15-251

Great Theoretical Ideas in Computer Science

Lecture 28: A Computational Lens on Proofs

Proof. Define f_{ij} as in (5). As f is symmetric, we only need to consider f_{12} .

$$\mathbf{E}\left[f_{12}^{2}\right] = \mathbf{E}_{x_{3}...x_{n}}\left[\frac{1}{4}\cdot\left(f_{12}^{2}(00x_{3}...x_{n}) + f_{12}^{2}(01x_{3}...x_{n}) + f_{12}^{2}(10x_{3}...x_{n}) + f_{12}^{2}(11x_{3}...x_{n})\right)\right]$$

$$= \frac{1}{4}\mathbf{E}_{x_{3}...x_{n}}\left[\left(f(00x_{3}...x_{n}) - f(11x_{3}...x_{n})\right)^{2} + \left(f(11x_{3}...x_{n}) - f(00x_{3}...x_{n})\right)^{2}\right]$$

$$\geq \frac{1}{2}\left(\binom{n-2}{r_{0}-1}\cdot 2^{-(n-2)}\cdot 4 + \binom{n-2}{n-r_{1}-1}\cdot 2^{-(n-2)}\cdot 4\right)$$

$$= 8\cdot\left(\frac{(n-r_{0}+1)(n-r_{0})}{n(n-1)}\cdot\binom{n}{r_{0}-1} + \frac{(n-r_{1}+1)(n-r_{1})}{n(n-1)}\cdot\binom{n}{r_{1}-1}\right)2^{-n}.$$

Inequality (6) follows by applying Lemma 2.2.

In order to establish inequality (7), we show a lower bound on the principal Fourier coefficient of f:

$$\widehat{f}(\emptyset) \ge 1 - 2 \left(\sum_{s < r_0} \binom{n}{s} + \sum_{s > n - r_1} \binom{n}{s} \right) 2^{-n},$$

which implies that

$$\widehat{f}(\emptyset)^2 \ge 1 - 4 \cdot \left(\sum_{s < r_0} \binom{n}{s} + \sum_{s < r_1} \binom{n}{s} \right) 2^{-n}.$$

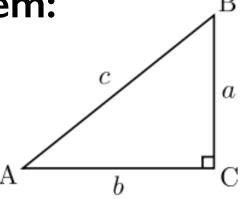
December 6th, 2016

Evolution of "proof"

First there was GORM

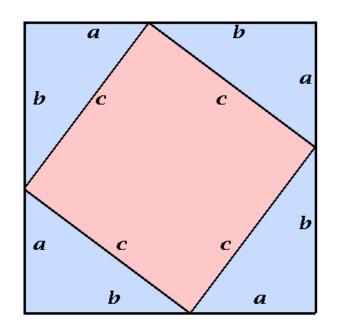
GORM = Good Old Regular Mathematics

Pythagoras's Theorem:



$$a^2 + b^2 = c^2$$

Proof:



$$(a+b)^2 = a^2 + 2ab + b^2$$

Looks legit.

Then there was Russell

Russell and others worked on formalizing GORM proofs.

Principia Mathematica Volume 2

```
86
                                                                                               PART III
                                      CARDINAL ARITHMETIC
*110632. \vdash : \mu \in NC. \supset : \mu +_{c} 1 = \hat{\xi} \{(\exists y) : y \in \xi : \xi - \iota' y \in sm'' \mu\}
     Dem.
            +.*110.631.*51.211.22.>
            f: \operatorname{Hp.D.} \mu +_{c} 1 = \widehat{\xi} \{ (\pi y, y) \cdot y \in \operatorname{sm}^{c} \mu \cdot y \in \xi \cdot y = \xi - \iota^{c} y \}
           [*13·195] = \hat{\xi} \{ (\Im y) \cdot y \in \xi \cdot \xi - \iota' y \in \operatorname{sm}'' \mu \} : \mathsf{D} \vdash \cdot \operatorname{Prop}
*110.64. \vdash \cdot \cdot \cdot \cdot \cdot +_{c} \cdot 0 = 0
                                              [*110·62]
*110.642. +.2+0=0+2=2 [*110.51.61.*101.31]
*110.643. + .1 + .1 = 2
     Dem.
                             F.*110.632.*101.21.28.3
                             1 \cdot 1 +_{\epsilon} 1 = \hat{\xi}\{(\exists y) \cdot y \in \xi \cdot \xi - \iota' y \in 1\}
                             [*54.3] = 2.3 + . Prop
     The above proposition is occasionally useful. It is used at least three
times, in *113.66 and *120.123.472.
```

