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The Binomial Formula
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The polynomial (1+x)n packages in

convenient algebraic form
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Generating functions are a formal 

algebraic view for (infinite) sequences



Generating functions are a formal 

algebraic representation for (infinite) sequences

(1+x)n is the “generating function”

for the sequence

k=0,1,…,n
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Often, surprisingly powerful representation to 

understand the sequence!



1 + X1 + X2 + X3 + … + Xn-2 + Xn-1 =
X - 1

Xn – 1

Recall the Geometric Series

1 - X

1 - Xn

=



1 + X1 + X2 + X3 + … + Xn + … =
1 - X

1

the Infinite Geometric Series

But also makes sense if we view

the infinite sum on the left as 

a formal power series in variable X

Holds when we plug X = a with |a| < 1



1 + X1 + X2 + X3 + … + Xn + …

1 - X 

1

- X1 - X2 - X3 - …  - Xn - Xn+1 - …

(1- X) P(X) = 

 P(X) = 

-X * P(X) = 

P(X) =

1



What is a Generating Function?

Just a particular

representation of sequences… 

In general, when        is a sequence…



Formal Power Series


n = 0



anX
nP(X) =

There are no worries about convergence issues.

This is a purely syntactic object.



Formal Power Series


i = 0



aiX
iP(X) =

If you want, think of as the infinite vector

V = < a0, a1, a2, ..., an, … >

But, as you will see, thinking of as a 

“polynomial” is very natural and powerful.



…And why would I use one?

They're fun and powerful !

Solving recurrences precisely

Solving  (impossible looking) counting problems

Proving identities



In Graham-Knuth-Patashnik’s text  “Concrete

Mathematics: A Foundation for Computer Science”, 

generating functions are described as 

“the most important idea in this whole book.”

Generating functions transform problems 

about sequences into problems about functions,

allowing us to put the piles of machinery available 

for manipulating functions to work for 

understanding sequences



Operations on Generating Functions

A(X) = a0 + a1 X + a2 X2 + … 

B(X) = b0 + b1 X + b2 X2 + … 

adding them together

(A+B)(X) = (a0+b0) + (a1+b1) X + (a2+b2) X
2 + … 

like adding the vectors position-wise

<4,2,3,…> + <5,1,1,….> = <9,3,4,…>



Operations on Generating Functions

A(X) = a0 X0 + a1 X1 + a2 X2 + … 

multiplying by X

X * A(X) = 0 X0 + a0 X1 + a1 X2 + a2 X3 + … 

like shifting the vector entries

SHIFT<4,2,3,…> = <0,4,2,3,…>



Example

Example:

V = n’th row of  Pascal’s triangle

(binomial coefficients 𝑛
𝑘

)

Store:

V = <1,0,0,0,…>

V = <1,1,0,0,…>

V = <1,2,1,0,…>

V = <1,3,3,1,…>

V := <1,0,0,…>;

Loop n times

V := V + SHIFT(V);



Example:

V := <1,0,0,…>;

Loop n times

V := V + SHIFT(V);

V = nth row of  Pascal’s triangle

(binomial coefficients 𝑛
𝑘

)

PV := 1;

PV := PV*(1+X);

Example



Example:

V := <1,0,0,…>;

Loop n times

V := V + SHIFT(V);

Example

PV = (1+ X)n

As expected, the coefficients of  PV give 

the binomial coefficients 𝑛
𝑘



To repeat…


i = 0



aiX
iP(X) =

Given a sequence V = < a0, a1, a2, ..., an, … >

associate a formal power series with it

This is the “generating function” for V



Fibonacci Numbers

i.e., the sequence <0,1,1,2,3,5,8,13…>

is represented by the power series 

(generating function)

0 + 1X1 + 1X2 + 2 X3 + 3 X4 + 5 X5 + 8 X6 +…

F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2



Two Representations

A(X) = 0 + 1X1 + 1X2 + 2 X3 + 3 X4 + 5 X5 + 8 X6 +…

F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2

Can we write A(X) more succinctly?



