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Evolution of “proof”



First there was GORM

Proof:

(a+ b)2 = a2 + 2ab+ b2

Looks legit.

a2 + b2 = c2

Pythagoras’s Theorem:

GORM = Good Old Regular Mathematics



Then there was Russell
Principia Mathematica 

Volume 2

Russell and others
worked on formalizing
GORM proofs.

This meant proofs could be found mechanically. 
And could be verified mechanically.



Then there were computers

All this played a key role in the birth of computer science.

Computers themselves can find proofs.
(automated theorem provers)

Are these really proofs?

Computers can help us find proofs
(e.g. 4-Color Theorem)



And now…

Thanks to computer science,  a “proof” can be:

- randomized

- interactive

- zero-knowledge

- spot-checkable

Original goal of a “proof”: 
                explain and understand a truth.

Now?



Review of NP

 “           iff there is a poly-length proof
  that is verifiable by a poly-time algorithm.”
x 2 A

u

Definition:

A language      is in NP ifA

- there is a polynomial time TM
- a polynomial p

such that for all    :x

V

x 2 A () 9u with |u|  p(|x|) s.t. V (x, u) = 1



NP:  A game between a Prover and a Verifier

Verifier Prover

Given some input      (known both to Verifier and Prover)x

Prover wants to convince Verifier that            .x 2 A

Prover cooks up a “proof”      and sends it to  Verifier.u

Verifier (in poly-time), should be able to tell
if the proof is legit. 

poly-time
skeptical

omniscient
untrustworthy



NP:  A game between a Prover and a Verifier

Verifier Prover

poly-time
skeptical

omniscient
untrustworthy

“Completeness”

“Soundness”

If            , there must be some poly-length proof     
that convinces the Verifier. 

x 2 A

u

If            , no matter what “proof” Prover gives, 
Verifier should detect the lie.

x 62 A



NP:  A game between a Prover and a Verifier

Verifier Prover

poly-time
skeptical

omniscient
untrustworthy

If we have a protocl for     that is complete and sound:

A 2 NP.

A



Limitations of NP

Many languages are in NP.

SAT,  3SAT,  CLIQUE,  MAX-CUT,  VERTEX-COVER,
SUDOKU,  THEOREM-PROVING,  3COL, …

Anything not known to be in NP ?

Consider the complement of 3SAT:

Given an unsatisfiable 3SAT formula, 
how can the Prover prove it is unsatisfiable???

i.e.  is the complement of 3SAT in NP?



How can we generalize the NP setting?

NP setting seems too weak for this purpose.

- Make the verifier probabilistic.

- Make the protocol interactive.

You can show interaction doesn’t really change the model.

We don’t think randomization by itself adds more power.

But, magic happens when you combine the two.

Also, people use more general ways of convincing each 
other of the validity of statements.



Power of Interaction + Randomization

Claim:  I can taste the difference between Coke and Pepsi.

How can I prove this to you?

Coke vs Pepsi Challenge



Coke vs Pepsi

Choose Coke or Pepsi
at random.

Send it to me. I taste it.

“Coke” Give you an answer.

Repeat

a challenge

a response
to the challenge



Graph Isomorphism Problem

=

≠

Given two graphs            ,  are they isomorphic?G1, G2

i.e.,  is there a permutation    of the vertices such that⇡

⇡(G1) = G2

1 2

3 4

1 2

3 4

1

2 3
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45



Graph Isomorphism Problem

Is Graph Non-isomorphism in NP?

Is Graph Isomorphism in NP?

Sure! A good proof is the permutation of the vertices.

No one knows!

But there is a simple randomized interactive proof.



Interactive Proof for Graph Non-isomorphism

Pick       or       at random.

hG1, G2i

Choose a permutation
of vertices at random.

⇡

⇡(Gi)

Pick at random i 2 {1, 2}

j
Accept if i = j

a challenge

a response
to the challenge



The complexity class IP (Interactive Proof)

We say that a language     is in IP if:A

“Completeness”

If            ,  Verifier accepts with prob. at least 2/3.x 2 A

“Soundness”
If            ,  Verifier accepts with prob. at most 1/3.x 62 A

challenges
and 

responses
(poly rounds)

- there is a computationally unbounded Prover

- there is a probabilistic poly-time Verifier



How big is IP ?

Is            in IP?            3SAT

Yes!

Clearly  NP      IP.✓

The complement of any language in NP is in IP:

coNP      IP✓



How big is IP ?

So how powerful are interactive proofs?

How big is IP?

Theorem:
IP = PSPACE

Adi Shamir

1990

(another application of polynomials)



Chess

An interesting corollary:

Suppose in chess, white can always win in ≤ 300 moves.

How can the wizard prove this to you?



SUMMARY SO FAR

NP  =  1-round deterministic interaction between a 
           Prover and a Verifier.

NP + multiple rounds  =  NP

NP + randomization  =  NP     (conjectured as such)

NP + multiple rounds + randomization  =  IP = PSPACE



And now…

Thanks to computer science, a “proof” can be:

- randomized

- interactive

- zero-knowledge

- spot-checkable



Back to Graph Non-isomorphism

Accept if 

Choose a permutation
of vertices at random.

hG1, G2i

⇡

⇡(Gi)

Pick at random i 2 {1, 2}

j
i = j

Does the verifier gain any insight about why the 
graphs are not isomorphic?



Zero-Knowledge Proofs

The Verifier is convinced,
   but learns nothing about why the graphs are 
   non-isomorphic!

The Verifier could have produced the communication 
transcript by himself, with no help from the Prover.