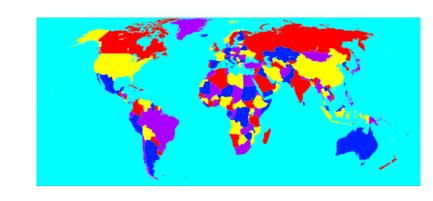
This meant proofs could be found mechanically. And could be verified mechanically.

Then there were computers

All this played a key role in the birth of computer science.

Computers themselves can find proofs. (automated theorem provers)

Computers can help us find proofs (e.g. 4-Color Theorem)



Are these really proofs?

And now...

Thanks to computer science, a "proof" can be:

- randomized
- interactive
- zero-knowledge
- spot-checkable

Original goal of a "proof":

explain and understand a truth.

Now?

Review of NP

Definition:

A language A is in **NP** if

- there is a polynomial time TM $\ V$
- a polynomial p

such that for all x:

$$x \in A \iff \exists u \text{ with } |u| \leq p(|x|) \text{ s.t. } V(x,u) = 1$$

" $x \in A$ iff there is a poly-length proof u that is verifiable by a poly-time algorithm."

NP: A game between a Prover and a Verifier

Verifier

poly-time skeptical

Prover

omniscient untrustworthy

Given some input x (known both to Verifier and Prover)

Prover wants to convince Verifier that $x \in A$.

Prover cooks up a "proof" u and sends it to Verifier.

Verifier (in poly-time), should be able to tell if the proof is legit.

NP: A game between a Prover and a Verifier

Verifier

poly-time skeptical

Prover

omniscient untrustworthy

"Completeness"

If $x \in A$, there must be some poly-length proof u that convinces the Verifier.

"Soundness"

If $x \notin A$, no matter what "proof" Prover gives, Verifier should detect the lie.

NP: A game between a Prover and a Verifier

Verifier

poly-time skeptical

Prover

omniscient untrustworthy

If we have a protocl for A that is complete and sound:

 $A \in \mathbf{NP}$.

Limitations of NP

Many languages are in NP.

SAT, 3SAT, CLIQUE, MAX-CUT, VERTEX-COVER, SUDOKU, THEOREM-PROVING, 3COL, ...

Anything not known to be in NP?

Consider the complement of 3SAT:

Given an <u>unsatisfiable</u> 3SAT formula, how can the **Prover** prove it is unsatisfiable???

i.e. is the complement of 3SAT in NP?

How can we generalize the NP setting?

NP setting seems too weak for this purpose.

Also, people use more general ways of convincing each other of the validity of statements.

- Make the protocol interactive.

You can show interaction doesn't really change the model.

- Make the verifier probabilistic.

We don't think randomization by itself adds more power.

But, magic happens when you combine the two.

Power of Interaction + Randomization

Coke vs Pepsi Challenge

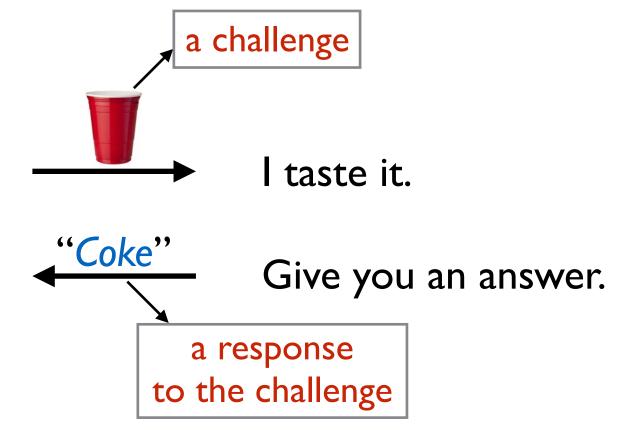
Claim: I can taste the difference between Coke and Pepsi.

