
15-251: Great Theoretical Ideas in Computer Science

Error Correction

Fall 2016 Lecture 26

November 29, 2016

Recap: Polynomial Interpolation

Let arbitrary pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Then there always exists a unique polynomial

P(x) of degree  d with P(ai) = bi for all i.

Theorem:

• Uniqueness follows because a degree  d

polynomial has  d distinct roots.

• Can construct a polynomial with P(ai) = bi via

Lagrange interpolation.

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

b1

b2

b3

···

bd

bd+1

Want P(x)
(with degree ≤ d)

such that P(ai) = bi ∀i.

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Can we do this special case?

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Denominator

is a nonzero

field element

Numerator

is a deg. d

polynomial

Call this the selector polynomial for a1.

a1

a2

a3

···

ad

ad+1

0

1

0

···

0

0

What about above data?

a1

a2

a3

···

ad

ad+1

0

0

0

···

0

1

And for this data,

Polynomial Interpolation

a1

a2

a3

···

ad

ad+1

b1

b2

b3

···

bd

bd+1

Recall: Interpolation

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Theorem:

There is a unique degree d polynomial P(x)

satisfying P(ai) = bi for all i = 1…d+1.

A linear algebra view

Let p(x) = p0 + p1x + p2 x2 + … + pd x
d

Need to find the coefficient vector (p0,p1,…,pd)

p(a) = p0 + p1 a + …+ pd ad

= 1  p0 + a  p1 + a2 p2 + … + ad pd

Thus we need to solve:

Lagrange interpolation

Thus can recover coefficient vector as

The columns of M-1 are given by the coefficients

of the various “selector” polynomials we constructed

in Lagrange interpolation.

Representing Polynomials

Let P(x)∈F[x] be a degree-d polynomial.

Representing P(x) using d+1 field elements:

1.

2.

List the d+1 coefficients.

Give P’s value at d+1 different elements.

Rep 1 to Rep 2:

Rep 2 to Rep 1:

Evaluate at d+1 elements

Lagrange Interpolation

Application of Fields/Polynomials

(and linear algebra):

Error-correcting codes

Sending messages on a noisy channel

Alice Bob

“ bit.ly/vrxUBN ”

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Sending messages on a noisy channel

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Let’s say messages are sequences from

vrxUBN ↔ 118 114 120 85 66 78

vrxUBN ↔ 118 114 104 85 35 78

noisy channel

Sending messages on a noisy channel

How to correct the errors?

How to even detect that there are errors?

Let’s say messages are sequences from

vrxUBN ↔ 118 114 120 85 66 78

vrxUBN ↔ 118 114 104 85 35 78

noisy channel

Simpler case: “Erasures”

What can you do to handle up to k erasures?

118 114 120 85 66 78

118 114 ?? 85 ?? 78

erasure channel

Repetition code

118 114 120 85 66 78

erasure channel

Have Alice repeat each symbol k+1 times.

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 78 78 78

becomes

118 118 118 ?? ?? 114 120 120 120 85 85 85 66 66 66 78 78 78

If at most k erasures, Bob can figure out each symbol.

Repetition code – noisy channel

118 114 120 85 66 78

noisy channel

Have Alice repeat each symbol 2k+1 times.

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 78 78 78

becomes

118 118 118 114 223 114 120 120 120 85 85 85 66 66 66 78 78 78

At most k corruptions: Bob can take majority of each block.

This is pretty wasteful!

To send message of d+1 symbols and

guard against k erasures, we had

to send (d+1)(k+1) total symbols.

Can we do better?

This is pretty wasteful!

To send even 1 message symbol with

k erasures, need to send k+1 total symbols.

To send message of d+1 symbols and

guard against k erasures, we had

to send (d+1)(k+1) total symbols.

Maybe for d+1 message symbols with k erasures,

d+k+1 total symbols can suffice??

Enter polynomials

Say Alice’s message is d+1 elements from

118 114 120 85 66 78

Alice thinks of it as the coefficients of a

degree-d polynomial P(x) ∈ [x]

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

Now trying to send the degree-d polynomial P(x).

Send it in the Values Representation!

Alice sends P(x)’s values on d+k+1 inputs:

P(1), P(2), P(3), …, P(d+k+1)

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

This is called the Reed–Solomon encoding.

Send it in the Values Representation!

Alice sends P(x)’s values on d+k+1 inputs:

P(1), P(2), P(3), …, P(d+k+1)

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

If there are at most k erasures, then

Bob still knows P’s value on d+1 points.