A proof with 0 explanatory content!

Is this useful?



Zero-Knowledge Proofs

Examples of scenarios it would be useful.

Which proofs can be turned into zero-knowledge proofs?

- Does every problem in NP have a zero-knowledge 
interactive proof?

- Does every problem in IP have a zero-knowledge 
interactive proof?



Zero-Knowledge Proofs for NP

Does every problem in NP have a zero-knowledge IP?

Goldreich Micali Wigderson

1986

Yup!   (under plausible cryptographic assumptions)



Zero-Knowledge Proofs for NP

It suffices to show this for your favorite NP-complete
problem.

(every problem in NP reduces to an NP-complete prob.)

We’ll pick the Hamiltonian cycle problem.

Does every problem in NP have a zero-knowledge IP?

Yup!   (under plausible cryptographic assumptions)



Zero-Knowledge Proofs for NP

Hamiltonian cycle problem

Given an undirected graph:

Does it have a cycle that visits every vertex exactly once?



Zero-Knowledge Proofs for NP

Given an undirected graph:

Does it have a cycle that visits every vertex exactly once?

Hamiltonian cycle problem



Zero-Knowledge Proofs for NP

Prover:

Verifier:

Given undirected graph G

Picks randomly a permutation of the vertices    .   ⇡

Sends           in a “locked” way:⇡(G)
- for each pair of vertices, there is a locked bit.
- the bit indicates whether the vertices are connected.

Flips a coin.

If heads, asks Prover to show him the Hamiltonian cycle.

If tails, asks Prover to unlock everything, and asks for    . ⇡

The protocol



Zero-Knowledge Proofs for NP

Completeness

Soundness

Zero-knowledge

All is good if: 
  the “locked” bits work the way they are meant to work.

- Verifier shouldn’t be able to unlock them by himself.

- Prover shouldn’t be able to change bit values.

Can be realized using bit commitment schemes.
(assuming Verifier is computationally bounded)



Zero-Knowledge for all?

Does every problem in IP = PSPACE have a 
zero-knowledge proof?

Ben-Or Goldreich Goldwasser Håstad Kilian Micali Rogaway

1990

"Everything provable is provable in zero-knowledge"

Yup!



Statistical vs Computational Zero-Knowledge

There is a difference between 
  - zero-knowledge proof for Graph Non-isomorphism
  - zero-knowledge proof for Hamiltonian Cycle

Statistical zero-knowledge:
Verifier doesn’t learn anything even if it was
computationally unbounded. 

Computational zero-knowledge:
Verifier doesn’t learn anything assuming it cannot unlock 
the locks in polynomial time.



Statistical vs Computational Zero-Knowledge

SZK = set of all problems with 
          statistically zero-knowledge proofs

CZK = set of all problems with 
           computationally zero-knowledge proofs

IP = PSPACE = CZK

SZK is believed to be much smaller.
In fact, it is believed that it does not contain 
NP-complete problems.



And now…

Thanks to computer science, a “proof” can be:

- randomized

- interactive

- zero-knowledge

- spot-checkable



Spot-Checkable Proofs

I have a proof that 1+1 = 2.

It is a few hundred pages long.

You have to verify its correctness.

Tiny mistake    —>   Super annoying to find!

Scenario:



Spot-Checkable Proofs

If only there was a way to “spot-check” the proof:

That’s a dream that seems too good to be true.
Or is it?

- check randomly a few bits
- w.h.p. correctly verify the proof



Spot-Checkable Proofs

Given two graphs             ,  is there a “spot-checkable” 
proof that they are non-isomorphic?

G0, G1

Question:

Find such a proof that is exponentially long.

Exercise:



Spot-Checkable Proofs

Probabilistically Checkable Proofs (PCP) Theorem:

Every problem in NP admits “spot-checkable” proofs
of polynomial length.

The verifier can be convinced with high probability
by looking only at a constant number of bits in the proof.

old proof new proof

tiny local error error almost everywhere

(poly-length) (poly-length)

“New shortcut found for long math proofs!”



Spot-Checkable Proofs

Probabilistically Checkable Proofs (PCP) Theorem:

Every problem in NP admits “spot-checkable” proofs
of polynomial length.

The verifier can be convinced with high probability
by looking only at a constant number of bits in the proof.

Arora-Lund-Motwani-Safra-Sudan-Szegedy

1998



Spot-Checkable Proofs

This theorem is equivalent to:

PCP Theorem (version 2):

There is some constant     such that if there is a 
polynomial-time    -approximation algorithm for MAX-3SAT,
then P = NP.

✏
✏

(It is NP-hard to approximate MAX-3SAT within an
      factor.)✏

This is called an “hardness of approximation” result.

They are hard to prove!



Spot-Checkable Proofs

PCP Theorem is one of the crowning achievements in 
CS theory!

Proof is a half a semester course.

Blends together:

P/NP
random walks
expander graphs
polynomials / finite fields
error-correcting codes
Fourier analysis



Summary

Computer science gives a whole new perspective on 
proofs:

- can be probabilistic

- can be interactive

- can be zero-knowledge

- can be spot-checkable

- can be quantum mechanical



Summary

old-fashioned proof + deterministic verifier

NP

randomization + interaction

PSPACE

PSPACE = Computationally Zero-Knowledge (CZK)

(some special problems are in SZK) 

"Everything provable is provable in zero-knowledge"



Summary

PCP Theorem

Old-fashioned proofs can be turned into spot-checkable.
(you only need to check constant number of bits!)

Equivalent to an hardness of approximation result.

Opens the door to many other hardness of 
approximation results.