How can I prove this to you?

Coke vs Pepsi

Choose Coke or Pepsi at random.

Send it to me.



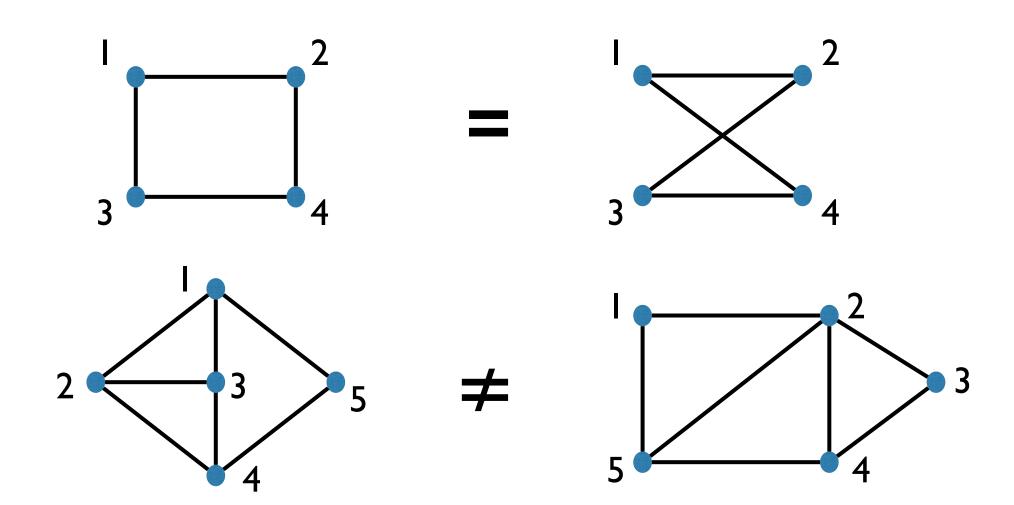
Repeat

Graph Isomorphism Problem

Given two graphs G_1, G_2 , are they isomorphic?

i.e., is there a permutation π of the vertices such that

$$\pi(G_1) = G_2$$



Graph Isomorphism Problem

Is Graph Isomorphism in NP?

Sure! A good proof is the permutation of the vertices.

Is Graph Non-isomorphism in NP?

No one knows!

But there is a simple randomized interactive proof.

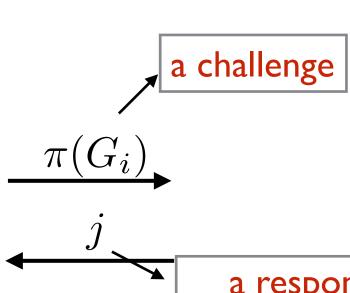
Interactive Proof for Graph Non-isomorphism

$$\langle G_1, G_2 \rangle$$

Pick at random $i \in \{1,2\}$

Choose a permutation π of vertices at random.

Accept if i = j



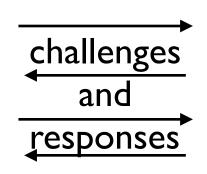
a response to the challenge

The complexity class IP (Interactive Proof)

We say that a language A is in **IP** if:

- there is a probabilistic poly-time Verifier

- there is a computationally unbounded Prover



(poly rounds)

"Completeness"

If $x \in A$, Verifier accepts with prob. at least 2/3.

"Soundness"

If $x \notin A$, Verifier accepts with prob. at most 1/3.

How big is IP?

Clearly NP \subseteq IP.

Is $\overline{3}\overline{S}\overline{A}\overline{T}$ in IP?

Yes!

The complement of any language in NP is in IP:

 $coNP \subseteq IP$

How big is IP?