Bob recovers P(x) using Lagrange Interpolation!

Example

How good is our encoding?

Naïve Repetition:

To send d+1 numbers with k erasure recovery

sent (d+1)(k+1) numbers

Polynomial Coding:

To send d+1 numbers with k erasures recovery,

sent (d+k+1) numbers

PDF417 codes

= 2-d Reed-Solomon

codes

Maxicodes

= “UPS codes”

= another 2-d

Reed-Solomon codes

Another everyday use:

Reed−Solomon codes are used a lot in practice!

CD/DVDs, hard discs,

satellite communication, …

What about corruptions/errors

To communicate even 1 symbol

while enabling recovery from

k errors, need to send at least

2k+1 total codeword symbols.

To send message of d+1 symbols

and enable correction from up to k errors,

repetition code has to send (d+1)(2k+1) total symbols.

Maybe for d+1 message symbols with k errors,

d+2k+1 total symbols can suffice??

k k

𝑐0

𝑐1
received word

within k errors

from both

𝑐0 and 𝑐1

Want to send a polynomial of degree-d

subject to at most k corruptions.

Suppose we try the same idea

• Evaluate P(X) at d+1+k points

• Send P(0), P(1), P(2), …, P(d+k)

At least d+1 of these values will be unchanged

(because we assume at most k errors)

First simpler problem: Error detection

P(X) = 2X2 + 1, and k = 1.

So I sent P(0)=1, P(1)=3, P(2)=9, P(3)=19

Corrupted email says (1, 4, 9, 19)

Choosing (1, 4, 9) will give us Q(X) =

Example

X2 + 2X + 1

We can now detect (up to k) errors

Evaluate P(X) at d+1+k points

Send P(0), P(1), P(2), …, P(d+k)

• At least d+1 of these values assumed correct

Received as P(0), P(1)* , P(2), P(3), P(4)*, …, P(d+k)

• Using these d+1 correct values for interpolation

will give P(X)

• Using any of the incorrect values for interpolation

will give some other polynomial

Quick way of detecting errors

• Interpolate first d+1 points to get Q(X)

• Check that all other received values are

consistent with this polynomial Q(X)

• If all values consistent, no errors.

In this case, we know Q(X) = P(X)

else there were errors…

How good is our encoding?

Naïve Repetition:

To send d+1 numbers with error detection,

sent (d+1)(k+1) numbers

Polynomial Coding:

To send d+1 numbers with error detection,

sent (d+k+1) numbers

How about error correction?

To send d+1 numbers in such a way

that we can correct up to k errors,

need to send d+1+2k numbers.

Requires more redundancy

Similar encoding scheme

Evaluate degree-d P(x) at d+1+2k points

Send P(0), P(1), P(2), …, P(d+2k)

At least d+1+k of these values will be correct

(since we assume at most k corruptions)

Receive P(0), P(1)* , P(2), P(3), P(4)*, …, P(d+2k)

Trouble: We do NOT know which ones are correct

Theorem: 𝑃(𝑋) is the unique degree-d polynomial

that differs from the received data on ≤ 𝑘 points.

Suppose a different degree-d polynomial 𝑄(𝑋) did so as well.

Then 𝑃 𝑖 ≠ 𝑄(𝑖) for ≤ 2𝑘 values of 𝑖. (Why?)

Proof: Clearly, the original polynomial P(X)

obeys 𝑃 𝑖 ≠ 𝑟𝑖 for ≤ 𝑘 values of 𝑖

Correct polynomial determined from noisy data

Suppose 〈𝑃 0 , 𝑃 1 ,… , 𝑃 𝑑 + 2𝑘 〉 is transmitted

and 〈𝑟0, 𝑟1, … , 𝑟𝑑+𝑘〉 is received, with ≤ 𝑘 errors

⟹ 𝑃 𝑖 = 𝑄(𝑖) for ≥ 𝑑 + 2𝑘 + 1 − 2𝑘 = 𝑑 + 1 values of 𝑖

Thus 𝑃 𝑋 , 𝑄(𝑋) agree with each other on 𝑑 + 1 points.

So being degree-d polynomials, they must be equal.

The evaluation encodings of two different degree-d

polynomials 𝑃 𝑋 and 𝑅(𝑋) differ on at least 2𝑘 + 1 of

the 𝑑 + 2𝑘 + 1 points.