A(X) = F0 + F1 X1 + F2 X2 + F3 X3 + … + Fn Xn +…

= X1 + (F1 + F0)X
2 + (F2+F1) X

3 + … + (Fn-1 +Fn-2) X
n +…

(1 – X – X2)

X
A(X) = 



G.F for Fibonaccis

F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2

(1 – X – X2)

X
A(X) = 

has the generating function 

i.e., the coefficient of Xn in A(X) is Fn



1 – X – X2 X

X2 + X3

-(X – X2 – X3)

X

2X3 + X4

-(X2 – X3 – X4)

+ X2

-(2X3 – 2X4 – 2X5)

+ 2X3

3X4 + 2X5

+ 3X4

-(3X4 – 3X5 – 3X6)

5X5 + 3X6

+ 5X5

-(5X5 – 5X6 – 5X7)

8X6 + 5X7

+ 8X6

-(8X6 – 8X7 – 8X8)



Closed form expression for Fn?

F0 = 0, F1 = 1, 

Fn = Fn-1 + Fn-2 (1 – X – X2)

X
A(X) = 

let’s factor (1 – X – X2)

(1 – X – X2) = (1 – φ1 X)(1 – φ2 X)

φ2 = 1 - √5

2

where φ1 = 1 + √5

2



Let’s simplify

F0 = 0, F1 = 1, 

Fn = Fn-1 + Fn-2

X

A(X) = 

(1 – φ1X)(1 – φ2X)A(X) = 

1

(1 – φ1X)

1

(1 – φ2X)√5

1

√5

-1
+

some elementary algebra omitted…*

*you are not allowed to say this in your answers…



A(X) = 
1

(1 – φ1X)

1

(1 – φ2X)√5

1

√5

-1
+

1

(1 – φ1X)
= 1 + φ1 X + φ1

2 X2 + … + φ1
n Xn + …

= 1 + Y1 + Y2 + Y3 + … + Yn + … 

1 - Y

1

the Infinite Geometric Series



A(X) = 
1

(1 – φ1X)

1

(1 – φ2X)√5

1

√5

-1
+

1

(1 – φ1X)
= 1 + φ1 X + φ1

2 X2 + … + φ1
n Xn + …

 the coefficient of Xn in A(X) is…

√5

1
φ2

n

√5

-1
+φ1

n

1

(1 – φ2X)
= 1 + φ2 X + … + φ2

n Xn + …



√5
1

(-1/φ)n

√5
-1

+φnFn = 

where φ = 1 + √5

2

Closed form for Fibonaccis

“golden ratio”



√5
1

(-1/φ)n

√5
-1

+φnFn = 

Closed form for Fibonaccis

√5
1
φn

Fn = closest integer to 



To recap…


i = 0



aiX
iP(X) =

Given a sequence V = < a0, a1, a2, ..., an, … >

associate a formal power series with it

This is the “generating function” for V

We just used this for solving the 

Fibonacci recurrence…



Multiplication

A(X) = a0 + a1 X + a2 X2 + … 

B(X) = b0 + b1 X + b2 X2 + … 

multiply them together

(A*B)(X) = (a0*b0) + (a0b1 + a1b0) X 

+ (a0b2 + a1b1 + a2b0) X
2

+ (a0b3 + a1b2 + a2b1 + a3b0 ) X
3

+ … 

seems a bit less natural in the vector representation

(it’s called a “convolution” there)



Multiplication: special case

A(X) = a0 + a1 X + a2 X2 + … 

Special case: B(X) = 1 + X + X2 + … 

multiply them together

(A*B)(X) = a0 + (a0 + a1) X + (a0 + a1 + a2) X
2

+ (a0 + a1 + a2 + a3) X
3 + … 

It gives us partial sums!

1

1-X
=



Poll time

What’s a closed form for the generating function 

of the sequence of natural numbers 〈0,1,2,3,4, … 〉, 
i.e., the sequence 𝑎𝑛 = 𝑛 for 𝑛 ≥ 0 ?

𝑋 + 2 𝑋2 + 3 𝑋3 +⋯+ 𝑛 𝑋𝑛 +⋯

equals 

𝑋

1 − 𝑋 2



A(X) = a0 + a1 X + a2 X2 + … 

B(X) = 1 + X + X2 + … 

(A*B)(X) = a0 + (a0 + a1) X + (a0 + a1 + a2) X
2

+ (a0 + a1 + a2 + a3) X
3 + … It gives us 

partial sums.

