 0 1 1
101010 1

If no errors, z = Gx, so Hz = HGx = 0.

If jth coordinate corrupted, z = Gx+e,.

Then Hz = H(Gx+e;) = HGx + He;
= He, = (Jjth column of H) = binary rep. of

Sending longer messages: General Hamming Code

By sending n = 7 bits, Alice can communicate
one of 16 messages, guarding against 1 bit flip.

This scheme generalizes: Letn =2"-1,
take H to be the rx(2'-1) matrix whose
columns are the numbers 1...2"-1 In binary.

There are 2""= 2"/(n+1) solutions z € {0,1}" to the
check equations Hz = 0.
 These are codewords of the Hamming code of
length n

Summary: Parity Check & Hamming code

To detect 1 bit error in n transmitted bits:
* one parity check bit suffices,
e can communicate 2" messages by
sending n bits.

To 1 bit error in n transmitted bits:
« forn=2"-1, r check bits suffice
* can communicate 2"/(n+1) messages by
sending n bits

Fact (left as exercise). Both are optimal (in terms
of number of messages communicated through n codeword bits)

Study Guide

Polynomials:
Lagrange Interpolation

Reed-Solomon codes:

Erasure correction via
interpolation

Error correction

Hamming codes:
Correcting 1 bit error