A geometric view

Viewed as points in 𝐹257
𝑑+2𝑘+1 their “Hamming distance”

(number of positions where they differ) is ≥ 2𝑘 + 1

far off

So if ≤ 𝑘 corruptions

occur, the original polynomial

is the unique closest one

(in Hamming distance)

to the noisy received word.

Brute-force Algorithm to find P(X):

Interpolate each subset of (d+1) points

Check if the resulting polynomial agrees

with received data on d+1+k pts

Takes too much time…

Theorem: The transmitted polynomial P(X) is the unique

degree-d polynomial that agrees with the received data on

at least d+1+k points

A fast (cubic runtime) algorithm to do error correction

and find 𝑃 𝑋 was given by [Peterson, 1960]

Later improvements by Berlekamp and Massey

gave practical algorithms.

We will now sketch an elegant approach (buried in a

patent by Welch-Berlekamp) to efficiently recover

the original polynomial when there are k corruptions

Locating the errors

Y

X

Noisy points mess up

the interpolation

Y = P(X)

Define the error locator polynomial with roots at error

locations:

𝐸 𝑋 ≔

𝑖∈𝐸𝑟𝑟

(𝑋 − 𝑖)

1 2 4 53

Let Err := 𝑖 ∶ 𝑃 𝑖 ≠ 𝑟𝑖 be

the set of error locations

If only we knew the error

locations, we’d be done

Of course we

don’t know 𝐸(𝑋)

Key equation: For all evaluation points 𝑖,
𝐸 𝑖 𝑟𝑖 = 𝐸 𝑖 𝑃 𝑖

A valid equation for all points

Err := 𝑖 ∶ 𝑃 𝑖 ≠ 𝑟𝑖
Error locator polynomial: 𝐸 𝑋 ≔ 𝑖∈𝐸𝑟𝑟(𝑋 − 𝑖)

Proof:

• If 𝑖 ∈ Err, 𝐸 𝑖 = 0 so both sides are 0.

• If 𝑖 ∉ Err, 𝑟𝑖 = 𝑃(𝑖) so both sides are equal.

Define 𝑁 𝑋 ≔ 𝐸 𝑋 𝑃 𝑋 ; the degree of 𝑁(𝑋) is ≤ 𝑑 + 𝑘

There is a rational function R X =
𝑁(𝑋)

𝐸(𝑋)

with deg 𝑁 ≤ 𝑑 + 𝑘 and deg 𝐸 ≤ 𝑘
such that 𝑅 𝑖 = 𝑟𝑖 for 𝑖 = 0,1, … , 𝑑 + 2𝑘

(Let’s say 0/0 is

equal to any

desired value)

Error-correction algorithm

1. Interpolate a rational function 𝑅 X =
 𝑁(𝑋)

 𝐸(𝑋)
with

deg 𝐸 ≤ 𝑘 and deg 𝑁 ≤ 𝑑 + 𝑘 such that 𝑅 𝑖 = 𝑟𝑖
for 𝑖 = 0,1, … , 𝑑 + 2𝑘

2. If 𝑅(𝑋) is a polynomial of degree ≤ 𝑑, output it;

otherwise declare more than 𝑘 errors occurred.

Efficiency?

Similar to polynomial interpolation, Step 1 can be

implemented by solving a system of linear equations
(a solution exists by previous slide)

Correctness

Interpolate a rational function 𝑅 X =
 𝑁(𝑋)

 𝐸(𝑋)
with

deg 𝐸 ≤ 𝑘 and deg 𝑁 ≤ 𝑑 + 𝑘 such that
 𝑅 𝑖 = 𝑟𝑖 for 𝑖 = 0,1, … , 𝑑 + 2𝑘

Claim: There is a unique such rational function.

Proof: We proved existence of a solution R X =
𝑁(𝑋)

𝐸(𝑋)
via

error locator polynomial 𝐸(𝑋).

If we had another solution 𝑅 X =
 𝑁(𝑋)

 𝐸(𝑋)
, then

 𝑁 𝑖 𝐸 𝑖 = 𝑁 𝑖 𝐸(𝑖) for 𝑖 = 0,1, … , 𝑑 + 2𝑘.

This implies 𝑁 𝑋 𝐸 𝑋 = 𝑁 𝑋 𝐸(𝑋) as polynomials (Why?)

So 𝑅 𝑋 = 𝑅 𝑋 = 𝑃(𝑋).

How good is Reed-Solomon encoding?

Naïve Repetition:

To send d+1 numbers with

error correction of up to k corruptions,

sent (d+1)(2k+1) numbers

Polynomial (Reed-Solomon) Coding:

To send d+1 numbers with

error correction of up to k corruptions,

sent (d+2k+1) numbers (optimal!)