So how powerful are interactive proofs?

How big is **IP**?

Theorem:

IP = PSPACE

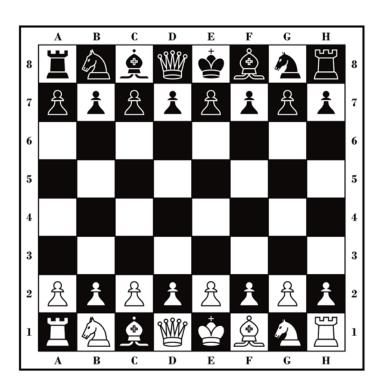
Adi Shamir 1990

(another application of polynomials)

Chess

An interesting corollary:

Suppose in chess, white can always win in \leq 300 moves.



How can the wizard prove this to you?

SUMMARY SO FAR

NP = I-round deterministic interaction between a Prover and a Verifier.

NP + multiple rounds = NP

NP + randomization = NP (conjectured as such)

NP + multiple rounds + randomization = IP = PSPACE

And now...

Thanks to computer science, a "proof" can be:

- randomized
- interactive
- zero-knowledge
- spot-checkable

Back to Graph Non-isomorphism

Does the verifier gain any insight about why the graphs are not isomorphic?

 $\langle G_1, G_2 \rangle$

Pick at random $i \in \{1, 2\}$

Choose a permutation π of vertices at random.

$$\frac{\pi(G_i)}{j}$$

Accept if i = j

Zero-Knowledge Proofs

The Verifier is convinced, but learns <u>nothing</u> about why the graphs are non-isomorphic!

The Verifier could have produced the communication transcript by himself, with no help from the Prover.

A proof with 0 explanatory content! Is this useful?

Zero-Knowledge Proofs

Examples of scenarios it would be useful.

Which proofs can be turned into zero-knowledge proofs?

- Does every problem in **IP** have a zero-knowledge interactive proof?
- Does every problem in **NP** have a zero-knowledge interactive proof?

Does every problem in NP have a zero-knowledge IP?

Yup! (under plausible cryptographic assumptions)

Goldreich

Micali

Wigderson

1986

Does every problem in NP have a zero-knowledge IP?

Yup! (under plausible cryptographic assumptions)

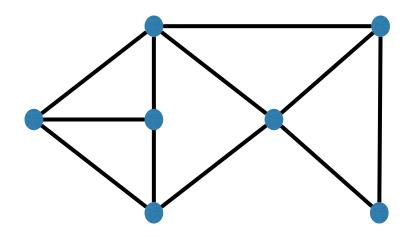
It suffices to show this for your favorite **NP**-complete problem.

(every problem in NP reduces to an NP-complete prob.)

We'll pick the Hamiltonian cycle problem.

Hamiltonian cycle problem

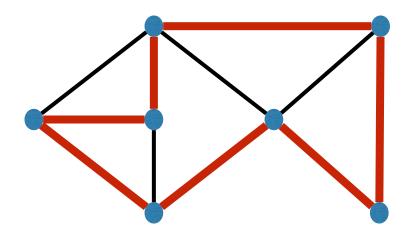
Given an undirected graph:



Does it have a cycle that visits every vertex exactly once?

Hamiltonian cycle problem

Given an undirected graph:



Does it have a cycle that visits every vertex exactly once?

The protocol

Given undirected graph G

Prover:

Picks randomly a permutation of the vertices π .

Sends $\pi(G)$ in a "locked" way:

- for each pair of vertices, there is a locked bit.
- the bit indicates whether the vertices are connected.

Verifier:

Flips a coin.

If heads, asks Prover to show him the Hamiltonian cycle.

If tails, asks Prover to unlock everything, and asks for π .

Completeness

Soundness

Zero-knowledge

All is good if: the "locked" bits work the way they are meant to work.

- Verifier shouldn't be able to unlock them by himself.
- Prover shouldn't be able to change bit values.

Can be realized using bit commitment schemes. (assuming Verifier is computationally bounded)

Zero-Knowledge for all?