1

1-X
=

Apply with A(X)=B(X) 

1 + 2𝑋 + 3𝑋2 + 4𝑋3 +⋯+ 𝑛 𝑋𝑛−1 +⋯ =
1

1 − 𝑋 2

To get generating function for naturals 〈0,1,2,3, … 〉,
which is a shift of 1,2,3, … , multiply the G.F by 𝑋



Take  1 + 2X + 3X2 + 4X3 + … 
1

(1-X)2
=

Δ1 + Δ2 𝑋 + Δ3𝑋
2 +⋯

1

(1-X)3
=

multiplying through  by 1/(1-X)

What happens if we again 

take prefix sums?

where Δ𝑛 =
𝑛+1
2

is the 

sequence of triangular numbers 



<1,2,3,4,…>
1

(1-X)2
=

1

(1-X)3
=

1

1-X
=<1,1,1,1,…>

What’s the pattern?

1

(1-X)k
=???

<1,3,6,10,…>
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(1-X)2
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1

(1-X)3
=

1

1-X
=

0

0

1

0

2

0

3

0

<1,2,3,4,…>

<1,3,6,10,…>

1

(1-X)n
=???

What’s the pattern?

,      ,       ,       , … 
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<1,3,6,10,…>
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4

1,      ,       ,       , … 

,      ,       ,       , … 

1

(1-X)n
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What’s the pattern?
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What’s the pattern?
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What’s the pattern?



What is the coefficient of Xn in 

the expansion of:

( 1 + X + X2 + X3 + X4 + . . . . )k ?

To get 𝑋𝑛 we need to pick 𝑋𝑒𝑖 in 𝑖′𝑡ℎ factor, for 𝑖 = 1,2,… , 𝑘
with 𝑒1 + 𝑒2 +⋯+ 𝑒𝑘 = 𝑛.

Each exponent can be any natural number.

∴ coefficient of Xn is the number of non-negative solutions to: 

e1 + e2 + . . . + ek = n

Another 

way to 

see it…

n + k - 1
k - 1

which is



The Convolution Rule
A(X) = a0 + a1 X + a2 X2 + … B(X) = b0 + b1 X + b2 X2 + … 

A  and B disjoint

Then, number of ways to select n items total 

from A B  = a0bn + a1bn-1 + a2bn-2 + …. + anb0 

GF for selecting items 

from set A

GF for selecting items 

from set B

Suppose there is a bijection between n-element 

selections  from A B  and ordered pairs of 

selections from A  and B  containing total of n els.

∴ GF for selecting items from disjoint union A B 

= A(X) B(X)



Now to a seemingly 

over the top 

counting problem…



Let cn = number of ways to 

pick exactly n fruits.

What is a closed form for cn?

E.g., c5 = 6



If A(x), B(x), O(x) and P(x)

are the generating functions for the 

number of ways to fill baskets using 

only one kind of fruit

Then the generating function for

number of ways to fill basket using

any of these fruits is given by

C(x) = A(x)B(x)O(x)P(x)

Recall Convolution Rule



Suppose we only pick bananas

bn = number of ways to pick n fruits, only bananas.

<1,0,1,0,1,0,…>

B(x) = 1 + x2 + x4 + x6 + …
1

1-x2
=



Suppose we only pick apples

an = number of ways to pick n fruits, only apples.

<1,0,0,0,0,1,…>

A(x) = 1 + x5 + x10 + x15 + …
1

1-x5
=



Suppose we only pick oranges

on = number of ways to pick n fruits, only oranges.

<1,1,1,1,1,0,0,0,…>

O(x) = 1 + x + x2 + x3 + x4 1-x5

1-x
=



Suppose we only pick pears

pn = number of ways to pick n fruits, only pears.

<1,1,0,0,0,0,0,…>

P(x) = 1 + x
1-x2

1-x
=



Let cn = number of ways to 

pick exactly n fruits of any type

 cn xn = A(x) B(x) O(x) P(x)

= 1-x2

1-x

1

1-x5

1

1-x2

1-x5

1-x
= 

1

(1-x)2



1

(1-X)2
cn is coefficient of Xn in 

<1,2,3,4,…>∴ cn = n+1.