Sending messages on a noisy channel

Alice Bob

Message: d+1 symbols from

To guard against k corruptions,

treat message as coeffs of poly P,

send P(1), P(2), …, P(d+2k+1)

Reed–Solomon:

Um, what if

d+2k+1 > 257?

Sending messages on a noisy channel

Alice Bob

Message: d+1 symbols from

To guard against k corruptions,

treat message as coeffs of poly P,

send P(1), P(2), …, P(d+2k+1)

Reed–Solomon:

Um, what if

d+2k+1 > 257?

What if the noisy

channel corrupts bits,

not bytes?

(Can we have fewer

redundant bits?)

Sending messages on a noisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

Sending messages on a noisy channel

Alice wants to send an (n−1)-bit message to Bob.

The channel may flip up to 1 bit.

How can Alice get the message across?

Q1: How can Bob detect if there’s been a bit-flip?

Parity-check solution

Alice tacks on a bit, equal to

the parity of the message’s n−1 bits.

Alice’s n-bit ‘encoding’ always has

an even number of 1’s.

Bob can detect if the channel flips a bit:

if he receives a string with an odd # of 1’s.

1-bit error-detection for 2n−1 messages

by sending n bits: optimal! (exercise)

Linear Algebra perspective

G: an n×(n−1)

‘generator’ matrix
Alice’s

message x∈

=

Bob

receives

Linear Algebra perspective

Bob

receives

H: a 1×n

‘parity check’

matrix

=
?

0

Bob checks this

to detect if no errors

Solves 1-bit error detection, but not correction

If Bob sees z = (1, 0, 0, 0, 0, 0, 0),

did Alice send y = (0, 0, 0, 0, 0, 0, 0),

or y = (1, 1, 0, 0, 0, 0, 0),

or y = (1, 0, 1, 0, 0, 0, 0),

or… ?

The Hamming(7,4) Code

Alice communicates 4-bit messages (16 possible messages)

by transmitting 7 bits.

G’ =

Alice encodes

x∈ by G’ x,

which looks like

x followed by

3 extra bits.

The Hamming(7,4) Code

Alice sends 4-bit messages (x1x2x3x4)

using 7 ‘codeword’ bits.

G =

Codeword y = Gx satisfies:

y3=x1 y5=x2 y6=x3 y7=x4

y1 = x1 + x2 + x4

y2 = x1 + x3 + x4

y4 = x2 + x3 + x7

Let’s permute

the output 7 bits

(rows of G’)

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 codeword bits.

G =

Any ‘codeword’ y = Gx

satisfies some ‘parity checks’:

y1 = y3 + y5 + y7

y2 = y3 + y6 + y7

y4 = y5 + y6 + y7

H =

I.e., Hy = 0

Let’s permute

the output 7 bits

(rows of G’)

The Hamming(7,4) Code

Alice communicates 4-bit messages using 7 bits.

G =

H =

Hy = 0, because HG = 0.

Columns are 1…7 in binary!

The Hamming(7,4) Code

H =

On receiving z∈ , Bob computes Hz.

If no errors, z = Gx, so Hz = HGx = 0.

If jth coordinate corrupted, z = Gx+ej.

Then Hz = H(Gx+ej) = HGx + Hej

= Hej = (j’th column of H) = binary rep. of j

Bob knows where the error is, can recover msg!

Sending longer messages: General Hamming Code

By sending n = 7 bits, Alice can communicate

one of 16 messages, guarding against 1 bit flip.

This scheme generalizes: Let n = 2r−1,

take H to be the r×(2r−1) matrix whose

columns are the numbers 1…2r-1 in binary.

There are 2n-r = 2n/(n+1) solutions z  {0,1}n to the

check equations Hz = 0.

• These are codewords of the Hamming code of

length n

Summary: Parity Check & Hamming code

To detect 1 bit error in n transmitted bits:

• one parity check bit suffices,

• can communicate 2n-1 messages by

sending n bits.

To correct 1 bit error in n transmitted bits:

• for n = 2r – 1, r check bits suffice

• can communicate 2n/(n+1) messages by

sending n bits

Fact (left as exercise): Both are optimal (in terms

of number of messages communicated through n codeword bits)

Polynomials:

Lagrange Interpolation

Reed-Solomon codes:

Erasure correction via
interpolation

Error correction

Hamming codes:

Correcting 1 bit error
Study Guide