Does every problem in **IP** = **PSPACE** have a zero-knowledge proof?

Yup!

Ben-Or

Goldreich

Goldwasser

Håstad

Kilian

Micali

Rogaway

1990

"Everything provable is provable in zero-knowledge"

Statistical vs Computational Zero-Knowledge

There is a difference between

- zero-knowledge proof for Graph Non-isomorphism
- zero-knowledge proof for Hamiltonian Cycle

Statistical zero-knowledge:

Verifier doesn't learn anything even if it was computationally unbounded.

Computational zero-knowledge:

Verifier doesn't learn anything assuming it cannot unlock the locks in polynomial time.

Statistical vs Computational Zero-Knowledge

SZK = set of all problems with statistically zero-knowledge proofs

CZK = set of all problems with computationally zero-knowledge proofs

IP = PSPACE = CZK

SZK is believed to be much smaller.

In fact, it is believed that it does not contain

NP-complete problems.

And now...

Thanks to computer science, a "proof" can be:

- randomized
- interactive
- zero-knowledge
- spot-checkable

Scenario:

I have a proof that I+I=2.

It is a few hundred pages long.

You have to verify its correctness.

Tiny mistake —> Super annoying to find!

If only there was a way to "spot-check" the proof:

- check randomly a few bits
- w.h.p. correctly verify the proof

That's a dream that seems too good to be true. Or is it?

Question:

Given two graphs G_0, G_1 , is there a "spot-checkable" proof that they are non-isomorphic?

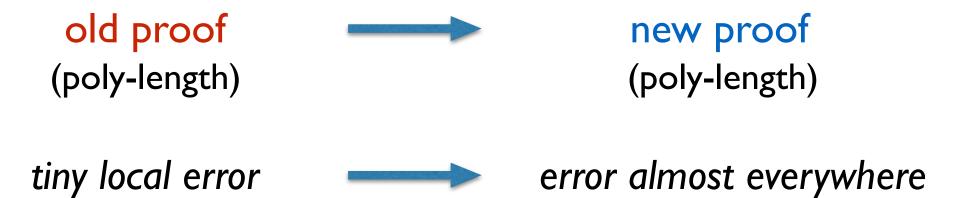
Exercise:

Find such a proof that is exponentially long.

Probabilistically Checkable Proofs (PCP) Theorem:

Every problem in **NP** admits "spot-checkable" proofs of polynomial length.

The verifier can be convinced with high probability by looking only at a *constant* number of bits in the proof.



"New shortcut found for long math proofs!"

Probabilistically Checkable Proofs (PCP) Theorem:

Every problem in **NP** admits "spot-checkable" proofs of polynomial length.

The verifier can be convinced with high probability by looking only at a *constant* number of bits in the proof.

1998

Arora-Lund-Motwani-Safra-Sudan-Szegedy

This theorem is **equivalent** to:

PCP Theorem (version 2):

There is some constant ϵ such that if there is a polynomial-time ϵ -approximation algorithm for MAX-3SAT, then P = NP.

(It is NP-hard to approximate MAX-3SAT within an ϵ factor.)

This is called an "hardness of approximation" result.

They are hard to prove!

PCP Theorem is one of the crowning achievements in CS theory!

Proof is a half a semester course.

Blends together:

P/NP

random walks

expander graphs

polynomials / finite fields

error-correcting codes

Fourier analysis

Summary

Computer science gives a whole new perspective on proofs:

- can be probabilistic
- can be interactive
- can be zero-knowledge
- can be spot-checkable
- can be quantum mechanical

Summary

old-fashioned proof + deterministic verifier NP

randomization + interaction

PSPACE

PSPACE = Computationally Zero-Knowledge (CZK)

"Everything provable is provable in zero-knowledge" (some special problems are in SZK)

Summary

PCP Theorem

Old-fashioned proofs can be turned into spot-checkable. (you only need to check constant number of bits!)

Equivalent to an hardness of approximation result.

Opens the door to many other hardness of approximation results.