Let cn = number of ways to 

pick exactly n fruits of any type



Another useful operation: 

Differentiation

A(X) = a0 + a1 X + a2 X2 + … 

differentiate it…

A’(X) = a1 + 2a2 X + 3a3 X2 …


i = 0



(i+1)ai+1 X
iA’(X) =


i = 0



iai X
iX A’(X) =



1

(1-X)k
=

n = 0



Xnn+k-1

k-1

Example of differentiation in action



1

(1-X)k
=

n = 0



Xnn+k-1

k-1

Differentiation in action

Fact: For a generating function 𝐴 𝑋 =  𝑛=0
∞ 𝑎𝑛𝑋

𝑛

𝑎𝑛 =
𝐴 𝑛 (0)

𝑛!

where 𝐴 𝑛 (𝑋) is the 𝑛’th order derivative of 𝐴(𝑋)

For 𝐴 𝑋 =
1

1−𝑋 𝑘, we have 𝐴 𝑛 𝑋 =
𝑘 𝑘+1 ⋯(𝑘+𝑛−1)

1−𝑋 𝑘+𝑛



Differentiation in use

Exercise: Prove that the generating function 

for squares, i.e., 

the sequence an = n2,  n=0,1,2….  equals

One approach: Use differentiation + shifting twice

𝑋(1 + 𝑋)

1 − 𝑋 3



Integration

A(X) = a0 + a1 X + a2 X2 + … 

Integrating both sides ….



Example

Evaluate the sum

Substituting X=1, answer = 



Manhattan walk

All the avenues numbered 0 through x, run north-south,

and all streets, numbered 0 through y, run east-west. 

The number of [sensible] ways to walk from the corner of 

(0,0) to (x,y) (total x+y steps) equals:

(0,0)

(x,y)

x y

y

 
 
 



What if we require the Manhattan walk to  

never cross the diagonal? 

How many ways can we walk from (0,0) to (n,n) 

along the grid subject to this rule?

Noncrossing Manhattan walk

n

n

(n,n)

(0,0)

This number, 

say 𝑐𝑛, is called the

𝑛’th Catalan number



14 such walks for n=4
(c.f. total # Manhattan walks =          
= 70 )










4

8

http://en.wikipedia.org/wiki/File:Catalan_number_4x4_grid_example.svg
http://en.wikipedia.org/wiki/File:Catalan_number_4x4_grid_example.svg


cn = # Manhattan walks from (0,0) to (n,n) that 
never cross the diagonal  (define c0=1).

(n,n)

(0,0)

A recurrence

n

n

The walk must hit the 
diagonal at least once 
(perhaps only at the end).

(k,k)
# walks that hit the diagonal 

at (k,k) for the first time?

(1 ≤ k ≤ n) 

Answer: ck-1 cn-k



Generating Function

 Define 
𝑐𝑛 = coefficient of 

xn-1 in C(x)2

Together with c0=1 we get

C(x) =  1 + x C(x)2



Catalan generating function

x C(x)2 – C(x) + 1 = 0 

Using this, one can calculate 

Define 𝐷 𝑥 = 2𝑥 𝐶 𝑥 = 1 − 1 − 4𝑥 =  𝑛=0
∞ 𝑑𝑛𝑥

𝑛

𝑐𝑛 =
𝑑𝑛+1
2



Another take on Catalan Generating Fn.

Let E(X) be the GF for super non-crossing 

Manhattan  walks on n x n grids that

never touch the diagonal  (except at endpoints)

Fact 1: E(X)  = X C(X)

Fact 2: C(X)  = 1 + E(X) + (E(X))2 + (E(X))3 + ….

Together these imply 



Here’s yet another take,

this time without 

Generating Functions (Yay!)



Let’s count # violating paths, that do cross the diagonal

Will do so by a bijection.

Find first step above the diagonal. 

“Flip” the portion of the path after that step. 



Flip the portion of the 

path after the first edge

above the diagonal. 

Observe: New path goes to (n-1,n+1)

Claim: The above is a bijection from crossing 
Manhattan walks in n x n grid to 
unconstrained Manhattan walks in (n-1,n+1) grid




















1

22

n

n

n

nThus, number of noncrossing

Manhattan walks on n x n grid =



How many sequences of balanced paranthesis

with n (’s and n 1)’s are there?

The n’th Catalan numberAnswer:



Some Common GFs

Generating

Function
Sequence



Supplementary material:

Another recurrence example

Goal: derive a closed form 

using generating functions.

Let



Proceeding as in Fibonacci example…

Let



A closed form



Simplifying to retrieve dn

Factorize denominator to break it into smaller pieces!



Retrieving dn



Formal Power Series

Basic operations on Formal Power Series

Solving recurrences using  

generating functions 

(handle base cases carefully!)

Solving G.F. to get closed form

G.F.s for common sequences

Prefix sums using G.F.s

Using G.F.s to solve counting problems

Study Guide


